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Abstract 

This paper presents a detailed description and analysis of I2R 

submission, which is among the top performing systems, to the 

2015 NIST language recognition i-vector machine learning 

challenge. Our submission is a fusion of several sub-systems 

based on linear discriminant analysis (LDA), support vector 

machine (SVM), multi-layer perceptron (MLP), deep neural 

network (DNN), and multi-class logistic regression. Central to 

our work presented in this paper is a novel out-of-set (OOS) 

detection scheme for selecting i-vectors from an unlabeled 

development set. It consists of a best fit out-of-set selection 

followed by cluster purification. We also propose a novel 

empirical kernel map to be used with SVM. Experimental 

results show that the proposed approach achieves significant 

improvement on both the progress and evaluation sets defined 

for the i-vector challenge. Our final submission achieves 

55.0% and 54.5% relative improvement over the baseline 

system on the progress and evaluation sets, respectively.    

1. Introduction 

Following the success of the i-vector Machine Learning 

Challenge for speaker recognition [1, 2, 3, 4], NIST 

coordinated the 2015 edition of similar challenge for language 

recognition (LR) [5]. The LR i-vector challenge focuses on the 

development of new methods using i-vectors for language 

recognition [6] in the context of conversational telephone and 

narrowband broadcast speech. The use of i-vectors allows the 

participants to focus on improving the performance of 

language recognition system without having to go through 

complicated front-end processing which is typical in speech 

processing. The aim was to make the challenge accessible to 

participants from a wider machine learning community so as 

to promote the application of new machine learning techniques 

for language recognition. 

The 2015 NIST i-vector challenge focuses on open-set 

language identification task [1, 5]. Given a test segment in the 

form of i-vector, the task is to determine which language from 

a pre-defined set of target languages is being spoken in the test 

segment. Under the open-set context, the actual language of 

the test segments may come from any of the out-of-set (OOS) 

languages, which are different from that of the target set. 

Specific to the 2015 NIST i-vector challenge is the set of 50 

target languages used, which is the largest set compared to 

previous LREs. Training data was provided for all the 50 

target languages. Nevertheless, the set of OOS languages 

remains unknown and no labeled training data was given. 

The primary scoring metric takes into account the 

incorrect decision percentage across all target and OOS 

languages. The final cost function gives a higher weight to the 

detection of OOS compared to individual language in the 

target set. This set the stage whereby OOS modeling and 

detection becomes an important component in order to achieve 

a good performance. In this regard, NIST provided an 

unlabeled development set which consists of a mixed of i-

vectors extracted from the target as well as some unknown 

languages. Data for modeling the OOS class have to be drawn 

from this unlabeled development set. Also, the unknown 

languages in the development set may not overlap completely 

with the OOS languages appear in the evaluation set.  

Our contribution in this paper is two-fold. First, we 

propose a hybrid method to identify OOS i-vectors from the 

unlabeled development set. The selected i-vectors were then 

used to train a model representing the OOS class. Inclusion of 

an additional model representing the OOS class leads to a 

significant improvement for the language identification task. 

Second, we propose an empirical kernel that maps input i-

vectors to score supervectors with dimension equal to the size 

of training data points. These score supervectors were then fed 

into support vector machine (SVM) [7] for language 

classification. 

The paper is organized as follows. Section 2 describes the 

training, development, and evaluation datasets provided by 

NIST for the 2015 i-vector challenge, as well as the LR 

evaluation cost function. Section 3 describes the strategy for 

identifying OOS segments from the unlabeled development 

data. Section 4 presents the classifiers used.  Finally, the 

experimental results on the progress set are presented in 

Section 5. Section 6 concludes the paper. 

2. Dataset, Baseline, and Performance Metric 

2.1. Dataset 

The i-vectors provided by NIST for the 2015 i-vector 

challenge were extracted using the system developed by the 

Johns Hopkins University and MIT Lincoln Laboratory [8]. 

