1. Introduction

Communication in noisy situations may be extremely stressful for the person located at the near-end side. Since the background noise originates from a natural environment, it cannot be reduced for the listener. Thus, the only possibility to improve this scenario with support of digital signal processing is the insertion of speech enhancement algorithms in the downlink direction of terminals.

So far no measurement technique is available to evaluate the impact of signal processing techniques such as “near-end listening enhancements” [1] (NELE), artificial bandwidth extension (BWE) or additional noise reduction (NR). For mobile phones, acoustic testing in downlink direction is always carried out in silent condition. However, in several state-of-the-art devices the aforementioned algorithms are already included. This implies that a device may behave differently under noisy conditions than in silence: e.g. NELE algorithms may be triggered by a certain noise level and/or spectrum.

Whenever speech processing is inserted into a conversation, quality aspects must be considered, too. A satisfactory balance between speech quality and listening effort is desirable from the user’s point of view. Currently, no reliable objective or instrumental methods are available to evaluate speech quality and listening effort of a device under test (DUT) in downlink in the presence of background noise. Any possible metrics should take into account ongoing trends in acoustic telecommunication measurement standards, i.e.:

- Usage of real speech instead of artificial test signals.
- Realistic playback of background noise scenarios (e.g. according to [2] or [3]).
- “Black-Box-Approach”: no internals of a DUT are known, only outer measurements are available.

Due to these requirements, several existing assessment measures targeting to intelligibility and/or speech quality aspects prove to be unfavorable:

- STITEL, STIPA, RASTI according to [4]: shaped noise signals are used for measurement.
- ITU-T Recommendations P.862 [5], [6] and P.863 [7]: noise or near-end noise is explicitly excluded in scope.
- ETSI EG 202 396-3 [8] and TS 103 106 [9]: methods are specified for noise reduction scenarios and only for uplink direction.

Another widely used measure for the instrumental intelligibility assessment is the speech intelligibility index (SII) [10]. Several drawbacks of this measurement algorithm should be considered, too:

- Pure 1/3 octave level-based measure, no real psychoacoustical model (except frequency weighting)
- Noise-free degraded speech signal is needed as input (not available in acoustic testing)

Both of these drawbacks are serious for the practical application of the SII in the real world. For example, noise-free degraded speech signals are not available in practical test procedures.

In overall, the SII method is also not applicable as a “black box” approach for devices with unknown and inaccessible signal processing components.

Auditory experiments addressing the trade-off between speech quality and listening effort (e.g. like presented in [11]) can be used to develop a new instrumental method for the evaluation of downlink signal processing. To address all concerns described above, a new method for the instrumental assessment of listening effort for mobile phones is introduced. Based on these auditory tests, a new prediction model can be developed.

2. Measurement Setup

The test setup is motivated by the requirement that all signals can be measured outside the device, i.e. can be assessed by state-of-the-art measurement front-ends. For this purpose, the mobile DUT is mounted at right ear of head and torso simulator (HATS) according to [12] with an application force of 8 N. The artificial head is equipped with diffuse-field equalized type 3.3 ear simulators according to ITU-T P.57 [13]. The HATS is placed into a measurement chamber. Inside this room, a realistic background noise playback system according to [2] or [3] is arranged.

Figure 1 illustrates the overall measurement setup. The recording procedure is conducted in two stages:

1. Transmission of speech in receiving direction and noise playback are started at the beginning of the recording. Simultaneously, degraded speech and near-end noise are recorded by the right artificial ear. This signal is denoted...
as $d(k)$ in the following. The left ear signal is recorded and used for the auditory evaluation (binaural presentation).

2. Transmission of speech is deactivated, only the near-end noise (with the phone still active and positioned at the artificial ear) is recorded, which is denoted as $n(k)$.

Obviously, the usage of playback systems according to [2] or [3] are crucial here for the further analysis. The sample-accurate playback precision allows time-synchronous recordings for multiple measurements, which is necessary for the proper time alignment between noisy speech signal and noise-only signal.

Speech files according to ITU-T P.501 [14] are used for the evaluation. The eight sentences (two sentences of two male and two female talkers) should be centered in a grid of 4.0 s as exemplarily shown in figure 2 for the German speech corpus.

![Figure 2: Example for German source signal](image)

For the electrical insertion to the DUT, a subsequent pre-filtering according to the current application case (e.g. NB or WB) is applied. The active speech level according to [15] of this signal is calibrated to -16.0 dBm0, which refers to a default electrical input level for the DUT. Several volume control settings could be selected in order to investigate impacts on the listening effort. However, at least one condition including nominal receiving loudness rating (e.g. according to [16]) should be evaluated.

3. Auditory Base

In general, perceptually-motivated instrumental methods predict quality indexes based on a specific experimental setup. These listening test databases typically include audio samples and corresponding results for certain auditory attributes. Providing that such a database includes a wide range of quality range and aspects, an instrumental measure can be trained based on these samples. Usually this is realized by calculating metrics of difference between the measured and the (known) reference signal. In [11], a suitable database for the current work based on simulated mobile devices was introduced, thus only a brief summary will be given in the following.

