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Abstract
Recently, Deep Neural Network (DNN) based bottleneck fea-
tures proved to be very effective in i-vector based speaker recog-
nition. However, the bottleneck feature extraction is usually
fully optimized for speech rather than speaker recognition task.
In this paper, we explore whether DNNs suboptimal for speech
recognition can provide better bottleneck features for speaker
recognition. We experiment with different features optimized
for speech or speaker recognition as input to the DNN. We also
experiment with under-trained DNN, where the training was in-
terrupted before the full convergence of the speech recognition
objective. Moreover, we analyze the effect of normalizing the
features at the input and/or at the output of bottleneck features
extraction to see how it affects the final speaker recognition sys-
tem performance. We evaluated the systems in the SRE’10,
condition 5, female task. Results show that the best configu-
ration of the DNN in terms of phone accuracy does not neces-
sary imply better performance of the final speaker recognition
system. Finally, we compare the performance of bottleneck fea-
tures and the standard MFCC features in i-vector/PLDA speaker
recognition system. The best bottleneck features yield up to
37% of relative improvement in terms of EER.

1. Introduction
The Speaker Recognition (speaker detection or speaker verifi-
cation) task consists of determining whether a specified speaker
is speaking in a given utterance. For several years, this task
has been successfully addressed using the approach based on
the i-vector/PLDA (Probabilistic Linear Discriminant Analysis)
framework from a typical parameterization of the speech signal
such as MFCCs [1, 2].

Recently, Deep Neural Networks (DNNs) have been intro-
duced in the field of speech processing, providing systems that
outperform the state-of-the-art approaches in speech recogni-
tion [3, 4], language identification [5] and, also, speaker recog-
nition [6, 7, 8, 9].

In the field of speaker recognition, several approaches based
on DNNs have been successfully applied, replacing parts of the
i-vector/PLDA framework. Some approaches use a DNN to re-
place the UBM when computing the sufficient statistics or to
compute posterior probabilities in an UBM-GMM scheme; oth-
ers use a DNN, trained for the Automatic Speech Recognition
(ASR) task, with a bottleneck layer as feature extractor. Both
have shown impressive gains in performance with respect to the
traditional approaches [6, 7, 8, 9].

In this paper, we consider the second approach, exploring
whether DNNs trained for ASR but not fully optimized for this
task could lead to better bottleneck features for speaker recog-

nition. The hypothesis is that the more the DNN is optimized
for ASR, the higher the capability of the network to suppress
speaker information should be, which is not what is wanted
when the DNN is used to extract bottleneck features to discrim-
inate between speakers.

For this purpose, we compare the performance of bottle-
neck features extracted from a DNN trained with features opti-
mized for ASR and with MFCCs, which are optimal for speaker
recognition. We also study how feature normalization affects
the performance of speaker recognition systems based on bottle-
neck features. In particular, we apply short-term mean and vari-
ance normalization (ST-MVN), typically used in speaker recog-
nition [10], to the input of the DNN and/or to the input of the
speaker recognition system (on top of the bottleneck features)
[11]. Finally, we perform experiments with “under-trained”
(UT) networks, i.e. DNNs that have not been fully optimized
for the ASR task.

Our results show that a DNN with better performance on
the ASR task (in terms of phone accuracy) does not necessarily
provide better performing speaker recognition system. There-
fore, the main contribution of this paper is the analysis of how
suboptimal DNNs for ASR could lead to better bottleneck fea-
tures for speaker recognition.

We evaluate the performance on the NIST SRE’10, condi-
tion 5, female task [12], and compare the results of the speaker
recognition systems based on bottleneck features with a base-
line i-vector/PLDA system based on MFCCs, showing large im-
provements in performance.

2. Bottleneck Features for Speaker
Recognition

The structure of the speaker recognition system based on bot-
tleneck features used in this paper can be split into two different
parts. Firstly, a DNN is trained using some input features in
order to discriminate between phonetic states. In our case, the
architecture of the DNN consists of an input layer followed by
four hidden layers, and a final softmax output layer. One of the
hidden layers is designed to be relatively small with respect to
the others, which is known as the bottleneck layer. The aim of
this layer is to compress the information obtained by the net-
work and be able to represent the information learnt by the pre-
vious layers. An example of this structure is shown in Figure 1.

Secondly, the trained DNN is used to extract a new frame-
by-frame representation of the input signal by propagating the
original features through the DNN and taking the activations of
the bottleneck layer. These new feature vectors are used to train
a GMM-UBM, from which sufficient statistics are collected and
used to train the Total Variability matrix [1]. Finally, the cor-
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responding i-vectors are extracted, and compared using PLDA
model [13, 2] to obtain speaker verification scores.
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Figure 1: Representation of DNN architecture used in the ex-
periments of this work.