Each i-vector has a dimension of 400. The challenge consists 

of a pre-defined set of 50 target languages. Each target 

language has a set of 300 training segments, each specified by 

a single i-vector. A total of 15,000 i-vectors were provided for 

the 50 target languages. Besides the training set for the 50 

target languages, an unlabeled development set consisting of 

6,431 i-vectors was provided for general system development 

purposes. These unlabeled data consists of a mixed of i-

vectors extracted from the target as well as the unknown 

languages. This unlabeled set serves as the source of data from 

which we draw data for OOS modeling as detailed in Section 

3. 

The test set consists of 6,500 i-vectors, which was split 

into two subsets [5]: a progress set, and an evaluation set. The 

progress set contains the random selected 30% of those 6,500 

test i-vectors, and used to monitor progress on the leader 

board. The remaining 70% of these i-vectors forms the 

evaluation set and used to establish the final scores at the end 
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of the challenge. Table 1 summarizes the data provided by 

NIST for the 2015 i-vector challenge [1, 5]: 

Table 1:  Dataset available for the 2015 NIST i-vector 

challenge. 

 Number of i-vectors Languages 

Development  set 6,431 
Mixed of target and 

unknown languages 

Training set 15,000 Fifty target languages 

Test set 6,500 
Both target and OOS 

languages 

 

2.2. Language identification baseline 

NIST provided a bare minimum baseline using i-vector with 

cosine-scoring for the i-vector challenge [5]. This also serves 

as the baseline to benchmark our progress during the i-vector 

challenge. We describe below the baseline system and how it 

is used for language identification:  

 Length normalization [9]: all i-vectors (both training and 

test) are centred and whitened with respect to a global 

mean and covariance estimated from the unlabelled 

development set. This is followed by normalizing each 

vector to have unit norm.  

 Cosine scoring: represent each language as the average of 

its training i-vectors. For a given test i-vector, scores are 

computed by taking the cosine distant between the 

language mean vectors and the test i-vector, as follows 

𝑆𝑖,𝑘 =
𝜙𝑘

T𝜙𝑖

‖𝜙𝑘‖∙‖𝜙𝑖‖
  for 𝑘 = 1,2, … , 𝐾                 (1) 

where 𝜙𝑘 represents the averaged i-vector of the k-th 

language class and 𝜙𝑖 is the i-th testing i-vectors. 

 Language identification: select the language hypothesis 

that gives the highest score.  

2.3. Performance metric  

The primary performance metric for the LR i-vector challenge 

is the identification error rate averaged across the fifty target 

languages and the OOS set [5] defined as     

𝐶𝑜𝑠𝑡 =
(1−𝑃𝑜𝑜𝑠)

𝐾
× ∑ 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘)𝐾

𝑘=1 + 𝑃𝑜𝑜𝑠 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠)  (2) 

where 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘) and 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠) are the error rates of test 

segments not assigned to the correct k-th language or OOS set, 

respectively. The cost function in (2) serves as the primary 

metric used in maintaining i-vector challenge leaderboard with 

the value 𝐾 = 50 and 𝑃𝑜𝑜𝑠 = 0.23. Substituting these values 

into the cost function, whereby 

𝐶𝑜𝑠𝑡 = ∑ 0.0154 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑘)
50

𝑘=1
+ 0.230 × 𝑃𝑒𝑟𝑟𝑜𝑟(𝑜𝑜𝑠) 

we found that the cost in making an error in identifying an 

OOS segment as inset is much larger than the other way 

round. As such, OOS modeling and detection become an 

important part in reducing the total cost.  

3. Unspecified Language I-vector Clustering 

Given the training data for target languages, there are many 

well-established researches of how these classes can be 

modeled.  However, determining whether a language is out-of-

set is less obvious. In this paper, it is hypothesized that 

multiple OOS languages can be represented by a single model.  

By doing so, the task of open-set language recognition simply 

becomes the task of close-set language identification. The 

critical question here is how to obtain the training samples to 

estimate the OOS model. 

