
I
2
R Submission to the 2015 NIST Language Recognition I-vector Challenge

Hanwu Sun, Trung Hieu Nguyen, Guangsen Wang,

Kong Aik Lee, Bin Ma, Haizhou Li

Institute for Infocomm research, A*STAR, Singapore

{hwsun,thnguyen,wang-g,kalee,mabin,hli} @i2r.a-star.edu.sg

Abstract

This paper presents a detailed description and analysis of I2R

submission, which is among the top performing systems, to the

2015 NIST language recognition i-vector machine learning

challenge. Our submission is a fusion of several sub-systems

based on linear discriminant analysis (LDA), support vector

machine (SVM), multi-layer perceptron (MLP), deep neural

network (DNN), and multi-class logistic regression. Central to

our work presented in this paper is a novel out-of-set (OOS)

detection scheme for selecting i-vectors from an unlabeled

development set. It consists of a best fit out-of-set selection

followed by cluster purification. We also propose a novel

empirical kernel map to be used with SVM. Experimental

results show that the proposed approach achieves significant

improvement on both the progress and evaluation sets defined

for the i-vector challenge. Our final submission achieves

55.0% and 54.5% relative improvement over the baseline

system on the progress and evaluation sets, respectively.

1. Introduction

Following the success of the i-vector Machine Learning

Challenge for speaker recognition [1, 2, 3, 4], NIST

coordinated the 2015 edition of similar challenge for language

recognition (LR) [5]. The LR i-vector challenge focuses on the

development of new methods using i-vectors for language

recognition [6] in the context of conversational telephone and

narrowband broadcast speech. The use of i-vectors allows the

participants to focus on improving the performance of

language recognition system without having to go through

complicated front-end processing which is typical in speech

processing. The aim was to make the challenge accessible to

participants from a wider machine learning community so as

to promote the application of new machine learning techniques

for language recognition.

The 2015 NIST i-vector challenge focuses on open-set

language identification task [1, 5]. Given a test segment in the

form of i-vector, the task is to determine which language from

a pre-defined set of target languages is being spoken in the test

segment. Under the open-set context, the actual language of

the test segments may come from any of the out-of-set (OOS)

languages, which are different from that of the target set.

Specific to the 2015 NIST i-vector challenge is the set of 50

target languages used, which is the largest set compared to

previous LREs. Training data was provided for all the 50

target languages. Nevertheless, the set of OOS languages

remains unknown and no labeled training data was given.

The primary scoring metric takes into account the

incorrect decision percentage across all target and OOS

languages. The final cost function gives a higher weight to the

detection of OOS compared to individual language in the

target set. This set the stage whereby OOS modeling and

detection becomes an important component in order to achieve

a good performance. In this regard, NIST provided an

unlabeled development set which consists of a mixed of i-

vectors extracted from the target as well as some unknown

languages. Data for modeling the OOS class have to be drawn

from this unlabeled development set. Also, the unknown

languages in the development set may not overlap completely

with the OOS languages appear in the evaluation set.

Our contribution in this paper is two-fold. First, we

propose a hybrid method to identify OOS i-vectors from the

unlabeled development set. The selected i-vectors were then

used to train a model representing the OOS class. Inclusion of

an additional model representing the OOS class leads to a

significant improvement for the language identification task.

Second, we propose an empirical kernel that maps input i-

vectors to score supervectors with dimension equal to the size

of training data points. These score supervectors were then fed

into support vector machine (SVM) [7] for language

classification.

The paper is organized as follows. Section 2 describes the

training, development, and evaluation datasets provided by

NIST for the 2015 i-vector challenge, as well as the LR

evaluation cost function. Section 3 describes the strategy for

identifying OOS segments from the unlabeled development

data. Section 4 presents the classifiers used. Finally, the

experimental results on the progress set are presented in

Section 5. Section 6 concludes the paper.

2. Dataset, Baseline, and Performance Metric

2.1. Dataset

The i-vectors provided by NIST for the 2015 i-vector

challenge were extracted using the system developed by the

Johns Hopkins University and MIT Lincoln Laboratory [8].

