Towards Intelligent Crowdsourcing for Audio Data Annotation: Integrating Active Learning in the Real World

Simone Hantke1,2, Zixing Zhang1, and Björn Schuller1,3

1Chair of Complex & Intelligent Systems, University of Passau, Germany
2Machine Intelligence & Signal Processing Group, Technische Universität München, Germany
3Department of Computing, Imperial College London, UK

\texttt{simone.hantke@uni-passau.de}

Abstract

In this contribution, we combine the advantages of traditional crowdsourcing with contemporary machine learning algorithms with the aim of ultimately obtaining reliable training data for audio processing in a faster, cheaper and therefore more efficient manner than has been previously possible. We propose a novel crowdsourcing approach, which brings a simulated active learning annotation scenario into a real world environment creating an intelligent and gamified crowdsourcing platform for manual audio annotation. Our platform combines two active learning query strategies with an internally calculated trustability score to efficiently reduce manual labelling efforts. This reduction is achieved in a twofold manner: first, our system automatically decides if an instance requires annotation; second, it dynamically decides, depending on the quality of previously gathered annotations, on exactly how many annotations are needed to reliably label an instance. Results presented indicate that our approach drastically reduces the annotation load and is considerably more efficient than conventional methods.

Index Terms: Intelligent Crowdsourcing, Active Learning, Annotation Reduction, Audio Processing

1. Introduction

Supervised machine learning techniques are highly dependent on the amount and quality of labelled training data. Therefore, a crucial step in building supervised classifiers is the manual annotation of data. Conventionally, data annotation has been performed by groups of experts in a traditional laboratory setting, involving a large amount of labour. Therefore, acquiring these manual expert annotations is costly, time-consuming, and tedious work [1, 2, 3, 4]. Technologies such as the Internet of Things have made it easier than ever to collect vast and truly big amounts of data. Crowdsourcing has been shown to be a viable alternative to conventional labelling paradigms to rapidly collect the mass of annotations needed to leverage new data sources [5]. Whilst crowdsourcing has many positive aspects including efficiency and cost reduction, the online recruitment of anonymous annotators brings new and different issues especially in relation to the annotation quality. In this regard, we recently developed the gamified crowdsourcing platform iHEARu-PLAY \cite{hantke2017}. The platform offers audio, video and image labelling for a diverse range of annotation tasks. In addition, the platform ensures a high quality of annotations through optimized data quality management, while the gamification aspect reduces the mental boredom of the annotators.

A further issue is that conventional crowdsourcing still requires large amount of human efforts; at least as many labels as there are unlabelled data instances need to be provided. State-of-the-art optimization techniques like Active Learning algorithms reduce the number of data instances which need manual labelling [7, 8, 9, 10] and are capable of reducing the time-consuming and expensive manual labelling work. However, the benefits that such techniques can bring to crowdsourcing has yet to be fully investigated.

1.1. Related Work

Over the past few years, several crowdsourcing platforms have been established; examples include Mechanical Turk, Crowd-Flower, Turkit, Mob-hire, uTest, Freelancer, eLance, Trada, 99design, Innocentive, CloudCrowd, and Cloud-Flower \cite{99design}. These platforms all give monetary compensation to the annotator; however, as this amount can be small and the mundane work there is often a lack of appeal for this type of labelling work. A new strategy named Games with a Purpose was introduced to get individuals involved in research projects by motivating through a joyful environment instead of financial rewards [12, 13], resulting in the development of iHEARu-PLAY \cite{hantke2017}.

Even though the annotator might be more motivated by the gamification elements to perform labelling tasks, the gathered labels may still lack an expert-like quality. Diverse studies on examining the quality of the annotation data from expert annotators in a research lab and non-expert annotators from the internet have been performed and much work was done on the quality management to increase the quality of non-experts labels with special applied mechanisms [14, 15, 16, 17].

Active learning has been a rich literature in machine learning and it efficiently exploit unlabelled data for model training. It has been applied to many diverse domains such as machine translation [1, 18], medical imaging [19], classification tasks [20], sentiment detection [9, 21], and text classification [22]. Its effectiveness was shown in multimedia retrieval [23], typical classification tasks such as automatic speech recognition [24], and speech emotion recognition [8, 10], resulting in e.g., 79.17\% less manual annotation effort as can be seen in [10].

1.2. Contributions of this Paper

This paper proposes and explores a novel intelligent crowdsourcing approach which combines a state-of-the-art active learning algorithm with a gamified crowdsourcing platform, in order to combine the accuracy of manual labelling with the speed and cost-effectiveness of machine learning classifiers. Whilst – to the best of the authors knowledge – most studies on active learning have only simulated the active learning annotation scenario, herein, we present the first gamified intelligent
crowdsourcing platform for gathering expert-like manual audio annotations, exemplified through an emotion recognition experiment. We show the combination of two active learning strategies and an integrated data quality management – including a user trustability calculation depending on the correctness of the given answers to Consistency and Control Questions – which is capable of (i) deciding in the first place whether an instance needs labelling, or not, and (ii) dynamically deciding on how many annotators opinions are needed per instance, depending on the trustability of the user and the quality of the label. By incorporating these methods, our platform makes it feasible to reduce a large amount of unneeded annotations to obtain labelled training data in a faster, cheaper and higher quality way than it was previously possible.