In this challenge, besides the training data, an additional 

development set of unlabeled data containing both the target 

and OOS languages is also provided.  Therefore, if sufficient 

OOS samples can be identified from the development set, a 

reliable OOS model can be estimated. To this end, this section 

investigates several strategies for extracting OOS samples 

from the unlabeled development data. To begin with, section 

3.1 discusses the process of data preparation to enable 

objective comparison of various strategies. Section 3.2 and 

section 3.3 present the two detection strategies.  Finally, 

section 3.4 introduces a purification algorithm to further 

improve the detection results.  

3.1. Data preparation 

Firstly, the training data with 50 target languages is split into 

two groups:  

 Target group: contains 40 target languages 

 OOS group: contains the remaining 10 languages 

In the target group, the data is then further divided into two 

subsets: training set includes the first 250 i-vectors of each 

language, and validation set includes the remaining 50 i-

vectors. This validation set is subsequently merged with the 

OOS group to form the open validation set. To sum up, the 

training set has 10000 samples from 40 target languages. The 

open validation set has 5000 samples containing 2000 samples 

from the 40 target languages and 3000 samples from the OOS 

languages (the OOS group).  

The open validation set is then used to simulate the 

condition of the unlabeled development data (6431 i-vectors) 

except that the OOS labels are known to allow the evaluation 

and fine-tuning of different OOS detection strategies. Now, 

the task is how to best discriminate the 3000 OOS samples 

from the 2000 samples of 40 target languages. 

Before the OOS’s i-vectors clustering, a LDA [9] 

transform was estimated using the target languages i-vectors 

from the 40 languages.  The LDA transform was then applied 

on the raw target language i-vectors to reduce the i-vector 

dimension from 400 to 39. The 39-dimensional LDA 

transformed i-vectors were then whitened and normalized 

before they were used as the input for modelling and 

clustering purpose.  

3.2.  Least fit target  

The least fit target (LFT) strategy is initiated by training a 

multi-class SVM classifier on the set of target languages from 

the labeled data. Given the trained classifier and its support 

vectors, the posterior probability of a sample belonging to 

each target class can be estimated according to Wu et al. [10].  

Denoting 𝑃𝑖𝑘 as the posterior probability of sample 

𝑖 (1 ≤ 𝑖 ≤ 𝑁) of language 𝑘 (1 ≤ 𝑘 ≤ 𝐾), where 𝑁 and 𝐾 are 

the number of samples and number of target languages 
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respectively. The distance from sample 𝑖 to the best-matched 

class is then defined as:     

𝑃𝑖 = max1≤𝑘≤𝐾 𝑃𝑖𝑘                                       (3) 

Intuitively, 𝑃𝑖 will be closed to 1 if sample 𝑖 is indeed the 

target class. We can also perform a OOS classification task by 

imposing a threshold 𝜃: then the sample 𝑖 is classified as the 

out-of-set language if 𝑃𝑖 < 𝜃.  

To illustrate the concept, Figure 1 and Figure 2 show an 

example of using LFT strategy on the data set with three target 

languages and one out-of-set language. Only the first two 

dimensions are shown for visualization purpose. From Figure 

1, we can see that target samples are detected with very high 

probabilities with their respective classes. On the other hand, 

the effectiveness of LFT in detecting OOS samples is unclear 

since Figure 2 does not exhibit high confidence in estimating 

the OOS posterior probabilities. 

 

Figure 1: Visualization of posterior probabilities of 3 

target languages estimating with the LFT strategy. 

Higher color intensity indicates higher probabilities. 

 

Figure 2: Visualization of OOS posterior probabilities 

of OOS samples estimating with the LFT strategy. 

Higher color intensity indicates higher probabilities. 

3.3.  Best fit out-of-set  

The above mentioned strategy does not make use of any prior 

knowledge on the OOS languages. For this challenge, a set of 

unlabeled data with multiple OOS languages was also 

provided [5]. This additional development set may shed some 

insights into the prior distribution of OOS samples and may 

potentially benefit the OOS detection if used properly. 