Each i-vector has a dimension of 400. The challenge consists

of a pre-defined set of 50 target languages. Each target

language has a set of 300 training segments, each specified by

a single i-vector. A total of 15,000 i-vectors were provided for

the 50 target languages. Besides the training set for the 50

target languages, an unlabeled development set consisting of

6,431 i-vectors was provided for general system development

purposes. These unlabeled data consists of a mixed of i-

vectors extracted from the target as well as the unknown

languages. This unlabeled set serves as the source of data from

which we draw data for OOS modeling as detailed in Section

3.

The test set consists of 6,500 i-vectors, which was split

into two subsets [5]: a progress set, and an evaluation set. The

progress set contains the random selected 30% of those 6,500

test i-vectors, and used to monitor progress on the leader

board. The remaining 70% of these i-vectors forms the

evaluation set and used to establish the final scores at the end

Odyssey 2016
21-24 Jun 2016, Bilbao, Spain

311 doi: 10.21437/Odyssey.2016-45

of the challenge. Table 1 summarizes the data provided by

NIST for the 2015 i-vector challenge [1, 5]:

Table 1: Dataset available for the 2015 NIST i-vector

challenge.

 Number of i-vectors Languages

Development set 6,431
Mixed of target and

unknown languages

Training set 15,000 Fifty target languages

Test set 6,500
Both target and OOS

languages

2.2. Language identification baseline

NIST provided a bare minimum baseline using i-vector with

cosine-scoring for the i-vector challenge [5]. This also serves

as the baseline to benchmark our progress during the i-vector

challenge. We describe below the baseline system and how it

is used for language identification:

 Length normalization [9]: all i-vectors (both training and

test) are centred and whitened with respect to a global

mean and covariance estimated from the unlabelled

development set. This is followed by normalizing each

vector to have unit norm.

 Cosine scoring: represent each language as the average of

its training i-vectors. For a given test i-vector, scores are

computed by taking the cosine distant between the

language mean vectors and the test i-vector, as follows

𝑆𝑖,𝑘 =
𝜙𝑘

T𝜙𝑖

‖𝜙𝑘‖∙‖𝜙𝑖‖
 for 𝑘 = 1,2, … , 𝐾 (1)

where 𝜙𝑘 represents the averaged i-vector of the k-th

language class and 𝜙𝑖 is the i-th testing i-vectors.

 Language identification: select the language hypothesis

that gives the highest score.

2.3. Performance metric

The primary performance metric for the LR i-vector challenge

is the identification error rate averaged across the fifty target

languages and the OOS set [5] defined as

𝐶𝑜𝑠𝑡 =
(1−𝑃𝑜𝑜𝑠)

𝐾
× ∑ 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘)𝐾

𝑘=1 + 𝑃𝑜𝑜𝑠 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠) (2)

where 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘) and 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠) are the error rates of test

segments not assigned to the correct k-th language or OOS set,

respectively. The cost function in (2) serves as the primary

metric used in maintaining i-vector challenge leaderboard with

the value 𝐾 = 50 and 𝑃𝑜𝑜𝑠 = 0.23. Substituting these values

into the cost function, whereby

𝐶𝑜𝑠𝑡 = ∑ 0.0154 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘)
50

𝑘=1
+ 0.230 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠)

we found that the cost in making an error in identifying an

OOS segment as inset is much larger than the other way

round. As such, OOS modeling and detection become an

important part in reducing the total cost.

3. Unspecified Language I-vector Clustering

Given the training data for target languages, there are many

well-established researches of how these classes can be

modeled. However, determining whether a language is out-of-

set is less obvious. In this paper, it is hypothesized that

multiple OOS languages can be represented by a single model.

By doing so, the task of open-set language recognition simply

becomes the task of close-set language identification. The

critical question here is how to obtain the training samples to

estimate the OOS model.

In this challenge, besides the training data, an additional

development set of unlabeled data containing both the target

and OOS languages is also provided. Therefore, if sufficient

OOS samples can be identified from the development set, a

reliable OOS model can be estimated. To this end, this section

investigates several strategies for extracting OOS samples

from the unlabeled development data. To begin with, section

3.1 discusses the process of data preparation to enable

objective comparison of various strategies. Section 3.2 and

section 3.3 present the two detection strategies. Finally,

section 3.4 introduces a purification algorithm to further

improve the detection results.