3. Feature Extraction and Normalization
3.1. Input Features

In this work, we used two different sets of input features to feed
the DNN: one is optimized for ASR (we will refer to them as
“ASR features”) meanwhile the other is optimized for speaker
recognition (referred to as “MFCC features”).

Thus, the experiments tagged as “ASR feat.” are those that
use the first set of input features optimized for ASR [4]. These
feature vectors are composed of 24 Mel-filter bank log out-
puts concatenated with 13 fundamental frequency (F0) features,
resulting in a 37-dimensional vector as described in detail in
[14]. Furthermore, utterance mean subtraction is applied on the
whole feature vector, which is what we used as default for the
ASR task [14].

For the rest of the experiments, tagged as “MFCC”, we
trained the DNN with the traditional MFCC parameterization
used successfully in speaker recognition, either adding the
derivatives or not (∆ and ∆∆). We used 24 Mel-filter banks
to compute these MFCC vectors of 20 coefficients, including
c0.

3.2. Short-term Mean and Variance Normalization

The aim of the feature normalization techniques is to compen-
sate the mismatch existent between feature vectors due to envi-
ronmental effects.

In this work, we consider the normalization strategy known
as “short-term mean and variance normalization” (ST-MVN),
which was shown to be a simple and fast method to success-
fully normalize speech segments for the speaker recognition
task [10]. This ST-MVN consists of normalizing the mean and
variance in a symmetric sliding window as follows:

F̄i,j =
Fi,j − µi,j

σi,j
(1)

where F corresponds to the feature matrix; i and j are the in-
dexes of the frame and the coefficient of the feature vector, re-
spectively; and µi,j and σi,j are the mean and standard devia-
tion within the corresponding window. Typically, the window

is 3 seconds long (i.e. 150 frames to the left and 150 frames to
the right).

This normalization, when applied to cepstral features such
as MFCC, is what we also call “floating window cepstral mean
and variance normalization” or “short-term cepstral mean and
variance normalization” (ST-CMVN).

4. Experimental Framework
4.1. Datasets and Performance Metrics

We use two different datasets in order to train the two parts of
the system: the DNN and the i-vector/PLDA system.

We train the DNN using the Fisher English Part 1 and Part 2
datasets. The dataset is composed of approximately 1700 hours
of speech. We use 90% of the data for training and the remain-
ing 10% for validation (speakers in these two sets are disjoint).
In order to evaluate the performance of the DNN for the task
of phoneme classification, we use the frame-by-frame tied-state
classification accuracy, which will be referred to as “phone ac-
curacy” for simplicity.

The i-vector/PLDA speaker recognition system is devel-
oped using the female portion of the PRISM [15] training
dataset, discarding any noise or reverberation data. This set
comprises Fisher 1 and 2, Switchboard phase 2 and 3 and
Switchboard cellphone phases 1 and 2, along with a set of Mixer
data sets. A total number of 9670 speakers is used to train the
PLDA models.

Finally, the speaker recognition systems are evaluated on
female test data from the NIST SRE’10, condition 5 (telephone
condition, normal vocal effort conversational telephone speech
in enrollment and test) [12], which includes a total of 236781
trials (3704 targets and 233077 non-targets). The recognition
performance is evaluated in terms of the equal error rate (EER,
in %) and the minimum detection cost functions (DCFmin)
as defined in the NIST Speaker Recognition Evaluations 2008
(DCFmin

08 ) and 2010 (DCFmin
10 ) [16, 12].

4.2. I-vector PLDA Baseline System

The speaker recognition system used as the reference in this
work follows the scheme based on i-vectors and PLDA mod-
eling [1, 2], which has been a state-of-the-art approach for the
speaker recognition task.

As features for this baseline system, we use a 60-
dimensional input vector for each frame, which corresponds to
the MFCCs+∆+∆∆ parameterization. To compute these in-
put vectors, we use the same configuration as described in Sec-
tion 3.1. Finally, they are normalized according to the ST-MVN
described in Section 3.2, using a sliding window of 3 seconds.