Therefore, the best fit out-of-set (BFO) strategy, which 

incorporates OOS distribution from the unlabeled 

development set, is proposed. 

To start with, all unlabeled samples are assumed to be 

OOS languages. A multi-class SVM classifier is then trained 

on the combined set of target samples and hypothesized OOS 

samples. The next step is to extract the genuine OOS samples 

from the hypothesized OOS set. Specifically, for each 

unlabeled sample 𝑖, the posterior probability 𝑃𝑖
′ of sample 𝑖 

belonging to the OOS class is estimated according to the 

pairwise coupling [10]. A threshold 𝜃′ is then applied to make 

the OOS decision: if 𝑃𝑖
′ ≥ 𝜃′ then sample 𝑖 is classified as the 

OOS language. 

Similarly, Figure 3 and Figure 4 illustrate the BFO strategy 

with three target languages and one out-of-set language. In 

contrast to LFT strategy, BFO demonstrates potentially better 

performance in detecting OOS samples as more OOS samples 

are selected with higher probabilities as depicted in Figure 4. 

However, as a trade-off, the BFO’s capability in detecting the 

target languages seems to suffer from miss detections as 

shown in Figure 3. 

 

Figure 3: Visualization of posterior probabilities of 

three target languages estimating with the BFO 

strategy. Higher color intensity indicates higher 

probabilities 

 

Figure 4: Visualization of OOS posterior probabilities 

of OOS samples estimating with the BFO strategy. 

Higher color intensity indicates higher probabilities. 

Figure 5 shows the OOS’s segments detection precision and 

recall curves using LFT and BFO strategies on the simulated 
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dataset.  We can see that the precision of the BFO 

method is obviously better than those of LFT method 

over almost all the recall positions. 

 

 
Figure 5: OOS detection precision and recall curves using 

LFT and BFO strategies. 

 

3.4. Adaptive cluster purification  

Based on the BFO’s initial OOS detection, the 2nd module of 

our OOS identification system uses the i-vectors as the 

features for iterative re-clustering or cluster purification. We 

regard all the mixed i-vectors belonging to one of the two 

clusters/models: target and OOS. Target cluster has 2000 i-

vectors and OOS cluster has 3000 i-vectors.  This process of 

re-clustering has the effect of increasing the out-of-set 

homogeneity in order to purify the possible OOS i-vectors 

away from the target language i-vectors [11].  

After BFO strategy training and testing, these 5000 i-

vectors will have their testing scores generated from the OOS 

model.  The i-vectors with the highest OOS model scores may 

be regarded as the ‘out-of-set’ languages segments and the i-

vectors with the lowest OOS model scores are considered as 

the 40 targets languages.  

After selecting the OOS and target i-vectors based on 

BFO, the dot product scores for all the i-vectors are computed 

against these two models i-vectors.  We then re-label these two 

groups according to all the i-vectors scores and gradually 

increase the number of i-vectors from these two groups before 

class overlap is observed.  

 

Figure 6:  The OOS and target EER rates via the 

adaptation percentage of the training sets. 

Figure 6 shows the targets and OOS detection EER rates 

via the increases of the adaptive size.  The OOS i-vectors are 

regarded as the true scores and target languages i-vector are 

viewed as the imposter scores.  From Figure 6, we can see that 

after the first BFO SVM multi-class training, the EER is about 

11.6%.  After the second stage purification, the clustering EER 

is significantly reduced from 11.6% to 6.5%.  The best EER 

rate occurs if we select top 30% highest OOS scores as the 

OOS threshold    

We have similarly applied this two stage OOS clustering 

methods to the 6431 unspecified development dataset.  We 

have total 51 groups, including 50 target language i-vectors 

groups and one unspecified i-vector group.   

