FROM INTERFACE TO CONTENT:
TRANSLINGUAL ACCESS AND DELIVERY OF ON-LINE INFORMATION

Victor Zue, Stephanie Seneff, James Glass, Lee Hetherington, Edward Hurley, Helen Meng,
Christine Pao, Joseph Polifroni, Rafael Schloming, Philipp Schmid

Spoken Language Systems Group, Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02130 USA
http://www.sls.lcs.mit.edu

ABSTRACT
This paper describes our initial implementation of a system to provide world-wide weather information over the telephone. The information is gathered from several different sites on the Web, preprocessed, and cached locally into a relational database to make access both fast and selective. Our natural language tools, originally developed for processing user queries, are used here for understanding content, and for subsequently translating it into languages other than English. The system is operational, and we have been collecting data from real users via a toll-free number. We report here on an initial evaluation both of the full system in English and of the quality of the responses in German.

1. INTRODUCTION
Over the past several years, our group has been involved in the development of conversational interfaces for accessing on-line information using human language technologies. Increasingly, we see the need to utilize the same technologies for understanding the content in order to manipulate and deliver the information to the user, since so much of the available content (e.g., in newspapers, radio broadcasts, or Web pages) is linguistic in nature. To this end, we are developing a system called JUPITER, which allows a user to access and receive on-line weather information over the phone and in multiple languages. JUPITER utilizes the client-server architecture of GALAXY [1], but it specializes in weather-specific information, world-wide obtained from a variety of Web sites. It can give a weather report for a particular day or several days, and answer specific questions about weather phenomena such as temperature, wind speed, precipitation, pressure, humidity, sunrise, etc. JUPITER serves as a testbed for several important areas that have surfaced on our research agenda, including displayless interaction, virtual browsing, information on demand, and translingual content management. The system currently has weather information for approximately 500 cities, mostly within the United States, but also selected major cities world-wide. The information is available in English, but JUPITER is also acquiring some “translingual” capabilities, by parsing and translating weather information into several other languages.

1.1. Language as Interface
From the standpoint of interface, our research is increasingly moving toward a telephone-based platform. A displayless environment, in which only the telephone is available for information access and delivery, is important because the telephone is so much more pervasive when compared to PCs equipped with Internet access. By using the telephone as a means of accessing the information, we can empower a much larger population. In the scenario that we envision, a user could conduct “virtual browsing” in the information space without ever having to point or click. Displayless information access poses new challenges to conversational interfaces. If the information can only be conveyed verbally, the system must rely on the dialogue component to focus the interaction into manageable subdialogues, the language generation component to express the information succinctly, and the text-to-speech component to generate natural and intelligible speech.

1.2. Language as Content
From the standpoint of content, the linguistic information that exists on-line often contains much more than the user would like. Weather forecasts are obtained from multiple sites on the World Wide Web, whose information content complement one another. If the system fully understands the information it is presenting to the user, it will be able to select subsets that are relevant to the question, avoiding boring the user with long monologues on irrelevant distractions. It will also be able to recognize when two sources are providing overlapping information, and can select one or the other based on quality considerations. Finally, by representing all linguistic data in a language-transparent semantic frame format, the notion of translating the weather reports into other languages becomes far more feasible.

2. CREATING THE DATABASE
JUPITER currently obtains all of its information from several complementary weather sources available on the Web. One of the sources provides up to 4-day weather and temperature predictions worldwide, whereas another is concentrated within the United States, but far more detailed in its descriptions. A third one is an excellent resource for quantitative information such as temperature, humidity, barometric pressure, and sunrise and sunset times.

The National Weather Service provides weather forecasts for 279 cities within the United States. These reports are manually written, and there seems to be no strict format, so they are problematic from the standpoint of generalization. But because they give a rich description of the weather, including predictions of amounts of precipitation, advisories for hurricanes, floods, etc., we feel it is worth the effort to process them. JUPITER is updated several times a day, by polling the Web for any changes in predictions. An automatic procedure parses the data into semantic frames [2], and a second process sorts them into categories based on the meaning. As illustrated in Figure 1, each weather report is first converted to an indexed list of semantic frames, one for each sentence. The indices are then entered into
1. Wednesday: [date]
2. Becoming very windy and turning colder with a 60 percent chance of snow. [weather] [snow] [wind]
3. Near blizzard conditions and dangerous wind chills developing. [weather] [snow] [temperature]
4. High around 20 with temperature falling into the single digits by late afternoon. [temperature]
5. Northwest winds increasing to 25 to 45 mph. [wind]

Figure 1: Extract from an on-line weather report maintained by the National Weather Service, enumerated and annotated for categories.

O Haleakala summit winds becoming southerly 40 to 60 mph with occasional higher gusts.
R Heavy snow warning extended through this morning for mountains above 4500 feet.
O Heavy snow warning remains in effect through this morning for higher mountains.

Figure 2: Example rephrasings to eliminate parse failure. O = original, R = rephrased.

3. TRANSLINGUAL CONTENT

Because the information that JUPITER maintains is represented in a semantic frame format, it is straightforward to translate this information to another language besides English. We have begun an effort to paraphrase the weather responses into German, Mandarin Chinese, and Spanish. For each of these languages, a native speaker who is fluent in English is preparing the corresponding GENESIS generation rules [3]. We have not dealt extensively in the past with German, a particularly difficult language due to its extensive use of inflectional endings. We had to augment GENESIS with a more sophisticated ability to deal with case, which can be assigned in the vocabulary file by prepositions and verbs. In addition, we needed to be able to specify the correct inflectional endings for nouns and adjectives as a function of case, gender, and number.

