Phoneme state posteriorgram features for speech based automatic classification of speakers in cold and healthy condition

Akshay Kalkunte¹, Srinivasa Raghavan K M², Prasanta Kumar Ghosh²

¹Telecommunication Engineering, PES Institute of Technology, Bangalore 560085, India
²Electrical Engineering, Indian Institute of Science (IISc), Bangalore 560012, Karnataka, India

akshaykalkunte@gmail.com, srinivasaragHAVANKM@gmail.com, prasantg@ee.iisc.ernet.in

Abstract

We consider the problem of automatically detecting if a speaker is suffering from common cold from his/her speech. When a speaker has symptoms of cold, his/her voice quality changes compared to the normal one. We hypothesize that such a change in voice quality could be reflected in lower likelihoods from a model built using normal speech. In order to capture this, we compute a 120-dimensional posteriorgram feature in each frame using Gaussian mixture model from 120 states of 40 three-states phonetic hidden Markov models trained on approximately 16.4 hours of normal English speech. Finally, a fixed 5160-dimensional phoneme state posteriorgram (PSP) feature vector for each utterance is obtained by computing statistics from the posteriorgram feature trajectory. Experiments on the 2017-Cold sub-challenge data show that when the decisions from bag-of-audio-words (BoAW) and end-to-end (e2e) are combined with those from PSP features with unweighted majority rule, the UAR on the development set becomes 69% which is 2.9% (absolute) better than the best of the UARs obtained by the baseline schemes. When the decisions from ComParE, BoAW and PSP features are combined with simple majority rule, it results in a UAR of 68.52% on the test set.

Index Terms: speech recognition, human-computer interaction, computational paralinguistics

1. Introduction

Speech signal encodes complex physiological information which could be used for developing voice-based non-invasive clinical solutions. Commonly occurring upper respiratory tract infection, which is also referred to as common cold, conspicuously impacts characteristics of speech production. This change in voice characteristics, in turn, could degrade the performance of the automatic speech recognition (ASR) systems used in health-care applications and customer service industry as the ASR models are typically built with speech from people not necessarily affected by cold. Automatically identifying whether a voice sample is from a speaker affected by cold or not could help in selection of appropriate models to improve accuracies in such applications. In this work, we consider the task of classifying the speaker in cold and healthy condition from his/her voice.

There have been several works investigating the behavior of cold speech in speaker recognition. Studies by Tull et al. [1, 2, 3] reveal differences in formant patterns, nasality parameters and melcepstral coefficients between normal and cold speech. Shan et al. [4] observed variations in the energy levels parameters and melcepstral coefficients (MFCC) computed on cold speech processed with pre-emphasis filter improves speaker recognition performance. Recently, studies have been made to classify speech affected by cough [5], by using support vector machine (SVM), Bayesian and neural network trained on two sets of features that include time and frequency domain approaches. These studies indicate discernable variations in acoustics of speech affected by cold. However, cold classification problem remains a challenge when test voice sample is available from any unknown speaker in natural recording scenario. This requires analysis and modeling of cold speech characteristics in a speaker-independent manner.

P. Rose [6] pointed out that the cold is often accompanied by nasal cavity’s inflammation and swelling, which changes the volume and shape of nasal cavity and furthermore affects the nasal modulation of sound source excitation signal and causes the speaker’s voice to change. Thus, the condition could affect both glottal source as well as the nasal cavity characteristics that, in turn, could affect the quality of speech. Following the work by Tull et al. [7], we, in this work, hypothesize that characteristics of different sounds (phonemes) are affected to different degrees by cold condition of the speaker. We propose to capture the differences in acoustics of various phonemes due to the cold condition using a phonetic state posteriorgram approach. Using posteriorgram, we aim to normalize the variability due to speaker and recording conditions and emphasize the effect due to cold condition.

Posteriorgrams have been used for a number of applications in the past. For large vocabulary continuous speech recognition (LVCSR) tasks, Ma et al. [8] show that combining conventional cepstral features with class posterior probability features obtained from multi layer perceptron (MLP), results in a lower word error rate (WER). Williams et al. [9] show that phone posteriors are effective in differentiating clean speech from other acoustic segments like music and perform similar to features derived specifically for that purpose. Aradilla et al. [10] show that for template based ASR approaches, posterior based features outperform MFCC features. Zhang et al. [11] show that for unsupervised speech pattern recognition, a Gaussian posteriorgram based approach removes speaker variability. In detecting mispronunciation on a word level, Lee et al. [12] show that posteriorgram features obtained from a Deep Belief Network (DBN) perform better compared to MFCCs and unsupervised Gaussian posteriorgram features.