Meanwhile we also found that the above experimental 

curve for choosing best percentage point cannot be directly 

applied to the unlabeled 6431 development dataset. It is 

because that our simulated mixed OOS dataset may not match 

the unlabeled 6431 i-vectors dataset. However, the 

experiments performed on the simulated dataset indicate that 

the OOS threshold is quite important for the cluster 

purification.  In fact, our final OOS selection threshold is 

determined by submitting several submissions via the LRE 

challenge progress sets online [1, 5].  

The algorithm for adaptive purifying the OOS is 

summarized as: 

 

4. Description of Subsystems 

This section describes I2R submission which is among the top 

performing systems submitted to the 2015 NIST LR i-vector 

challenge. Serving as the baseline system is the multi-class 

logistic regression (MCLR) sub-system. In addition, one new 

component that we introduced in the i-vector challenge is the 

empirical kernel mapping for SVM which we describe next. 

We also explore the use of non-linear transformation 

implemented using a multi-layer perceptron (MLP) to pre-

process the i-vectors. Last but not least is a DNN based 

classifier.     

4.1. Multi-class logistic regression 

The multiclass logistic regression (MCLR) sub-system is 

based on the multi-class cross-entropy discriminative training 

in the score vector space. To this end, i-vectors were 

transformed into log-likelihood score vectors through a set of 

Gaussian distributions, each representing the distribution of 

the language class in the i-vector space. We trained a global 

covariance matrix where language-specific covariance could 

be derived with a smoothing factor of 0.1. Given a test i-

vector, a score vector is obtained by concatenating the log-

likelihood scores from these Gaussian distribution. 
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Algorithm 1:  OOS Set Clustering Purification Algorithm.   

Step 1. Get the unlabeled i-vector BFO initial testing 

scores.  

Step 2. Choose M top and M bottom i-vectors form OOS 

and target two language initial groups.  

Step 3. Use these two group i-vectors to conduct the dot-

product against all the mixed OOS i-vectors. 

Step 4. Sort the test scores from high to low. 

Step 5. Repeat Step 2 to 4 and increase size M by K for each 

iteration until no overlapped i-vectors are selected 

by both groups. 
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Discriminative training is further applied on the score vector. 

The multiclass FoCal toolkit [12] was used for this purpose. 

4.2. SVM with empirical kernel mapping  

4.2.1 Polynomial expansion and compensation 

We first expand the 400 dimensional i-vectors to a higher 

dimensional space by calculating the monomials up to order 

two. This results in an expansion of i-vector with 400 

dimensions to a supervector of 80,601 dimensions. Let 𝐛𝑖 be 

the supervector expansion of the i-vector 𝜙𝑖. The supervectors 

are first centralized with respect to a global mean and 

normalized to have unit norm, as follows 

𝐛𝒊 ←
𝐛𝒊 − 𝝁𝒐

‖𝐛𝒊 − 𝝁𝒐‖
 

The supervectors are then subjected to nuisance attribute 

projection (NAP) [13]. To this end, we constructed the so-

called NAP projection matrix using the labeled training set 

(see Table 1). The NAP projection is given as   

�̃�𝒊 = (𝐈𝒊 − 𝐄𝐄𝑇) ×  𝐛𝒊
 
                     (4) 

The columns of the matrix E are the eigenvectors of the 

within-language covariance matrix estimated from the training 

set.  

4.2.2 Empirical kernel mapping 

The central idea of empirical kernel mapping is to transform 

the training data to the score space with respect to all other 

data points in the training set. Let  

𝐌 = [�̃�1, �̃�2, �̃�3, … �̃�𝑁]                        (5) 

be a big matrix consisting of N supervectors drawn from all 

the K = 50 target languages and the OOS set. Given an input 

supervector �̃�𝒊, the empirical kernel mapping produces an N-

dimensional score supervector in the following form 

𝑆𝑖 = �̃�𝒊 × 𝐌𝑇                                        (6) 

The above mapping is applied to all supervectors. Finally, the 

supervectors are normalized as follows 

𝑆𝑖 ←
𝑆𝑖−𝑚𝑜

‖𝑆𝑖−𝑚𝑜‖
                                         (7) 

The dimensionality of the supervector is determined by the 

size of the training dataset. As shown in Table 1, the number 

of i-vector in the training set is 15,000, which is much lesser 

than the length of polynomial supervector. 