3.1. Data preparation

Firstly, the training data with 50 target languages is split into

two groups:

 Target group: contains 40 target languages

 OOS group: contains the remaining 10 languages

In the target group, the data is then further divided into two

subsets: training set includes the first 250 i-vectors of each

language, and validation set includes the remaining 50 i-

vectors. This validation set is subsequently merged with the

OOS group to form the open validation set. To sum up, the

training set has 10000 samples from 40 target languages. The

open validation set has 5000 samples containing 2000 samples

from the 40 target languages and 3000 samples from the OOS

languages (the OOS group).

The open validation set is then used to simulate the

condition of the unlabeled development data (6431 i-vectors)

except that the OOS labels are known to allow the evaluation

and fine-tuning of different OOS detection strategies. Now,

the task is how to best discriminate the 3000 OOS samples

from the 2000 samples of 40 target languages.

Before the OOS’s i-vectors clustering, a LDA [9]

transform was estimated using the target languages i-vectors

from the 40 languages. The LDA transform was then applied

on the raw target language i-vectors to reduce the i-vector

dimension from 400 to 39. The 39-dimensional LDA

transformed i-vectors were then whitened and normalized

before they were used as the input for modelling and

clustering purpose.

3.2. Least fit target

The least fit target (LFT) strategy is initiated by training a

multi-class SVM classifier on the set of target languages from

the labeled data. Given the trained classifier and its support

vectors, the posterior probability of a sample belonging to

each target class can be estimated according to Wu et al. [10].

Denoting 𝑃𝑖𝑘 as the posterior probability of sample

𝑖 (1 ≤ 𝑖 ≤ 𝑁) of language 𝑘 (1 ≤ 𝑘 ≤ 𝐾), where 𝑁 and 𝐾 are

the number of samples and number of target languages

312

respectively. The distance from sample 𝑖 to the best-matched

class is then defined as:

𝑃𝑖 = max1≤𝑘≤𝐾 𝑃𝑖𝑘 (3)

Intuitively, 𝑃𝑖 will be closed to 1 if sample 𝑖 is indeed the

target class. We can also perform a OOS classification task by

imposing a threshold 𝜃: then the sample 𝑖 is classified as the

out-of-set language if 𝑃𝑖 < 𝜃.

To illustrate the concept, Figure 1 and Figure 2 show an

example of using LFT strategy on the data set with three target

languages and one out-of-set language. Only the first two

dimensions are shown for visualization purpose. From Figure

1, we can see that target samples are detected with very high

probabilities with their respective classes. On the other hand,

the effectiveness of LFT in detecting OOS samples is unclear

since Figure 2 does not exhibit high confidence in estimating

the OOS posterior probabilities.

Figure 1: Visualization of posterior probabilities of 3

target languages estimating with the LFT strategy.

Higher color intensity indicates higher probabilities.

Figure 2: Visualization of OOS posterior probabilities

of OOS samples estimating with the LFT strategy.

Higher color intensity indicates higher probabilities.

3.3. Best fit out-of-set

The above mentioned strategy does not make use of any prior

knowledge on the OOS languages. For this challenge, a set of

unlabeled data with multiple OOS languages was also

provided [5]. This additional development set may shed some

insights into the prior distribution of OOS samples and may

potentially benefit the OOS detection if used properly.

Therefore, the best fit out-of-set (BFO) strategy, which

incorporates OOS distribution from the unlabeled

development set, is proposed.

To start with, all unlabeled samples are assumed to be

OOS languages. A multi-class SVM classifier is then trained

on the combined set of target samples and hypothesized OOS

samples. The next step is to extract the genuine OOS samples

from the hypothesized OOS set. Specifically, for each

unlabeled sample 𝑖, the posterior probability 𝑃𝑖
′ of sample 𝑖

belonging to the OOS class is estimated according to the

pairwise coupling [10]. A threshold 𝜃′ is then applied to make

the OOS decision: if 𝑃𝑖
′ ≥ 𝜃′ then sample 𝑖 is classified as the

OOS language.

Similarly, Figure 3 and Figure 4 illustrate the BFO strategy

with three target languages and one out-of-set language. In

contrast to LFT strategy, BFO demonstrates potentially better

performance in detecting OOS samples as more OOS samples

are selected with higher probabilities as depicted in Figure 4.

However, as a trade-off, the BFO’s capability in detecting the

target languages seems to suffer from miss detections as

shown in Figure 3.