We compute the posteriorgram using an acoustic model built on a large number of speakers in healthy condition speaking in different recording environments. Thus, given the acoustics of cold speech, we assume that the likelihoods of the cold speech features against this model would be smaller compared to those of healthy speech features. In order to capture the difference in the distribution of the likelihoods for cold and healthy conditions for each phonetic state, we compute a set of statistics from the likelihoods across frames of each utterance. With 120 phonetic states, this results in 5160 phonetic state posteri-
orgram (PSP) features. Cold classification experiments on the 2017 Cold-sub challenge [13] Upper Respiratory Tract Infection Corpus (URTIC) show that the proposed PSP features result in an unweighted average recall (UAR) of 64% and 61.09% on the development and test sets. When the PSP features are used for a majority rule based late fusion with the baseline features, namely ComParE and BoAW, we obtain a UAR of 65.3% on development set and 68.52% on test set. We also consider late fusion on the decisions from PSP features, BoAW and end-to-end (e2e) models. This results in a UAR of 69% on the development set and 68.5% on test set. In order to examine how the likelihood of cold speech differs from that of the non-cold speech, we compute the phonetic state likelihood matrix \(L_i \) for the \(i \)-th utterance from the URTIC dataset [13]. Suppose there are \(N_i \) frames in the \(i \)-th utterance. Computing the log likelihood using eqn. (1) results in a \(n \times N_i \) matrix \(L' \) whose \((i,k)\)-th element is given by \(L'_i(k) \) defined in eqn. (1). The matrix \(L \) provides the log likelihood of each phonetic state in every frame.

In order to examine how the likelihood of cold speech differs from that of the non-cold speech, we compute the phonetic state likelihood matrix \(L' \) for the \(l \)-th utterance from the URTIC dataset [13]. Suppose there are \(C \) cold utterances and \(N_C \) healthy subjects’ utterances. We compute the average likelihood \(L_{i,C} \) for the \(i \)-th phonetic state across all frames in the \(l \)-th (1 \(\leq l \leq C \)) cold utterance as follows:

\[
L_{i,C}(k) = \frac{1}{N_C} \sum_{i=1}^{N_C} L_i(k)
\]

(2)

Similarly, for the \(l \)-th (1 \(l \leq N_C \)) non-cold utterance we obtain:

\[
L_{i,NC}(k) = \frac{1}{N} \sum_{i=1}^{N} L_i(k)
\]

(3)

We compute the mean of the \(L_i \) across all cold and non-cold utterances separately in the URTIC dataset [13] to obtain an average value of likelihood for each phonetic state. This provides us the the average phonetic state specific likelihoods for cold and non-cold utterances separately as follows:

\[
L_{i,C} = \frac{1}{C} \sum_{l=1}^{C} L_{i,C}(k) \quad L_{i,NC} = \frac{1}{N_C} \sum_{l=1}^{N_C} L_{i,NC}(k)
\]

(4)
Figure 2: Comparison of average log likelihoods of cold and non-cold speech with +/- standard deviations indicated with fine dotted lines

Figure 2 shows the variations of L_C^i and L_{NC}^i with different phoneme states (i). Although there is a large overlap, on average, it is clear that L_C^i is lower than L_{NC}^i for all phoneme states. This indicates that the cold speech features, on average, result in lower likelihoods against the GMMs of each phoneme state compared to the non-cold speech features. We find that the phonemes with highest ten differences in the likelihoods L_C^i and L_{NC}^i are AA, EH, V, DH, IY, AX, JH, W, T, NG. It is interesting to note that the nasal sound NG appears in the top ten most discriminating phonemes particularly due to the change in the nasal cavity due to cold.