4.2.3 SVM classifier 

Consider that the OOS set as an additional class, the number 

of language classes is K + 1, where K is the number of target 

languages. Two strategies were adopted to train the SVM 

model for the target languages and OOS set, namely, one-

versus-rest and pair-wise training.  

Let Ω𝑘 be the set of training data (i.e., the score 

supervectors after the empirical kernel mapping) for the k-th 

language, and Ω̅𝑘 be the set of training data from other 

languages. The one-versus-all SVM training solver for the 

dual formulation [7] is 

𝑓𝑘
 

← 𝑆𝑉𝑀(Ω𝑘||Ω̅𝑘)                      (8) 

Another training scheme is pair-wise SVM training where a 

target class is trained against other languages, one at a time.  

In our case with 50 target languages and one OOS class, there 

are 1,275 unique pair-wise. In particular, the SVM solver for 

the dual formulation for pair-wise training is 

𝑓𝑘,𝑗
 

← 𝑆𝑉𝑀(Ω𝑘|| Ω𝑗), 𝑗 ≠ 𝑘                          (9) 

During test, a test vector 𝑆𝑖 is scored against all pair-wise 

models. For the k-th language, the final score is taken as the 

minimum values among its pair-wise scores.  

4.3. SVM with MLP feature   

In order to benefit from system fusion, many diverse features 

and classifiers were explored throughout the development 

phase. Notably, the transformed feature using MLP together 

with a RBF-kernel SVM classifier rendered a nice addition to 

the existing sub-systems. 

To obtain the transformed features, the original i-vectors 

after whitening and length normalization are fed into a 3-layer 

MLP. This MLP comprises of 400 visible units, 600 hidden 

units and 50 output units representing 50 target language 

classes. Instead of the frequently used sigmoid function, linear 

is chosen to be the input activation to the hidden layer. The 

output activation function of the hidden layer is also linear. To 

begin with, the parameters of this network are initialized layer-

wise following the stacked auto-encoder approach introduced 

in Bengio et al. [15]. The network is then trained with the 

standard back-propagation supervised learning and drop-out 

[16] is applied to prevent overfitting and improve robustness. 

Once converged, the outputs of the hidden layer are taken as 

the transformed features. In brief, this trained network acts as 

a generalized version of LDA with two advantages: the feature 

dimension is not limited to the number of classes and the 

feature is more robust as a result of drop-out technique. 

The MLP features, without any normalization, are then 

used to train a multi-class SVM with RBF kernel. This time, 

the SVM is trained to separate 51 classes (50 targets plus 

OOS). As one may expect of this system, the labeled training 

data should be divided into two parts: one for feature learning, 

and one for SVM training to improve the robustness. As a 

comparison, this system performs very well, it is just behind 

the best sub-system presented in section 4.2 and it requires 

much less time to run. 

4.4. DNN i-vector 

We also built a DNN classifier taking the i-vector as input 

[14]. Before training the DNN, a LDA was estimated and 

applied on the raw 400-dimensional i-vectors to reduce the 

dimension to 49. The 49-dimensional LDA transformed 

ivectors were then whitened and normalized before they were 

used as the input for the DNN training. Due to the data 

limitation, we trained a DNN with two hidden layers with 

1500 hidden units. The target consists of 51 units including 50 

target languages and one OOS language.  The OOS language 

contains the OOS i-vector from the unspecified development 

set decided by the clustering method mentioned in Section 3. 