2. Proposed Intelligent Crowdsourcing Platform

In this section, we describe the proposed audio annotation scheme in iHEARu-PLAY; an overview of the system is depicted in Figure 1.

2.1. Intelligent Audio Analysis

Data owners can upload their audio data to iHEARu-PLAY, which will then automatically run through the Intelligent Audio Analysis component. After having chosen a feature set out of a pool of different available feature sets, the acoustic features will be extracted by using the integrated openSMILE toolkit [25]. Then, a classifier is automatically trained with the already on iHEARu-PLAY pre-labelled small amount of training data and the results are automatically transferred to the Active Learning component.

2.2. Active Learning Algorithms

The main idea of an active learning algorithm is to improve the performance accuracy with as little training data as possible, if the algorithm is allowed to choose the data from which it learns [26, 27]. The integrated active learning algorithm extracts a subset of instances, based on the prediction confidence values, and creates a sorted list from the highest confidence on the instances to the lowest. This subset is then removed from the unlabelled data and automatically passed on for manual labelling by creating a new dataset within iHEARu-PLAY.

Table 1 describes the active learning algorithms used in this work which are based on the least certainty query strategy and on the medium certainty query strategy, which have been introduced in [28]. For each query strategy, the algorithm starts by classifying all instances of the unlabelled data pool \(U \) using a model trained on a small pool of data \(L \), previously labelled using iHEARu-PLAY. Upon the posterior probability, the confidence values assigned to each instance are ranked and stored in a queue \(Q \) in descending order. Assuming there are \(u \) instances in the unlabelled dataset, then, in the centre of the queue would be the \(\lceil u/2 \rceil \)th one. Finally, a subset \(N_a \) of \(U \) corresponding to those instances predicted with least or medium confidence values are sent to manual annotation within iHEARu-PLAY. Thenceforth, these instances are added to the training set and removed from the unlabelled data set \(U \). This sequential process is repeated until a predefined number of instances are selected or until some stopping criterion is met [28].

2.3. User Reliability and Annotation Reduction

Whilst active learning is mainly used to expedite the learning process and aims to reduce the labelling efforts required by a human expert, crowdsourcing, on the other hand, reduces the
Table 1: Pseudocode description of the active learning algorithm based on the least certainty query strategy and on the medium certainty query strategy.

Algorithm: Active Learning with least certainty query strategy and with medium certainty query strategy

Loop:
1. (Optional) Upsample the training set \(L \) to obtain even class distribution \(L_D \)
2. Use \(L / L_D \) to train classifier \(h \), and then classify the unlabelled set \(U \)
3. Rank the data based on the prediction confidence values \(C \) and store them in queue \(Q \)
4. • Least certainty query strategy: Select subset \(N_a \) whose elements are ‘on the bottom’ of the ranking queue \(Q \)
 • Medium certainty query strategy: Select subset \(N_a \) whose elements are ‘in the middle’ of the ranking queue \(Q \)
5. Submit the selected instances \(N_a \) to manual annotation

Loop:
1. (Optional) Upsample the training set \(L \) to obtain even class distribution \(L_D \)
2. Use \(L / L_D \) to train classifier \(h \), and then classify the unlabelled set \(U \)
3. Rank the data based on the prediction confidence values \(C \) and store them in queue \(Q \)
4. • Least certainty query strategy: Select subset \(N_a \) whose elements are ‘on the bottom’ of the ranking queue \(Q \)
 • Medium certainty query strategy: Select subset \(N_a \) whose elements are ‘in the middle’ of the ranking queue \(Q \)
5. Submit the selected instances \(N_a \) to manual annotation

cost or workload per annotation in a fast and efficient way. The goal of iHEARu-PLAY is to obtain annotations from non-expert annotators that are qualitatively close to gold standard annotations created by experts. Therefore, several data quality mechanisms have been applied, such as pre-time quality checks and tracking the users’ behaviour. Further, iHEARu-PLAY offers (i) Control Questions, which are definitely wrong answers used to detect players who do not read the question and/or just select a random answer and (ii) Consistency Questions, which are repeated certain questions from within the data files currently being annotated by a particular user, and then comparing the answer with the previous answer(s). Giving ‘inconsistent’ or ‘wrong’ answers decreases a Users Trustability whilst a ‘correct’ answer increases or maintains it.