Figure 3: Visualization of posterior probabilities of

three target languages estimating with the BFO

strategy. Higher color intensity indicates higher

probabilities

Figure 4: Visualization of OOS posterior probabilities

of OOS samples estimating with the BFO strategy.

Higher color intensity indicates higher probabilities.

Figure 5 shows the OOS’s segments detection precision and

recall curves using LFT and BFO strategies on the simulated

313

dataset. We can see that the precision of the BFO

method is obviously better than those of LFT method

over almost all the recall positions.

Figure 5: OOS detection precision and recall curves using

LFT and BFO strategies.

3.4. Adaptive cluster purification

Based on the BFO’s initial OOS detection, the 2nd module of

our OOS identification system uses the i-vectors as the

features for iterative re-clustering or cluster purification. We

regard all the mixed i-vectors belonging to one of the two

clusters/models: target and OOS. Target cluster has 2000 i-

vectors and OOS cluster has 3000 i-vectors. This process of

re-clustering has the effect of increasing the out-of-set

homogeneity in order to purify the possible OOS i-vectors

away from the target language i-vectors [11].

After BFO strategy training and testing, these 5000 i-

vectors will have their testing scores generated from the OOS

model. The i-vectors with the highest OOS model scores may

be regarded as the ‘out-of-set’ languages segments and the i-

vectors with the lowest OOS model scores are considered as

the 40 targets languages.

After selecting the OOS and target i-vectors based on

BFO, the dot product scores for all the i-vectors are computed

against these two models i-vectors. We then re-label these two

groups according to all the i-vectors scores and gradually

increase the number of i-vectors from these two groups before

class overlap is observed.

Figure 6: The OOS and target EER rates via the

adaptation percentage of the training sets.

Figure 6 shows the targets and OOS detection EER rates

via the increases of the adaptive size. The OOS i-vectors are

regarded as the true scores and target languages i-vector are

viewed as the imposter scores. From Figure 6, we can see that

after the first BFO SVM multi-class training, the EER is about

11.6%. After the second stage purification, the clustering EER

is significantly reduced from 11.6% to 6.5%. The best EER

rate occurs if we select top 30% highest OOS scores as the

OOS threshold

We have similarly applied this two stage OOS clustering

methods to the 6431 unspecified development dataset. We

have total 51 groups, including 50 target language i-vectors

groups and one unspecified i-vector group.

Meanwhile we also found that the above experimental

curve for choosing best percentage point cannot be directly

applied to the unlabeled 6431 development dataset. It is

because that our simulated mixed OOS dataset may not match

the unlabeled 6431 i-vectors dataset. However, the

experiments performed on the simulated dataset indicate that

the OOS threshold is quite important for the cluster

purification. In fact, our final OOS selection threshold is

determined by submitting several submissions via the LRE

challenge progress sets online [1, 5].

The algorithm for adaptive purifying the OOS is

summarized as:

4. Description of Subsystems

This section describes I2R submission which is among the top

performing systems submitted to the 2015 NIST LR i-vector

challenge. Serving as the baseline system is the multi-class

logistic regression (MCLR) sub-system. In addition, one new

component that we introduced in the i-vector challenge is the

empirical kernel mapping for SVM which we describe next.

We also explore the use of non-linear transformation

implemented using a multi-layer perceptron (MLP) to pre-

process the i-vectors. Last but not least is a DNN based

classifier.

4.1. Multi-class logistic regression

The multiclass logistic regression (MCLR) sub-system is

based on the multi-class cross-entropy discriminative training

in the score vector space. To this end, i-vectors were

transformed into log-likelihood score vectors through a set of

Gaussian distributions, each representing the distribution of

the language class in the i-vector space. We trained a global

covariance matrix where language-specific covariance could

be derived with a smoothing factor of 0.1. Given a test i-

vector, a score vector is obtained by concatenating the log-

likelihood scores from these Gaussian distribution.

0 0 .0 5 0 .1 0 .1 5 0 .2 0 .2 5 0 .3 0 .3 5 0 .4
6

7

8

9

1 0

1 1

1 2

E
E

R

%

O O S T o p I -v e c to r S e le c te d P e rc e n ta g e %

Algorithm 1: OOS Set Clustering Purification Algorithm.

Step 1. Get the unlabeled i-vector BFO initial testing

scores.

Step 2. Choose M top and M bottom i-vectors form OOS

and target two language initial groups.