After the DNN training was successfully converged, a 

forwarding operation is used on all the development set. We 

have found that the experimental results on the DNN model 

approach is not as good as the supervector SVM approach, but 

it has some helps for final system fusion.    
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4.5. Sub-system fusion 

I2R submission is based fusion of multiple sub-systems as 

described above. Since the training and development dataset 

are not well matching the test set, we choose to use simple 

linear fusion with equal weights for the classifier fusion. The 

linear fusion was applied to combine the scores from the sub-

sub-systems, as follows 

𝑆𝐶𝑂𝑅𝐸𝑖 = ∑ 𝑤𝑝
𝑀

𝑝=1
× 𝑠𝑝,𝑖                               (10) 

where M is the number of sub-systems, 𝑤𝑝 = 1 𝑀⁄  is the equal 

weight applied to all the sub-systems, and 𝑠𝑝,𝑖 is score 

produced by sub-systyem p for the i-th test segment.  

 

5. Experiment Results 

In this section, we firstly compare system performances based 

on the i-vectors, polynomial supervectors and score level 

supervectors on the progress subset. Subsequently, we present 

the comparison results of our systems using different OOS 

detection strategies. Finally, the I2R fusion results for the i-

vector LRE challenge are given.   

 5.1. Comparison of three different vectors 

In this section, we compared the NIST i-vector baseline 

system with our SVM-based system using three different 

vectors.  For a fair comparison, Table 2 shows the results of 

the four systems on the progress subset without using either 

OOS labels or models. 

From Table 2, we can see that the NIST baseline of the 

cosine scoring cost is 0.3959.  After training a SVM language 

model with the i-vectors, we can achieve about a 7.8% relative 

improvement over the baseline.  In addition, when applying 

2nd order polynomial expansion on the i-vectors, the SVM-

based i-vector system performance can be further improved to 

a cost of 0.3405, a 14.0% improvement over the baseline.  The 

best performance can be obtained by the proposed score-level 

SVM system, yielding a cost of 0.3321, a 16.1% improvement 

over the baseline score. 

Table 2:  Comparison of DCF values without OOS detection  

System and Methods DCF on 

progress set 

improve vs 

Baseline 

i-vector cosine baseline 0.3959 NA 

i-vector SVM system 0.3651 7.8% 

Polynomial SVM system 0.3405 14.0% 

Score level SVM system 0.3321 16.1% 

 

5.2. Different OOS detection strategies  

In this section, three different OOS detections results are 

presented in Table 3 by using the polynomial supervector 

SVM system and score level supervector SVM system only. 

Three different OOS detection methods are: 

a. Using Section 3.2 LFT method to detect the OOS i-

vectors from unlabelled 6431 development dataset.  

b. Using Section 3.3 BFO method to extract the OOS i-

vectors from the unlabelled 6431 dataset. 

c. Using the Section 3.3 and 3.4.hybrid method to extract 

the OOS i-vectors from the unlabelled 6431 dataset. 

Table 3: Comparison of DCF values with/without OOS 

detection 

 Polynomial SVM 

system 

Score level SVM system 

OOS method DCF on 

progress 

set 

Improve 

over 

Baseline 

DCF on 

progress 

set 

Improve 

over 

Baseline 

     NA 0.3405 14.0% 0.3321 16.1% 

LFT 0.2687 32.1% 0.2567 35.2% 

BFO 0.2313 41.6% 0.2138 46.0% 

   Hybrid 0.2169 45.2% 0.2074 47.6% 

 

In Table 3, the polynomial and score-level SVM systems have 

the DCF values of 0.3405 and 0.3321, respectively, without 

applying any OOS detection.  After applying the simple LFT 

detection for training an OOS model, the two systems can 

achieve 32.1% and 35.2% improvement over the baseline.  

When the BFO OOS method is used, the performances of two 

systems are further improved by relatively 41.6% and 46.0% 

over the baseline, respectively.  We also noticed that the best 

performance is obtained using the hybrid OOS’s detection 

method for the two systems. They yield a relative 

improvement of 45.2% and 47.6% in terms of DCF values 

over the baseline, respectively.   