All these methods can be used as a measurement to weigh the gathered annotations for example with the help of the Weighted Trustability Evaluator [14]. In addition, under the assumption that a ‘good’ user with a high User Trustability creates better annotations than a ‘bad’ user with a low User Trustability, the number of redundant annotations can be minimised, since this information can be used to define a quality threshold for the number of needed annotations. Annotations from trusted users will then be added to the final labelled dataset. If a user is not trusted, the file will be sent back to a new round of labelling until the given minimum number of required annotations is met. This procedure of the whole components is iterated until a defined criterion is met and all annotations are given.

3. Experiments

We provide proof-of-concept results on the integration of the active learning algorithm into iHEARu-PLAY. The exemplary experiments performed are a set of binary arousal (describing how strong or weak an emotion is) and valence (describing how positive or negative an emotion is) recognition tasks.

3.1. Database

Since the perception of emotions differs between native speakers and non-native speakers [29], we chose a database which presents nonsensical utterances, and therefore does not contain any contextual meaning to ensure the annotators were able to only annotate the emotions without taking the content into account. Therefore, we chose the GEMEP database, which is an acted database, including portrayals of very intense emotion utterances pronounced by five male and five female professional native-French speaking actors [30].

3.2. Acoustic Features

The acoustic feature set used in our experiments corresponds to the feature set of the INTERSPEECH 2010–2016 Challenges [31]. We used the open-source openSMILE feature extraction toolkit [32] to ‘brute-force’ the high-dimensional feature set by applying statistical functionals to frame-wise low-level descriptors, which comprise energy, spectral, and voicing related LLDs. Regarding functionals, the feature set is a compromise between a broad variety of functionals, including mean, min, max, and moments. Altogether, the INTERSPEECH 2013–2016 Challenge feature set contains 6,373 features.

3.3. Setup

Using the open-source Weka toolkit [33], Support Vector Machines (SVMs) were employed as the modelling paradigm, initially trained with a Sequential Minimal Optimisation (SMO) algorithm with a polynomial kernel and a constant complexity of 0.01. For our uncertainty based active learning experiments we require prediction confidences. Therefore, we converted the distances to probability estimates within the range of \([0,1]\) and further calculated the prediction confidence value. More details about the conversion procedure can be found in [28].

3.4. Evaluation

Annotations: The internally running data quality management component gave us reliable annotations per instances used as a starting training set; i.e., all annotators used had a trustability score of 100%. All in all we received seven reliable annotations per file. Out of the annotators: 3 were female and 4 male; one Indian, one Chinese, three German, one Italian and one British; and their age ranking from 27 to 34 years (only 5 users gave us the information on their age), with a mean of 29.4 years and a standard deviation of 3.13 years.

Baseline: We chose a passive learning algorithm as a baseline to compare the effectiveness of the active learning algorithm. The passive learning algorithm randomly selects a subset from the unlabelled set and asks a human to label it. The labelled files will then be removed from the unlabelled set and added to the labelled set. This approach is traditionally followed by ‘non-intelligent’ crowdsourcing and should be interrupted as our baseline result. For a better comparison of the algorithms itself, we also used the trusted annotations for the passive learning algorithm.

Learning Process: We randomly selected 30 instances for both active learning and passive learning as the initial training set, which was approximately 3% of the whole pool set. We
For a more detailed analysis and to statistically compare the performances, we computed the Student’s t-test, which was executed on the averaged UARs of each algorithm for both arousal and valence. We found, that especially the least certainty query strategy for the active learning algorithm can achieve significant performance improvement for both arousal and valence tasks compared with the passive learning algorithm ($p < 0.05$). However, the performance improvement cannot be seen as significant for the medium certainty query strategy ($p > 0.05$). The analysis of the significance levels confirms our previous observation and indicates that the active learning least certainty query strategy approach generally leads to significantly better performance than passive learning.

5. Conclusion and Outlook

We introduced a novel approach, where active learning comes together with gamified crowdsourcing for audio data annotation, resulting in the first real-world intelligent crowdsourcing platform iHEARu-PLAY. We introduced first baseline results, showing the effectiveness of the proposed system containing both the least and medium certainty query strategy. Our proof-of-concept experiments show that a higher classification accuracy is achieved especially through the active learning least certainty query strategy ($UAR = 81.6\%$ for arousal, 70.7% for valence). However, the performance improvement cannot be seen as significant for the medium certainty query strategy ($p > 0.05$).

Future work will focus on extending and improving the classification accuracy of the active learning algorithm, make it even more dynamic based on the user reliability, and run it on larger datasets. Since iHEARu-PLAY is multi-modal and images and videos can also be annotated, we would like to make the active learning component available for these data types as well. Thanks to a soon up-coming researcher portal, iHEARu-PLAY will open for research teams from all over the world to get their data annotated freely.

6. Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme under grant agreement No. 338164 (ERC Starting Grant iHEARu).

We thank audEERING GmbH for technical support and all iHEARu-PLAY users for donating their annotations.
7. References