In order to compute the PSP feature from $L_l^i(k), 1 \leq k \leq N_l$, we calculate 43 functionals over all the frames of an utterance, for each of the 120 phoneme states following the work in [17]. The 43 functionals describe the distribution of the likelihoods for each phoneme state. We hypothesize that the shape and nature of the distribution, captured through these functionals, would discriminate the cold and non-cold classes well. We, thus, obtain a 120×43 matrix of functionals for each utterance, which we vectorize to obtain a 5160-dim PSP feature vector.

3. Experiments and Results

3.1. Dataset

URTIC corpus considered for Interspeech 2017 Cold Sub-Challenge, is a German speech corpus provided by the Institute of Safety Technology, University of Wuppertal, Germany. The recordings consist of 630 subjects including 382 males and 248 females, with ages ranging from 12 to 84 years. The speech signal is quantized at 16bit and downsampled from 44.1kHz to 16kHz. The total duration of the corpus is 45 hours where each audio chunk has a duration of 3 to 10 seconds. The reference for cold condition is binarised for global illness severity based on German version of the Wisconsin Upper Respiratory Symptom Survey (WURSS-24) [14]. URTIC corpus contains 9505 train, 9596 development and 9551 test utterances. The train and development sets are accompanied by cold (C)/non-cold (NC) labels while the test set is devoid of labels. Each utterance is divided into frames with a window size of 25ms shifted by 10ms.

3.2. Results and Discussions

We report results obtained using the proposed 5160-dim PSP features, end-to-end (e2e) model and discuss the effect of feature selection and decision fusion. Decision fusion of PSP, BoAW and e2e models results in the highest UAR of 68.52% on the test set.

<table>
<thead>
<tr>
<th>Model</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017 Interspeech Cold Sub-Challenge baseline results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ComParE functionals</td>
<td>64.00</td>
<td>70.20</td>
</tr>
<tr>
<td>ComParE BoAW</td>
<td>64.20</td>
<td>67.30</td>
</tr>
<tr>
<td>PSP and fusion (PSP+ComParE+BoAW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSP</td>
<td>64.00</td>
<td>61.09</td>
</tr>
<tr>
<td>fusion(unweighted maj.)</td>
<td>65.30</td>
<td>68.52</td>
</tr>
<tr>
<td>fusion(weighted maj.)</td>
<td>66.70</td>
<td>65.09</td>
</tr>
<tr>
<td>fusion (PSP+BoAW+e2e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fusion(unweighted maj.)</td>
<td>69.00</td>
<td>66.70</td>
</tr>
</tbody>
</table>

3.2.2. Feature Selection

We analyze the effect of feature selection on the PSP features in two different ways. The first one involves generating a 473-dim PSP feature vector by considering 11 phone states cor-
responding to the 10 phones (AA, EH1, V, DH, IY, AX, JH, W, T, NG) that result in the top 10 largest difference in the likelihoods between cold and non-cold samples. As seen in Table 2, we obtain a UAR of 63.6% on the development set with this selected 473-dim PSP feature vector.

The second type of feature selection considers the Fisher discrimination value \(F_d = (m_c - m_{nc})^2 / (\sigma_c + \sigma_{nc}) \) for each of the 5160 PSP features (1 ≤ d ≤ 5160) between cold and non-cold utterances, where \((m_c, \sigma_c)\) and \((m_{nc}, \sigma_{nc})\) are the mean and variances of the feature values across all cold and non-cold utterances respectively. We consider only features with the top 500 Fisher discrimination values for this purpose and generate a 500-dim PSP feature vector for each utterance. We observe a UAR of 63.5% with this reduced feature vector on the development set. Both the feature selection criteria applied to the PSP features result in a UAR score very close to the original 5160-dim PSP feature vector indicating that few features are critical for discriminating cold and non-cold classes.

We further analyze feature selection on the ComParE features. For this purpose, we divide the 6373 ComParE features into 27 unique categories as listed in Table 3. We obtain each category by considering together the features related to that unique category. As an example, the ‘JitterDDP’ category is composed of 39 functionals computed on JitterDDP smoothened and JitterDDP smoothened delta-delta features. We analyze the 27 feature categories independently to find the class that performs the best for the classification task. We combine the training and development sets for each of the 27 categories and perform 6-fold cross validation. We train SVM models holding one out as the test set each time and average the UARs. We also show the UARs obtained using the 27 feature categories in Table 3. The class pcm_fltMag_mfcc performs the best with a UAR of 73.1%. However, the rest of the classes perform uniformly and worse than pcm_fltMag_mfcc.