Step 3. Use these two group i-vectors to conduct the dot-

product against all the mixed OOS i-vectors.

Step 4. Sort the test scores from high to low.

Step 5. Repeat Step 2 to 4 and increase size M by K for each

iteration until no overlapped i-vectors are selected

by both groups.

314

Discriminative training is further applied on the score vector.

The multiclass FoCal toolkit [12] was used for this purpose.

4.2. SVM with empirical kernel mapping

4.2.1 Polynomial expansion and compensation

We first expand the 400 dimensional i-vectors to a higher

dimensional space by calculating the monomials up to order

two. This results in an expansion of i-vector with 400

dimensions to a supervector of 80,601 dimensions. Let 𝐛𝑖 be

the supervector expansion of the i-vector 𝜙𝑖. The supervectors

are first centralized with respect to a global mean and

normalized to have unit norm, as follows

𝐛𝒊 ←
𝐛𝒊 − 𝝁𝒐

‖𝐛𝒊 − 𝝁𝒐‖

The supervectors are then subjected to nuisance attribute

projection (NAP) [13]. To this end, we constructed the so-

called NAP projection matrix using the labeled training set

(see Table 1). The NAP projection is given as

�̃�𝒊 = (𝐈𝒊 − 𝐄𝐄𝑇) × 𝐛𝒊

 (4)

The columns of the matrix E are the eigenvectors of the

within-language covariance matrix estimated from the training

set.

4.2.2 Empirical kernel mapping

The central idea of empirical kernel mapping is to transform

the training data to the score space with respect to all other

data points in the training set. Let

𝐌 = [�̃�1, �̃�2, �̃�3, … �̃�𝑁] (5)

be a big matrix consisting of N supervectors drawn from all

the K = 50 target languages and the OOS set. Given an input

supervector �̃�𝒊, the empirical kernel mapping produces an N-

dimensional score supervector in the following form

𝑆𝑖 = �̃�𝒊 × 𝐌𝑇 (6)

The above mapping is applied to all supervectors. Finally, the

supervectors are normalized as follows

𝑆𝑖 ←
𝑆𝑖−𝑚𝑜

‖𝑆𝑖−𝑚𝑜‖
 (7)

The dimensionality of the supervector is determined by the

size of the training dataset. As shown in Table 1, the number

of i-vector in the training set is 15,000, which is much lesser

than the length of polynomial supervector.

4.2.3 SVM classifier

Consider that the OOS set as an additional class, the number

of language classes is K + 1, where K is the number of target

languages. Two strategies were adopted to train the SVM

model for the target languages and OOS set, namely, one-

versus-rest and pair-wise training.

Let Ω𝑘 be the set of training data (i.e., the score

supervectors after the empirical kernel mapping) for the k-th

language, and Ω̅𝑘 be the set of training data from other

languages. The one-versus-all SVM training solver for the

dual formulation [7] is

𝑓𝑘

← 𝑆𝑉𝑀(Ω𝑘||Ω̅𝑘) (8)

Another training scheme is pair-wise SVM training where a

target class is trained against other languages, one at a time.

In our case with 50 target languages and one OOS class, there

are 1,275 unique pair-wise. In particular, the SVM solver for

the dual formulation for pair-wise training is

𝑓𝑘,𝑗

← 𝑆𝑉𝑀(Ω𝑘|| Ω𝑗), 𝑗 ≠ 𝑘 (9)

During test, a test vector 𝑆𝑖 is scored against all pair-wise

models. For the k-th language, the final score is taken as the

minimum values among its pair-wise scores.

4.3. SVM with MLP feature

In order to benefit from system fusion, many diverse features

and classifiers were explored throughout the development

phase. Notably, the transformed feature using MLP together

with a RBF-kernel SVM classifier rendered a nice addition to

the existing sub-systems.

To obtain the transformed features, the original i-vectors

after whitening and length normalization are fed into a 3-layer

MLP. This MLP comprises of 400 visible units, 600 hidden

units and 50 output units representing 50 target language

classes. Instead of the frequently used sigmoid function, linear

is chosen to be the input activation to the hidden layer. The

output activation function of the hidden layer is also linear. To

begin with, the parameters of this network are initialized layer-

wise following the stacked auto-encoder approach introduced

in Bengio et al. [15]. The network is then trained with the

standard back-propagation supervised learning and drop-out

[16] is applied to prevent overfitting and improve robustness.

