THE STRUCTURAL WEIGHTED SETS METHOD FOR CONTINUOUS SPEECH AND TEXT RECOGNITION

Yuri Kosarev, Pavel Jarov, Alexander Osipov

Russian Academy of Sciences
Institute for Informatics and Automation
St. Petersburg
E-mail: kosarev@mail.iias.spb.su

Abstract

In known approaches to speech recognition based on Dynamic Programming (DP) or Hidden Markov Modelling (HMM) time sequences of elements (feature vectors, sounds, letters, etc.) as objects of evaluating or matching are used directly. Both of these approaches have the same demerit: they both can be realised only in the course of the recurrent sequential process and can’t be realised in parallel. In addition, the complexity of them are relatively high.

In proposed below Structural Weighted Sets (SWS) method such sequence are reflected first into some structure as a set from relations between its elements and then a recognition is reduced to matching corresponding sets. So in this case a words matching can be realised as a finding an intersection of two sets and evaluating its relative weight. The possibility to carry out a processing in parallel is arisen. The results of simulation are represented.

1 Introduction

The survey of the publications within the speech and text processing field shows that the recognition methods are reduced there mainly to the comparison or the probability appraisal of the sequences of some elements (signal readings, feature vectors, segments, phonemes, letters, words, etc.). The HMM and DP methods were developed to make the recognition and eliminate by this the natural speech variability and the errors of preliminary signal processing too. Both of them are reduced to the sequential recurrent processing (“from left to right”, “from right to left”, etc.) and do not allow to organise processing in parallel. At the same time it is well known that the information processing within the people brain goes in parallel mainly, the known “simultaneous catching” mechanism prevails in the recognition processes.

HMM methods assume the speech is the Markov process, when the some sound appearance probability is depend on a definite number of previous sounds (usually 1). This assumption is not confirmed by the psycho-acoustics data and does not conform with the code speech model [1].

All said put on to idea that DP and HMM speech processing models are not perfect enough by their essence (it is confirmed by their insufficient effectiveness) and here new original and more adequate approaches are required.

The observations of the people perceiving the speech or text, shows that it is broadly used there recognition mechanisms based on separate fragments of the utterance and their combinations, allowing to appreciate likeness of, it seems, incomparable subjects; hypotheses comparison and selection mechanisms based on some inaccessible for the observation criterion.

In this paper the speech objects comparison method is offered, based not on some sequences, but on their structures comparison. In this case the speech elements sequence are transformed at first to the structural elements
set. Then two words comparison is reduced to producing two sets intersection and its relative weight estimation.

2 From sequence to structure

The essence consists in that an initial sequence of elements (IE) is transformed to the second elements (SE) set. Every SE reflects some structure fact, for example, "a directly precedes b" or "a precedes b" and so on. In general, a rule of the transformation IE → SE is chosen thus to get this set as most stable to all the possible kinds of the speech signal variability and also to distortion kinds, which can arise during speech generation, transmission and also by its initial processing.

Example: \(\text{cat} \rightarrow S = \{c, a, t, ca, ct, at\} \).

It can be proved rigorously that this transformation definitively describes an original sequence. The main property of such processing is the possibility to escape the recurrent sequential processing by means of the operation on sets with operations such as "difference of sets", "sum", "intersection", "power", etc.

In a common case to convert the word \(W \) represented by the phonemes sequence

\[W = p_1, p_2, \ldots, p_n, \ldots, p_L \]

into the corresponding structure \(S_w \) it is necessary to take all the possible structural elements:

\[W \rightarrow S_w = S_1 \cup S_2 \cup \ldots \cup S_n, \ldots, S_L \],

where \(S_1 = \{p_1, p_2, \ldots, p_n, \ldots, p_L\} \) is the set of phonemes containing in this word,

\[S_2 = \{(p_1, p_2), (p_2, p_3), \ldots, (p_n, p_{n+1}), \ldots, (p_{L-1}, p_L)\} \]

is the set of pairs of phonemes, etc.

It is reasonable to suppose that every SE has own degree of the influence on the word identification. Then for the recognition errors minimisation it is necessary to provide every SE by own weight coefficient \(K_S \). These coefficients must be defined on the training stage. In the simplified version it is possible to assume \(K_S = 1 \).

3. Word matching

To get a resemblance \(R \) of two words \(W_1 \) and \(W_2 \) containing accordingly \(L_1 \) and \(L_2 \) phonemes it is necessary:

1) to fulfil transformations \(W_1 \rightarrow S_{W_1} \), \(W_2 \rightarrow S_{W_2} \);

2) to produce an intersection of this two sets:

\[I(S_{W_1}, S_{W_2}) = S_{W_1} \cap S_{W_2} = S_{W_1} \cap S_{W_2} \cap \ldots = R_1 \cup R_2 \cup \ldots \]

3) to produce a "weighted power" of subset \(I \):

\[R(W_1, W_2) = K_1 |R_1| + K_2 |R_2| + \ldots \]

So this weighted intersection of two structural sets can be as a resemblance measure for words recognition.