![Table 3: 27 unique feature categories from ComParE features](image)

<table>
<thead>
<tr>
<th>Feature Category</th>
<th>Feature count</th>
<th>UAR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audspec</td>
<td>5160</td>
<td>58.30</td>
</tr>
<tr>
<td>audspecRasta</td>
<td>5000</td>
<td>60.20</td>
</tr>
<tr>
<td>F0final</td>
<td>63</td>
<td>56.35</td>
</tr>
<tr>
<td>jitterDDP</td>
<td>78</td>
<td>59.55</td>
</tr>
<tr>
<td>jitterDd</td>
<td>78</td>
<td>58.85</td>
</tr>
<tr>
<td>logHNR</td>
<td>74</td>
<td>55.10</td>
</tr>
<tr>
<td>pcm_fltMag_audSpec</td>
<td>1000</td>
<td>59.70</td>
</tr>
<tr>
<td>pcm_fltMag_audSpecRasta</td>
<td>1000</td>
<td>61.75</td>
</tr>
<tr>
<td>pcm_fltMag_mfcc</td>
<td>1000</td>
<td>73.10</td>
</tr>
</tbody>
</table>

3.2.3. End-to-End Model

We train the baseline end-to-end (e2e) model \[19\] with 8 convolutional and maxpooling layers followed by 2 Long Short-Term Memory (LSTM) layers on the raw audio files which are divided into 40ms samples. We hypothesize that the e2e classification approach could learn unique time-frequency representations using the convolutional and LSTM layers with the potential to observe new representations in the data. With this model, we obtain a UAR of 66.5% on the development set.

3.2.4. Decision Fusion

We perform decision fusion from the SVM model trained on PSP features and the SVM models trained from the baseline schemes, namely ComParE, BoAW, using the unweighted majority rule, where the models built on the three feature sets are equally weighted and the majority decision is considered as the final classification output. This rule results in a UAR of 65.3% on the development set and a UAR of 68.52% on the test set as shown in Table 1. We also perform decision fusion from the SVM model trained on PSP features, the SVM model trained on BoAW and the e2e model using the unweighted majority rule. This results in a UAR of 69% on the development set and a UAR of 66.7% on the test set.

We also perform a weighted majority decision for decision fusion. Accordingly, the decisions from the 27 feature categories are equally weighted with a score of 1. The BoAW and the PSP features are each weighted with a score of 27. We perform decision fusion on these 29 weighted decisions and determine the class labels. We hypothesize that such a weighted fusion would provide a decision by combining each feature category from the ComParE features. With this rule, we obtain a UAR of 66.7% on the development set which is 0.6% higher than the best baseline model. On the test set, we observe a UAR of 65.09%. The UAR values are provided in Table 1.

3.2.5. Effect of corpus on computing PSP features

We compute PSP features using the HMMs trained on TIMIT speech corpus, BN speech corpus and a combination of TIMIT and BN speech corpora, in order to examine the effect of the corpus chosen. The UAR on the development set using PSP features are found to be 65.1%, 60.5% and 64.0% when TIMIT, BN and TIMIT+BN are used as the corpus for training the GMM-HMM respectively. The poor UAR using BN could be due to noisy recordings present in BN unlike those in TIMIT.

4. Conclusions and future work

We have proposed phoneme state posteriorgram based features to capture the acoustic variability due to speaking in cold condition compared to speaking in healthy condition. We obtain a UAR on the development set comparable to that using the baseline scheme. When combined with the baseline scheme with a weighted decision fusion approach, we obtain 2.9% (absolute) improvement in the UAR on the development set.

In the present work, the HMMs were trained on American English speech corpora, while the language of the URTIC is German. As future work, we would like to examine the benefit of the proposed PSP features computed using HMMs trained on a German speech corpus. It will be interesting to use a deep neural network (DNN) model to classify the cold and non-cold utterances, which could perform well as the training data is large. We also intend to compute the PSP features from a HMM trained with a deep neural network, which could provide a PSP feature vector that could result in better discrimination between cold and normal speech.

\[1\] 2 phoneme states correspond to the same phoneme ‘EH’ resulting in 11 states each with 43 functionals resulting in 43×11=473 features.
5. References