Once converged, the outputs of the hidden layer are taken as

the transformed features. In brief, this trained network acts as

a generalized version of LDA with two advantages: the feature

dimension is not limited to the number of classes and the

feature is more robust as a result of drop-out technique.

The MLP features, without any normalization, are then

used to train a multi-class SVM with RBF kernel. This time,

the SVM is trained to separate 51 classes (50 targets plus

OOS). As one may expect of this system, the labeled training

data should be divided into two parts: one for feature learning,

and one for SVM training to improve the robustness. As a

comparison, this system performs very well, it is just behind

the best sub-system presented in section 4.2 and it requires

much less time to run.

4.4. DNN i-vector

We also built a DNN classifier taking the i-vector as input

[14]. Before training the DNN, a LDA was estimated and

applied on the raw 400-dimensional i-vectors to reduce the

dimension to 49. The 49-dimensional LDA transformed

ivectors were then whitened and normalized before they were

used as the input for the DNN training. Due to the data

limitation, we trained a DNN with two hidden layers with

1500 hidden units. The target consists of 51 units including 50

target languages and one OOS language. The OOS language

contains the OOS i-vector from the unspecified development

set decided by the clustering method mentioned in Section 3.

After the DNN training was successfully converged, a

forwarding operation is used on all the development set. We

have found that the experimental results on the DNN model

approach is not as good as the supervector SVM approach, but

it has some helps for final system fusion.

315

4.5. Sub-system fusion

I2R submission is based fusion of multiple sub-systems as

described above. Since the training and development dataset

are not well matching the test set, we choose to use simple

linear fusion with equal weights for the classifier fusion. The

linear fusion was applied to combine the scores from the sub-

sub-systems, as follows

𝑆𝐶𝑂𝑅𝐸𝑖 = ∑ 𝑤𝑝
𝑀

𝑝=1
× 𝑠𝑝,𝑖 (10)

where M is the number of sub-systems, 𝑤𝑝 = 1 𝑀⁄ is the equal

weight applied to all the sub-systems, and 𝑠𝑝,𝑖 is score

produced by sub-systyem p for the i-th test segment.

5. Experiment Results

In this section, we firstly compare system performances based

on the i-vectors, polynomial supervectors and score level

supervectors on the progress subset. Subsequently, we present

the comparison results of our systems using different OOS

detection strategies. Finally, the I2R fusion results for the i-

vector LRE challenge are given.

 5.1. Comparison of three different vectors

In this section, we compared the NIST i-vector baseline

system with our SVM-based system using three different

vectors. For a fair comparison, Table 2 shows the results of

the four systems on the progress subset without using either

OOS labels or models.

From Table 2, we can see that the NIST baseline of the

cosine scoring cost is 0.3959. After training a SVM language

model with the i-vectors, we can achieve about a 7.8% relative

improvement over the baseline. In addition, when applying

2nd order polynomial expansion on the i-vectors, the SVM-

based i-vector system performance can be further improved to

a cost of 0.3405, a 14.0% improvement over the baseline. The

best performance can be obtained by the proposed score-level

SVM system, yielding a cost of 0.3321, a 16.1% improvement

over the baseline score.

Table 2: Comparison of DCF values without OOS detection

System and Methods DCF on

progress set

improve vs

Baseline

i-vector cosine baseline 0.3959 NA

i-vector SVM system 0.3651 7.8%

Polynomial SVM system 0.3405 14.0%

Score level SVM system 0.3321 16.1%

5.2. Different OOS detection strategies

In this section, three different OOS detections results are

presented in Table 3 by using the polynomial supervector

SVM system and score level supervector SVM system only.

Three different OOS detection methods are:

a. Using Section 3.2 LFT method to detect the OOS i-

vectors from unlabelled 6431 development dataset.

b. Using Section 3.3 BFO method to extract the OOS i-

vectors from the unlabelled 6431 dataset.

c. Using the Section 3.3 and 3.4.hybrid method to extract

the OOS i-vectors from the unlabelled 6431 dataset.