With those features, we train a GMM-UBM, collect the suf-
ficient statistics and train the i-vector extractor (total variability
matrix), using the data described in Section 4.1. The UBM con-
sists of 512 Gaussian components, and the obtained i-vectors
are 400-dimensional vectors. Dimensionality of i-vectors is re-

EER (%) DCFmin
08 DCFmin

10

Baseline 2.68 0.133 0.517

Table 1: Performance of speaker recognition system based on
MFCCs, UBM of 512 Gaussian components, 400-dimensional
i-vectors, evaluated on the NIST SRE’10, condition 5, female
task.
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Input Phone Raw bottlenecks Normalized bottlenecks (MVN)

Features Norm. Acc.(%) EER(%) DCFmin
08 DCFmin

10 EER(%) DCFmin
08 DCFmin

10

ASR feat. (EOT) Utt. CMN * 2.31 0.105 0.374 2.10 0.093 0.359
ASR feat. Utt. CMN 49.8 2.51 0.100 0.360 2.32 0.103 0.348
MFCC∆+∆∆ ST-CMVN 49.6 1.99 0.085 0.328 2.02 0.089 0.337
MFCC20dim ST-CMVN 45.57 1.67 0.079 0.312 1.91 0.088 0.325
MFCC∆+∆∆ (UT) ST-CMVN 47.3 1.72 0.081 0.332 2.06 0.090 0.319
MFCC20dim (UT) ST-CMVN 42.8 1.68 0.075 0.334 1.78 0.083 0.317

Table 2: Performance of speaker recognition systems based on bottleneck features on the NIST SRE’10, condition 5, female task, with
an UBM of 512 Gaussian components and 400-dimensional i-vectors. *For this case, the classification accuracy was 49.4%, but for
more difficult task of classifying 9824 triphone states compared to 2423 states used for other experiments.

duced to 250 using LDA. Such i-vectors are then transformed
by global mean and variance normalization, followed by length-
normalization [1, 17].

Finally, the comparison of i-vectors is done via PLDA [2], a
generative model that models i-vector distributions allowing for
direct evaluation of the desired log-likelihood ratio verification
score.

The results of this baseline system can be seen in Table 1. It
should be noticed that this system is a scaled down system to al-
low for fast turnaround of the experiments, but conclusions hold
for a large-scale system: UBM of 2048 Gaussian components
and 600-dimensional i-vectors (see Table 3).

4.3. DNN Architecture for Bottleneck Extraction

The DNN used in the experimental part of this work follows the
structure shown in Figure 1.

For two sets of experiments, we use the two feature sets
(ASR and speaker recognition optimized features) as described
in Section 3.1. In both cases, the feature vectors are prepro-
cessed as follows: 31 frames are stacked together (central frame
± 15 frames of context); then, a Hamming window followed by
DCT consisting of 0th to 5th bases are applied on the temporal
trajectory of each MFCC (or ASR feature) coefficient [14]. The
resulting feature vector is used as the input to the DNN.

The DNN consists of four hidden layers with 1500, 1500,
80 and 1500 hidden units, respectively. The 80-dimensional
layer is the linear bottleneck layer, while the other three ap-
ply the sigmoid function as the activation function. The size
of 80 for the bottleneck layer was chosen due to experiments
performed in [18], for which 80 provided the best performance.

The DNN has an output layer, which applies a softmax
function and consists of 2423 units corresponding to triphone
tied-states. These states were obtained from the original tri-
phone state tying obtained during GMM-HMM training. For
the experiment shown in the first row of Table 2, an extended
output target (“EOT”) set considering 9824 triphone states was
used.

The cost function that is optimized is the cross-entropy, and
the DNN is trained using stochastic gradient descent.

4.4. I-vector PLDA System from Bottleneck Features

The speaker recognition system used for the experiments based
on bottleneck features follows the same scheme as the one de-
scribed in Section 4.2. The only difference is that MFCC fea-
tures are replaced with the bottleneck features described in Sec-
tion 4.3. Otherwise the same i-vector/PLDA speaker recogni-
tion system is trained on top of the bottleneck features.

5. Experiments and Results
We carried out a set of experiments in order to analyze the influ-
ence of different aspects when dealing with the speaker recog-
nition systems based on the bottleneck features as summarized
in Table 2.

The first aspect analyzed is the DNN input features, which
are either optimized for ASR or speaker recognition (“ASR
feat.” vs. “MFCC”). Then, feature normalization is also ana-
lyzed (see column 2 of Table 2): in the experiments with fea-
tures optimized for ASR, we applied per utterance mean nor-
malization on top of the input vectors (“Utt. CMN”); while in
the experiments using MFCCs, we used the floating window
or short-term CMVN (“ST-CMVN”). Finally, for all the ex-
periments, we show results either using “raw bottlenecks” or
“normalized bottlenecks”, i.e. applying or not applying short-
term mean and variance normalization on top of the bottleneck
features (right or left hand sides of the table, respectively) [11].

In this section, we comment on both the performance of
the DNN as phone classifier and the final speaker recognition
systems. The results in terms of speaker recognition perfor-
mance can be compared to the performance of the baseline sys-
tem based on MFCCs, which is shown in Table 1.