The auditory evaluation included a new procedure for the combined assessment of speech quality and listening effort on the well-known 5-point scale. The average over all participants per attribute is reported as mean opinion score (MOS). A kind of mixture between ITU-T P.800 [17] and P.835 [18] listening test was used. Here test participants vote each presented sample twice. A rating for listening effort (LE) is given after the first playback, then after a second trial the speech quality (SQ) was assessed. The scales of both attributes were taken from ITU-T P.800 [17] and are provided in table 1.

The auditory evaluation included a new procedure for the combined assessment of speech quality and listening effort on the well-known 5-point scale. The average over all participants per attribute is reported as mean opinion score (MOS). A kind of mixture between ITU-T P.800 [17] and P.835 [18] listening test was used. Here test participants vote each presented sample twice. A rating for listening effort (LE) is given after the first playback, then after a second trial the speech quality (SQ) was assessed. The scales of both attributes were taken from ITU-T P.800 [17] and are provided in table 1.

In overall, 197 conditions with 8 sentences each were evaluated. A listening sample of duration 8.0 s included two sentences of a certain caller, which results in 788 different samples. One random sample per condition was selected for each of the 56 participant, which obtained 14 pairs of LE/SQ votes per sample, respectively 56 votes per condition.

Figure 3 shows a kind of finding of this experiment, i.e. that both assessed dimensions can be regarded as almost orthogonal. The correlation coefficient according to Pearson is determined to $r_{\text{PQ}} = 0.52$, which indicates at least a minor correlation. This can be explained by the fact that good speech quality ratings (i.e. MOS$_{\text{SQ}} > 4.5$) cannot be expected for very low listening effort scores (i.e. MOS$_{\text{LE}} < 1.5$). On the other hand, even in silent or noise-free situations (i.e. MOS$_{\text{LE}} > 4.5$), poor speech quality (i.e. MOS$_{\text{SQ}} < 1.5$) affects also the perceived listening effort.

4. Instrumental Testing

The structure of the new method is similar to other speech quality and/or intelligibility measures, e.g. blocks like time-
alignment and level adjustment are also present here. Unlike in other metrics like e.g. ITU-T P.863 [7], the noisy and degraded speech signal \(d(k)\) must not be level-scaled, since it is an acoustically captured ear signal. It should be evaluated exactly with specific metrics like e.g. ITU-T P.863 [7], the noisy and degraded signal. For the comparison between both signals, it is determined in the level domain according to equation 2.

\[
L^d_{m}(m) - L^n_{m}(m) = \Delta L
\]

4.1. Time Alignment

For the proper time alignment, first the envelope of the cross-correlation between \(d(k)\) and \(r(k)\) is calculated. The delay between both signals is determined by the position of the maximum peak in the envelope function. Since \(d(k)\) and \(n(k)\) are already time-aligned against each other (see section 2), \(n(k)\) is compensated in the same way as \(d(k)\).

4.2. Reference Calibration

When feeding the reference signal \(r(k)\) into the prediction model, it may have any arbitrary active speech level relative to the degraded signal \(d(k)\). For the comparison between both signals, it is necessary to compensate possible bias between them. For this purpose, level vs. time according to [19] is calculated for all three input signals with a time constant of 35 ms. The resulting level signals are denoted as \(L_r(m), L_d(m)\) and \(L_n(m)\). The estimated level vs. time of the pure degraded speech without noise \(L_{d-n}(m)\) is determined in the level domain according to equation 1.

\[
L_{d-n}(m) = \max(0, L_d(m) - L_n(m))
\]

4.3. Psychoacoustic Core Model

For the perceptual modeling, the algorithm known as Relative Approach is employed as a hearing-adequate time-frequency transformation. The algorithm introduced in [21] and [22] models a major characteristic of human hearing: the much stronger subjective response to distinct patterns (tones and/or relatively rapid time-varying structure) than to slowly changing levels and loudnesses. Thus this representation detects noticeable patterns of audio signals in the time-frequency domain.

The algorithm is already used in several other applications, e.g. for the evaluation of packet loss scenarios [23] and speech quality assessment according to [8] and [9].