There were a few instances when the same word in English had to be given a different translation depending on the context. For example, the word “light,” translates differently into Mandarin for the two phrases, “light wind” (“qǐng fēng”) and “light rain” (“xiāo yǔ”). GENESIS handles this situation using a semantic grammar that can categorize the two cases into different adjective types.

Figure 4 gives an example of a semantic frame for the sentence, “2 to 4 inches snowfall accumulation by morning,” along with the corresponding paraphrases in three languages. Note that the preposition “by” has been interpreted in the semantic frame as denoting a time expression, allowing the appropriate translation of this diversely realized preposition.

4. DIALOGUE INTERACTION

We have discovered several interesting issues with regard to proper dialogue modelling to accommodate users’ requests, and we are becoming increasingly aware of the benefits in letting real users influence the design of the interaction. One of the critical aspects of any conversational interface is the need to inform the user of the scope...
of the system’s knowledge. JUPITER only knows approximately 500 cities, and users need to be directed to select relevant available data when their explicit request yields no information. Even for the cities it knows, JUPITER does not necessarily have the same knowledge for all cities.

JUPITER has a separate geography table organized hierarchically, enabling users to ask questions such as “What cities do you know about in the Caribbean?” This table is also used to provide a means of summarizing a result that is too lengthy to present fully. For example, if the user asks where it will be snowing in the United States, there may be a long list of cities expecting snow. The system then climbs a geographical hierarchy until the list is reduced to a readable size. For example, JUPITER might list the states where it is snowing, or it might be required to reduce the set even further to broad regions such as “New England,” and “Northwest.” We try to restrict the size of an enumerated list to under 10 items, if possible.

During our data collection sessions, we noticed considerable frustration among users who were trying to find information about sunrise and sunset time, and frequently coming upon cities for which this information did not exist. We realized that the system needs to distinguish between the general set of cities it knows, and the particular knowledge associated with each of those cities. Based on these observations, we decided to augment the system with the capability of suggesting a list of alternative cities in the same geographic region for which the particular data requested are available. In addition to these general considerations, several phenomena required special attention. For example, we had calls after midnight when users, asking for “tomorrow’s” weather, really wanted “today’s” weather, defined from midnight to midnight. We also had callers from Canada who wanted temperature information presented in degrees Celsius rather than Fahrenheit. We have augmented the system to take these issues into account. To encourage the user to continue the dialogue after each exchange, we implemented a simple mechanism to alternate among a set of continuation phrases that followed the delivery of information. Figure 5 shows an actual dialogue between a user and JUPITER, illustrating this behavior.

5. DATA COLLECTION
We have been actively collecting data within the JUPITER domain since the beginning of 1997. As we’ve done in previous domains, we first developed a prototype JUPITER system and used it to collect spontaneous speech using a Wizard paradigm, with a human typist in the loop and subjects brought into the lab and given scenarios to solve. At the same time, we solicited read speech using both our Web-based data collection facility [4] and a phone number that subjects could call to read from pre-distributed lists.

Once these data had been collected, we were able to train a recognizer and move on to system-based data collection. We currently have a toll-free number that is available 24-hours/day for subjects to call to find out weather information. The utterances collected from this facility are also used as training data. The toll-free number has been a particularly powerful method for collecting data from a variety of subjects in a short period of time. We feel that these calls accurately reflect the way users want to interact with such systems.

Table 1 summarizes the current status of the data collection effort. The numbers for the spontaneous, i.e., system-in-the-loop, data collection reflect just one month’s recording, with subjects solicited by word-of-mouth from among the families and friends of members of our group. We anticipate an even larger supply of such data once the phone number has been more widely publicized.

6. PRELIMINARY EVALUATION
Since the initial stages of JUPITER system development, we have tried to assure that there is a formal method for evaluating progress in all of the different aspects of the total system. Below, we have divided the evaluation criteria along the dimensions of interface vs. content. Within each of those dimensions we have evaluated components separately as well as in aggregate. Evaluations of the interface are necessarily preliminary, as the system has only been operational for a few weeks at the time of this writing.

Evaluating Interface For evaluating JUPITER’s performance during conversations with users, we selected a set of log files that corresponded to calls made to the system during approximately its third week in operation. Any calls made by system developers were eliminated from consideration. We evaluated this material in terms of its speech recognition performance, parse coverage, response generation (in both English and German) and overall speech understanding.

Table 2 shows the understanding results, judged subjec-
Table 2: Summary of speech understanding performance for 487 utterances collected over a one-week interval of monitoring.

<table>
<thead>
<tr>
<th>Correct</th>
<th>Partial</th>
<th>Incorrect</th>
<th>Out of Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 (61.3%)</td>
<td>12 (2.6%)</td>
<td>301 (41.3%)</td>
<td>24 (5%)</td>
</tr>
</tbody>
</table>

Table 3: Evaluation results for weather report paraphrases into German for monitored data.

<table>
<thead>
<tr>
<th>Correct</th>
<th>Incorrect</th>
<th>Partial</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>851 (96.2%)</td>
<td>8 (0.9%)</td>
<td>42 (4.7%)</td>
<td>885</td>
</tr>
</tbody>
</table>

8. REFERENCES