Table 3: Comparison of DCF values with/without OOS

detection

 Polynomial SVM

system

Score level SVM system

OOS method DCF on

progress

set

Improve

over

Baseline

DCF on

progress

set

Improve

over

Baseline

 NA 0.3405 14.0% 0.3321 16.1%

LFT 0.2687 32.1% 0.2567 35.2%

BFO 0.2313 41.6% 0.2138 46.0%

 Hybrid 0.2169 45.2% 0.2074 47.6%

In Table 3, the polynomial and score-level SVM systems have

the DCF values of 0.3405 and 0.3321, respectively, without

applying any OOS detection. After applying the simple LFT

detection for training an OOS model, the two systems can

achieve 32.1% and 35.2% improvement over the baseline.

When the BFO OOS method is used, the performances of two

systems are further improved by relatively 41.6% and 46.0%

over the baseline, respectively. We also noticed that the best

performance is obtained using the hybrid OOS’s detection

method for the two systems. They yield a relative

improvement of 45.2% and 47.6% in terms of DCF values

over the baseline, respectively.

From the overall results shown in Table 3, we also note

that the results of the score-level SVM system are consistent

better that those of polynomial SVM systems. Comparing

Table 3 and Table 2, we can see that the OOS detection

contributes the most to the overall performances.

5.3 Fusion results

In this part, we show the fusion results of the polynomial

supervector and score-level SVM two systems. We also report

the performance of our final submission on progress subset

and evaluation subset.

A simple linear fusion of the two SVM-based systems

from Table 3 achieves a consistent improvement over all the

individual systems as shown in Table 4

Table 4: Fusion Results of Table 3 with different OOS

detection strategies

OOS method DCF on progress

subset

Improve vs

Baseline

NA 0.3221 18.6%

LFT 0.2354 40.1%

BFO 0.2138 46.0%

Hybrid 0.1872 52.7%

The I2R final submission fusion scores for both the progress

subset and the evaluation subset are also shown in Table 5

along with baseline system score. Here, the DNN and MLP

subsystem are also used for fusion.

Form Table 5, we have used 1743 i-vectors from the

unspecified development data to train the OOS model to

316

identify 1702 OOS’s segments for the 6500 testing i-vectors.

Our final fusion progress subset have achieves the DCF cost

value of 0.1779 or a 55.1% relative improvement over the

baseline. Similarly on the evaluation set, our final DCF cost

value is 0.1774, a 54.5% relative improvement over the

baseline evaluation score value 0.3903.

Table 5: Comparison of I2R final submission and the baseline

system

 Final I2R fusion

score/imp.

I-vector

baseline

DCF on progress Set/Imp. 0.1779/55.1% 0.3959

DCF on evaluation

Set/Imp.

0.1774/54.5% 0.3903

No of detected I-vectors

for OOS modelling

1734 0

No of detected OOS i-

vectors in the 6500 test i-

vectors

1702 0

Figure 7 shows the 51 individual languages identification

errors for the i-vector baseline system and our final submission

system. Our final system has achieved less than 20% OOS

detection error. Meanwhile, we also notice that not all

languages performances of our system are better than the

baseline system.

We also show the performance progress of I2R submission

system over the whole evaluation period in Figure 8. Figure 8

also indicated the five major stages for significantly changing

the system performances. We can summary them as:

 Using polynomial and score level SVM systems.

 Applying simple LFT method to identify OOS i-vectors.

 Employing the BFO method to extract OOS i-vectors.

 Applying the hybrid method to purify OOS cluster i-

vectors.

 Fusing subsystems.

From the results, a major conclusion we can draw is that the

OOS label detection is essential for the challenge.

Figure 7: 51 individual languages identification errors for the baseline system and I2R final submission system on progress subset.

0.2

0.25

0.3

0.35

0.4

D
C

F
 v

a
lu

e

05
/1

8/
20

15

05
/2

9/
20

15

06
/1

0/
20

15

06
/2

2/
20

15

07
/0

4/
20

15

07
/1

5/
20

15

07
/2

7/
20

15

08
/0

8/
20

15

08
/2

0/
20

15

09
/0

1/
20

15

Baseline

Without OOS

LFT OOS

BFO OOS

Hybrid OOS
Final fusion

Figure 8: The Progress on the I2R progress subset performance over the whole evaluation period.