5.1. Frame Phone Accuracy of the DNN

In third column of Table 2, we can see the phone accuracy ob-
tained for the validation set when training the DNN for the ASR
task.

In terms of phone accuracy, we observed a degradation in
performance when the derivatives are not included in the input
feature vectors (MFCC20dim experiment). However, it should
be mentioned that even without the derivatives, the context is
taking into account since frames are stacked in the preprocess-
ing of the input to the DNN (see Section 4.3).

Moreover, we see that the ASR features (with per utterance
mean normalization) yield better performance in terms of phone
accuracy than the MFCCs since they are expected to be opti-
mized for ASR. As we will comment on later, this does not lead
to a better performance in the speaker recognition task.

To see whether degradation in phone accuracy was due to
the change between ASR features and MFCCs, or to the normal-
ization (utterance CMN applied to ASR features or ST-CMVN
applied to MFCCs), we carried out a experiment using ASR fea-
tures normalized with to ST-CMVN, and in that case, the phone
accuracy decreased to 47.56% on the validation set.

Finally, it should be noticed that experiments denoted by
“UT” (under-trained) are those in which the training of the net-
work was interrupted even when improvements on validation
still existed (i.e. training was stopped few epochs before the
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convergence). We did this in order to verify the hypothesis of
poor correlation between phone accuracy of the DNN and dis-
criminative power of the resulting bottleneck features for the
task of speaker recognition.

5.2. Speaker Recognition Results

5.2.1. ASR Optimized Features

In the experiments based on ASR features as the input to
DNN, applying short-term MVN (typically used for features in
speaker recognition) on top of the resulting bottleneckfeatures
yields a slight improvement in performance (∼10% relative).

However, even though the phone accuracy reaches the high-
est values with these ASR features, bottleneck features obtained
from these DNNs do not seem to be as discriminative as the
ones obtained with DNNs trained using MFCCs optimized for
the speaker recognition task.

This is also supported by experiment in first row of Table 2.
In this experiment, the DNN was trained to classify 9824 tri-
phone states (four times more than in the rest of the experi-
ments), and the phone accuracy was 49.4%. However, the re-
sulting bottleneck features provided similar results that the ex-
periment with the same ASR features, but less triphone states
as the DNN outputs.

Even so, these experiments based on bottleneck features
outperform the baseline system (see Table 1).

5.2.2. Speaker Recognition Optimized Features

The bottleneck features provided by DNNs trained using MFCC
parameterization seem more discriminative for the speaker
recognition task.

Using these MFCC features as input to the network, differ-
ent experiments have been carried out. Opposite to what was
observed with the ASR features, when MFCCs with ST-CMVN
are used as the input to the DNN, normalizing the resulting bot-
tleneck features did not help or even resulted in slight degrada-
tion in performance.

Moreover, in the experiments marked as MFCC∆+∆∆ in
the table, we used a 60-dimensional vector of 20 MFCCs with
derivatives (∆ and ∆∆), while just the 20 MFCCs were used
in the experiments denoted by MFCC20dim (all short-term cep-
stral mean and variance normalized). Comparing this two rows
of Table 2, we can see that adding the delta coefficients seems
not to increase or even decrease the performance. It should be
noticed that even without the derivatives, the context is taken
into account due to the staking of frames done at the prepro-
cessing of the input. These 20-dimensional feature vectors got
worse phone accuracy but resulted in the best speaker recog-
nition performance, so redundancy introduced by the deriva-
tives helped only in terms of phone discrimination but not in
speaker recognition. We see again that better ASR performance
(in terms of phone accuracy) does not necessarily correspond to
better speaker recognition performance. The hypothesis might
be that a DNN optimized for the best discrimination among
phoneme states would lead to loosing relevant information for
speaker recognition.

Using the best configuration, we see relative improvements
up to ∼37% in terms of EER with respect to the baseline sys-
tem.

5.2.3. “Under-trained” DNN Experiments

In order to verify the hypothesis mentioned before, the last two
rows of Table 2 show results of DNNs whose training has been

EER (%) DCFmin
08 DCFmin

10

BaselineFull 1.99 0.104 0.383
MFCC∆+∆∆ 1.62 0.065 0.220
MFCC20dim 1.46 0.057 0.209
BN+MFCC∆+∆∆ 0.96 0.042 0.146
BN+MFCC20dim 1.26 0.051 0.216

Table 3: Comparison of performance on the NIST SRE’10,
condition 5, female task for large-scale system: UBM of 2048
Gaussian components, 600-dimensional i-vectors.

stopped before reaching the optimal performance for ASR task
(stopped few epochs before the convergence). For those DNNs,
results in speaker recognition task give similar or even better
performances even though the results did not reach the best val-
ues in term of the phone accuracy. Therefore, we see that sub-
optimal training of DNNs for ASR can result in better feature
extractors (DNN with bottleneck layer) for speaker recognition.