For the proposed prediction model, time frames of 10.0 ms and a filter-bank resolution of \(\frac{1}{12}\) octave are chosen. In the following, the time-frequency representations of the previously mentioned signals are denoted as \(RA_x(m, j)\), with \(x \in \{d, n, r^\prime\}\). Here \((m, j)\) refers to the \(m\)th time frame and the \(j\)th frequency band. As an intermediate representation, \(RA_0(m, j)\) is calculated according to equation 5 and refers to an estimation of the spectral representation of the degraded speech signal without noise.

\[
RA_0(m, j) = \max(0, RA_d(m, j) - RA_n(m, j))
\]

4.4. Distance Metrics

Based on the spectral representations of the signals, single value metrics correlating with the auditory results. For this purpose,
a correlation measure \(\text{Corr}(X, Y) \) for two arbitrary spectra \(X \) and \(Y \) according to equation 6 is introduced. Here the activity class \(A \) as described in section 4.2 is utilized, i.e. that the calculation is carried out only over the active and paused time frames. In the frequency domain, only the WB frequency range \(\Delta F = 100 \ldots 7000 \text{ Hz} \) is evaluated.

\[
\text{Corr}(X, Y) = \frac{\sum_{m \in A, \bar{A}} \sum_{j \in \Delta F} (X(m, j) - \bar{X})(Y(m, j) - \bar{Y})}{\sqrt{\sum_{m \in A, \bar{A}} \sum_{j \in \Delta F} (X(m, j) - \bar{X})^2 \cdot \sum_{m \in A, \bar{A}} \sum_{j \in \Delta F} (Y(m, j) - \bar{Y})^2}}
\] (6)

The average values \(\bar{X} \) and \(\bar{Y} \) are provided in equation 7. Here \(\mathcal{N}_A \) denotes the number of active time frames and \(\mathcal{N}_{\bar{A}} \) the number of frequency bands included in \(\Delta F \).

\[
[\bar{X}, \bar{Y}] = \frac{1}{\mathcal{N}_{\bar{A}} \cdot \mathcal{N}_A} \sum_{m \in \mathcal{A}, \bar{A}} \sum_{j \in \Delta F} [X, Y] (m, j)
\] (7)

With this introduced correlation measure, the similarity between the estimated noise-free speech \(RA_d \) and \(RA_f \) can be calculated according to 8. This index \(m_{SPE} \) provides a measure for the remaining structure of the degraded speech compared to the reference.

\[
m_{SPE} = \text{Corr} (RA_d(m, j), RA_f(m, j))
\] (8)

As a second measure \(m_{DRE} \) is determined by 9 and employs the time-frequency representations \(RA_d \) and \(RA_f \). This metric takes the perceived noise into account by comparing noisy degraded speech and the clean reference.

\[
m_{DRE} = \text{Corr} (RA_d(m, j), RA_f(m, j))
\] (9)

4.5. Mapping

The two extracted features \(m_{SPE} \) and \(m_{DRE} \) are mapped with a simple linear regression against the auditory MOS_{LE}.

\[
\hat{\text{MOS}}_{LE} = a_0 + a_1 \cdot m_{SPE} + a_2 \cdot m_{DRE}
\] (10)

Other machine learning algorithms like support vector regression (SVR) or neural networks would also be possible here to achieve a better mapping. However, since the performance metrics are already located at the upper realistic range, any further improvement may lead to decreased generalization.

5. Results

For the training of the model 147 conditions (588 samples) are utilized. 50 conditions (200 samples) remain for validation check. Prediction results for instrumental listening effort MOS_{LE} are evaluated graphically as shown in Figure 6. For training and validation, the proposed model performs adequately over the whole MOS range.

In order to qualify the performance of the model, several accuracy metrics are provided in table 2. Here the well-known correlation coefficients \(r_{\text{Pearson}} \) and \(r_{\text{Spearman}} \) are listed, as well as root-mean-square error (RMSE) according to [24]. Another widely used measure for the performance of prediction models is the so-called “epsilon-insensitive RMSE” as described in [24], which takes the 95% confidence intervals of the auditory data into account. All metrics are provided before and after third order mapping.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Training</th>
<th>3rd order</th>
<th>Validation</th>
<th>3rd order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{\text{Pearson}})</td>
<td>0.936</td>
<td>0.948</td>
<td>0.942</td>
<td>0.950</td>
</tr>
<tr>
<td>(r_{\text{Spearman}})</td>
<td>0.948</td>
<td>0.948</td>
<td>0.899</td>
<td>0.899</td>
</tr>
<tr>
<td>RMSE*</td>
<td>0.140</td>
<td>0.145</td>
<td>0.150</td>
<td>0.151</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.282</td>
<td>0.245</td>
<td>0.277</td>
<td>0.222</td>
</tr>
</tbody>
</table>

Table 2: Performance metrics for proposed model

6. Conclusions

In the presented work, a model for the instrumental assessment of perceived listening effort was presented. The corresponding measurement setup as well as a new auditory test was introduced. The prediction model which consists of several blocks for pre-processing, perceptual transformation and feature extraction was described.

For future work, several improvements and new considerations could be taken into account. The current auditory evaluation only included a fixed listening level of 79.0 dB SPL, and thus the model may be unconditioned for varying levels.

Another enhancement could be the extension to other receive-side applications (e.g. any kind of hands-free scenarios, public address systems). Here the model must also consider binaural perception effects.

Finally, an extended model for the combined assessment of listening effort and speech quality as introduced by the work in [11] would be desirable.
7. References