317

6. Conclusions

We presented a detailed system description and analysis of

I2R submission to the 2015 NIST LR i-vector challenge. We

proposed a novel hybrid OOS detection strategy to select i-

vectors pertaining to the OOS set from unlabeled

development data. Our analysis shows that OOS detection is

important to achieve good performance. The proposed hybrid

OOS detection method exhibits well consistent on both

progress and evaluation sets. We also proposed several sub-

systems based on polynomial expansion and empirical kernel

mapping for SVM. Experiment results indicate that there is an

obvious benefit by applying polynomial expansion on i-

vector. Further improvement can also be achieved by using

score level supervectors for SVM. Our final submission

achieved over 50% improvement compared to the baseline

system on both progress and evaluation sets.

Nevertheless, we have not found any good strategy to

detect and select i-vectors for target language i-vectors from

the unlabeled development dataset, which might further

improve system performance. This will be one good direction

for future work.

7. References

[1] NIST, "NIST i-vector Challenge Homepage," [Online].

Available: http://www.nist.gov/itl/iad/mig/ivec.cfm.

[2] The 2013-2014 Speaker Recognition i-vector Machine

Learning Challenge,

http://www.nist.gov/itl/iad/mig/upload/sre- i-

vectorchallenge_2013-11-18_r0.pdf.

[3] C. S. Greenberg, D. Bansé, G. R. Doddington, D. Garcia-

Romero, J. J. Godfrey, T. Kinnunen, A. F. Martin, A.

McCree, M. Przybocki and D. A. Reynolds,”The NIST

2014 Speaker Recognition i-vector Machine Learning

Challenge”, Odyssey 2014, pp. 224-230, Finland, June

2014.
[4] S. Novoselov, T. Pekhovsky, K. Simonchik,” STC

Speaker Recognition System for the NIST i-Vector

Challenge”, Odyssey 2014, pp. 231-240, Finland, June

2014.

[5] “The 2015 Language Recognition i-Vector Machine

Learning Challenge’, [online] Available,

http://www.nist.gov/itl/iad/mig/upload/lre_ i-

vectorchallenge_rel_v2.pdf.

[6] H. Z. Li, B. Ma, and K. A. Lee, “Spoken language

recognition: from fundamentals to practice,” Proceedings

of the IEEE, vol.101, pp. 1136–1159, 2013.

[7] R. Collobert and S. Bengio, “SVMTorch: support vector

machines for large-scale regression problems,” Journal of

Machine Learning Research, vol. 1, pp. 143-160, 2001.

[8] N Dehak, P. A. Torres, Carrasquillo, D. Reynolds, and R.

Dehak, “Language Recognition via i-vectors and

Dimensionality Reduction”, Proc. Interspeech 2011,

Florence, Italy, Aug. 2011.

[9] D. Garcia-Romero and A. McCree, “Supervised domain

adaptation for i-vector based speaker recognition,” in

IEEE International Conference on Acoustics, Speech and

Signal Processing, ICASSP 2014, Florence, Italy, May 4-

9, 2014, 2014, pp. 4047–4051.

[10] T. F. Wu, C. J. Lin and R. C. Weng, “Probability

estimates for multi-class classification by pairwise

coupling”. JMLR 5:975-1005, 2004.

[11] H. Sun, B. Ma, Z. Swe. and H. Li., “Speaker

Diarization System for FT07 and RT09 Meeting Room

Audio,” in Proc. ICASSP, pp.4982–4985, 2010.

[12] N. Brümmer, FoCal Multi-class: Toolkit for

Evaluation, Fusion and Calibration of Multi-class

Recognition Scores. Available:

http://niko.brummer.googlepages.com/focalmulticlass.

[13] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and

A. Solomonoff, “SVM based speaker verification using a

GMM supervector kernel and NAP variability

compensation,” in Proc. ICASSP, 2006, pp. 97-100.

[14] F. Richardson, D. Reynolds, and N. Dehak, “Deep

neural network approaches to speaker and language

recognition,” IEEE Signal Processing Letters, vol. 22, pp.

1671–1675, 2015.

[15] Y. Bengio, P. Lamblin, D. Popovici and H.

Larochelle, Greedy Layer-Wise Training of Deep

Networks, in Advances in Neural Information Processing

Systems 19 (NIPS‘06), pages 153-160, MIT Press 2007.

[16] Srivastava, Nitish, et al. "Dropout: A simple way to

prevent neural networks from overfitting." The Journal of

Machine Learning Research 15.1 (2014): 1929-1958.

318