5.2.4. Full Speaker Recognition System Results and Concate-
nation of bottleneck features and MFCC

Finally, a comparison in performance between large-scale
speaker recognition systems (UBM with 2048 Gaussian com-
ponents, and 600-dimensional i-vectors) can be seen in Table 3
for the best experiments described above (bottleneck features
from MFCC-based DNNs). We see a relative improvement
up to ∼27% in terms of EER when using bottleneck features
from a DNN trained with ST-CMVN MFCCs without deriva-
tives (same DNN as in the experiment shown in the fourth row
of Table 2, but with large-scale system).

In the last two rows of Table 3, we also show results using
bottleneck features (BN) concatenated with MFCCs (approach
that was used in [19]), which provided the best performance
(up to ∼52% of relative improvement in terms of EER). The
bottleneck features used for this concatenation were the ones
that provided the best performance in speaker recognition (from
a DNN trained with ST-CMVN 20-dimensional MFCCs, row 4
in Table 2).

6. Discussion
According to results in this work, we see that suboptimal DNNs
for ASR can provide better bottleneck features for speaker
recognition than fully optimized DNNs for the speech recog-
nition task. In order to further analyze that idea, apart from
the “under-trained” experiments, we trained a DNN including a
new hidden layer (with 1500 hidden units) between the bottle-
neck layer and the output layer (i.e. having 5 instead of 4 hidden
layers). In that experiment, the phone accuracy was higher than
in the rest of the experiments, but again, we did not observe any
improvement in the speaker recognition performance.

Our hypothesis is that, since bottleneck features are dis-
criminatively trained for phoneme recognition, they should sup-
press the information about speaker. We believe that the main
benefit of using such features is that they lead to more sen-
sible clustering of the acoustic feature space when training
GMM-UBM (i.e. GMM components roughly corresponds to
phonemes). This is also supported by our experiments using
bottleneck features just for alignment of frames to UBM com-
ponents, while the sufficient statistics for i-vector extraction are
collected using MFCCs [18]. Therefore, for a good speaker
recognition performance, we need bottleneck features, which
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already provide good clustering, but at the same time do not
suppress too much of the speaker information.

7. Conclusions
In this work, we studied whether not fully optimized networks
trained for ASR could provide better bottleneck features for
speaker recognition. Then, we analyzed the influence of differ-
ent aspects (input features, short-term mean and variance nor-
malization, “under-trained” DNNs) when training DNNs to op-
timize the performance of speaker recognition systems based on
bottleneck features.We evaluated the performance of the result-
ing bottleneck features in the NIST SRE’10, condition 5, female
task.

From the results obtained in this work, we observe that the
best features for ASR task do not necessary perform the best
when training a network, which is used as feature extractor for
speaker recognition. Even though the phone accuracy of the
DNN can increase with these features (ASR features), the best
performance in speaker recognition was obtained using the typ-
ical MFCCs as used for speaker recognition tasks.

According to the results, applying ST-MVN to the MFCCs
before training the DNN yields the best performance, and per-
forming that normalization on top of the bottleneck features
helps just when input features to the DNN are those optimized
for ASR (ASR features with CMN per utterance).

Moreover, the performed experiments do not show much
correlation between the frame-by-frame phoneme states classi-
fication and the ability of the resulting bottlenecks to discrimi-
nate between speakers: the best phone accuracy does not yield
the best performance in the speaker recognition task. For exam-
ple, with just 20 dimensional MFCC feature vectors in which
the derivatives have not been added (although context is in-
cluded when preprocessing the input) we obtained the best re-
sults in speaker recognition, while the performance in phone
accuracy degrades.

Finally, using bottleneck features from a DNN trained on
MFCCs with ST-CMVN, we obtained up to 37% of relative im-
provement with respect to the baseline system (i-vector based
on MFCCs).

Further work will be carried out in order to evaluate these
optimized bottlenecks in other conditions and to explore more
deeply the concatenation of MFCC and bottlenecks as the input
to the speaker recognition system [19]. The hypothesis is that
bottleneck features from a ASR network provide good cluster-
ing for the UBM training, while MFCCs provide the discrimi-
native information for speaker recognition. Also, stacked bot-
tleneck features used in other works [18] will be explored (they
can provide better results although the source of the improve-
ment should be still investigated).
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