From the overall results shown in Table 3, we also note 

that the results of the score-level SVM system are consistent 

better that those of polynomial SVM systems.  Comparing 

Table 3 and Table 2, we can see that the OOS detection 

contributes the most to the overall performances. 

5.3 Fusion results 

In this part, we show the fusion results of the polynomial 

supervector and score-level SVM two systems. We also report 

the performance of our final submission on progress subset 

and evaluation subset. 

A simple linear fusion of the two SVM-based systems 

from Table 3 achieves a consistent improvement over all the 

individual systems as shown in Table 4  

Table 4:  Fusion Results of Table 3 with different OOS 

detection strategies 

OOS method DCF on progress 

subset 

Improve vs 

Baseline 

NA 0.3221 18.6% 

LFT 0.2354 40.1% 

BFO 0.2138 46.0% 

Hybrid 0.1872 52.7% 

 

The I2R final submission fusion scores for both the progress 

subset and the evaluation subset are also shown in Table 5 

along with baseline system score. Here, the DNN and MLP 

subsystem are also used for fusion.   

Form Table 5, we have used 1743 i-vectors from the 

unspecified development data to train the OOS model to 
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identify 1702 OOS’s segments for the 6500 testing i-vectors.  

Our final fusion progress subset have achieves the DCF cost 

value of 0.1779 or a 55.1% relative improvement over the 

baseline.  Similarly on the evaluation set, our final DCF cost 

value is 0.1774, a 54.5% relative improvement over the 

baseline evaluation score value 0.3903.   

Table 5:  Comparison of I2R final submission and the baseline 

system 

 Final I2R fusion 

score/imp. 

I-vector  

baseline 

DCF on progress Set/Imp. 0.1779/55.1% 0.3959 

DCF on evaluation 

Set/Imp. 

0.1774/54.5% 0.3903 

No of detected I-vectors 

for OOS modelling 

1734 0 

No of detected OOS i-

vectors in the 6500 test i-

vectors 

1702 0 

Figure 7 shows the 51 individual languages identification 

errors for the i-vector baseline system and our final submission 

system.  Our final system has achieved less than 20% OOS 

detection error.  Meanwhile, we also notice that not all 

languages performances of our system are better than the 

baseline system.   

We also show the performance progress of I2R submission 

system over the whole evaluation period in Figure 8. Figure 8 

also indicated the five major stages for significantly changing 

the system performances.  We can summary them as: 

 Using polynomial and score level SVM systems. 

 Applying simple LFT method to identify OOS i-vectors. 

 Employing the BFO method to extract OOS i-vectors. 

 Applying the hybrid method to purify OOS cluster i-

vectors. 

 Fusing subsystems.   

From the results, a major conclusion we can draw is that the 

OOS label detection is essential for the challenge. 

 

Figure 7:  51 individual languages identification errors for the baseline system and I2R final submission system on progress subset. 
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Figure 8: The Progress on the I2R progress subset performance over the whole evaluation period. 
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6. Conclusions 

We presented a detailed system description and analysis of 

I2R submission to the 2015 NIST LR i-vector challenge. We 

proposed a novel hybrid OOS detection strategy to select i-

vectors pertaining to the OOS set from unlabeled 

development data. Our analysis shows that OOS detection is 

important to achieve good performance. The proposed hybrid 

OOS detection method exhibits well consistent on both 

progress and evaluation sets. We also proposed several sub-

systems based on polynomial expansion and empirical kernel 

mapping for SVM. Experiment results indicate that there is an 

obvious benefit by applying polynomial expansion on i-

vector.  Further improvement can also be achieved by using 

score level supervectors for SVM. Our final submission 

achieved over 50% improvement compared to the baseline 

system on both progress and evaluation sets. 

Nevertheless, we have not found any good strategy to 

detect and select i-vectors for target language i-vectors from 

the unlabeled development dataset, which might further 

improve system performance. This will be one good direction 

for future work. 
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