This must be normalised by use a normalising coefficient:

\[N = 1/(K_1 |S_1| + K_2 |S_2| + \ldots K_{L_m} |S_{L_m}|) \]

where \(L_m = \max (L_1, L_2) \).

So normalised resemblance measure is:

\[R^*(W_1, W_2) = R(W_1, W_2) \times N \]

To include this processing into early described model for semantic interpretation [2, 3] it is required to transform resemblance measure to distinction:

\[D(W_1, W_2) = 1 - R^*(W_1, W_2) \]

In this case \(D(W_1, W_2) \) will be also in normalised form.

4. Possible expansions of SWS-method

Described above SWS-method is rather universal means for speech/text processing. It can be used not only for time sequences as it is shown above, but also for spectrum conversion, for pragmatical processing etc.
4.1. Difference spectrum (DS)
It is required for speech recognition to reduce
an initial description dimension, level
normalisation, emphasise more important
fragments, for example local extremes
disposition, their relations, etc.
Let short-time spectrum of speech signal (for
segments of 10-20 ms) is represented by set of
n spectral components:

\[A = a_1, a_2, ..., a_i, ..., a_j, ..., a_n \]

Then \(DS = \{a_{ij}\} = \{\text{sign}(a_i - a_j)\}, i < j \)

To reduce an influence of noise by low level
signal it is required to use there the threshold \(\delta \):

\[
a_{ij} = \begin{cases}
0 & \text{if } |a_i - a_j| < \delta, \text{ else:} \\
1 & \text{if } a_i > a_j \\
-1 & \text{if } a_i \leq a_j
\end{cases}
\]

Such features were used in [4]. As initial
representation was 10-band spectrum. From
full set \(\{i, j\} \), containing \(C_{10}^2 = 45 \) features
were selected the subset of 16 more
informative ones.

Lately this features were improved by weight
coefficients \(K_{ij} \):

\[
a_{ij} = \begin{cases}
0 & \text{if } |K_{ij} a_i - a_j| < \delta, \text{ else:} \\
1 & \text{if } K_{ij} a_i > a_j \\
-1 & \text{if } K_{ij} a_i \leq a_j
\end{cases}
\]

The optimal set of \(K_{ij} \) was
\(\{0.25, 0.5, 1.0, 2.0, 4.0\} \),
so full set of different features contained
\(45 \times 5 = 225 \) features, then 16 “best” were
selected and this gave word recognition
accuracy improvement from 0.94 to 0.96.

Offered DS-transformation possesses of some
advantages:
- the invariance under level change;
- the invariance under spectrum deformation in
framework of saving the same formant
structure;
- compactness;
- simplification of spectral readings difference
calculation

4.2 Pragmatical estimation
There was offered an estimation of the phrases
semantic difference [3] based on manipulations
on sets. Two phrases were presented in this
case as sets of words and semantic difference
measure was calculated by means of especial
formula with use sets theory machinery. This
processing was included into integral model for
speech semantic interpretation [3].

4.3 Semantic-syntactical processing
There were presented an associative model for
the semantic-syntactical appraisal [6]. The
phrase is presented as a set of ordered pairs of
words and then associative estimation for
phrase is calculated by means of especial
formula. This processing was included also into
semantic interpretation model.

5. Applications and experiments
This SWS method was applied both for the
two-level word recognition and for the
handwritten text recognition.

In the first case phoneme sequence obtained by
phoneme recognition level was inputted to
hypothesizer. Then each hypothesis was
transformed to the set of structural relation
according part 2. The best hypothesis was
selected according maximal normalised
resemblance measure. If input phoneme error
rate was about 30%, output word error rate
was 10%.

In the second case [5] the sentences composed
from words of limited vocabulary were
inputted. About 10% mistakes like
substitutions, insertions, extractions and
neighbouring character transpositions were
simulated. The model has corrected 98-99% of
sentences, for example: “Ho can I get to the
senter?” → “How can I get to the center?”. Owing
to semantic-syntactic information use
the model is able to correct mistakes driving
inputted words to another words from the
same vocabulary, for example: table → able,
table → tale.
6. Conclusion

Presented SWS method for sounds and letter sequences recognition allows to carry out processing in parallel, so it is possible to join this processing with neurone machinery more closely. This approach can be disseminated also to some kinds of preliminary and high-level speech processing.

References

