Real-time Sound Source Localization and Separation System and Its Application to Automatic Speech Recognition

Futoshi Asano, Masataka Goto, Katunobu Itou and Hideki Asoh

AIST (former ETL), Japan
asano@etl.go.jp

Abstract
A real-time sound localization/separation system for near-field sound sources was constructed and evaluated in a real office environment. As for the sound localization, the experimental results showed that the direction of the two sources was estimated with high accuracy while the range of the sources was estimated with moderate accuracy. As for the sound separation, a recognition rate of 70% for an on-line recognizer on a network and of 90% for an off-line recognizer were achieved, respectively.

1. Introduction
When using an automatic speech recognizer (ASR) in a real environment, its performance suffers deterioration due to environmental noise or signals from other sound sources. The authors previously proposed a method of sound source localization/separation using a microphone array [1]. In this method, assuming a dialog between a human and a mobile robot under conditions of sound interference, the sound localization/separation in the near-field range (the robot, the speaker and the interference are within a range of 1/2 m) was focused on. In the near-field, the wavefront becomes spherical and the range of the sources as well as the direction must be taken into account for accurate source localization/separation. As for the sound localization, by extending a high-resolution spatial spectrum estimator, MUSIC [2], to that for a 2-dimensional space, the range and the direction of sources can be estimated. Based on the localization results, a separation filter is designed using the minimum-variance beamformer (MVBF) [3].

In this paper, a real-time system which realizes this method was constructed using DSPs and was evaluated in a real office environment.

2. Method
2.1. Model of Signal
The Fourier transform of the microphone input, \(X_m(k,t) \), is modeled as

\[
x(k,t) = [X_1(k,t), \cdots, X_N(k,t)]^T = A_k s(k,t) + n(k,t).\tag{1}
\]

The vector \(s(k,t) \) consists of the source spectrum \(S_m(k,t) \) as \(s(k,t) = [S_1(k,t), \cdots, S_N(k,t)]^T \). The symbol \(k \) and \(l \) denote the indices for the frequency and the time-frame, respectively. The vector \(n(k,t) \) denotes the background noise. The matrix \(A_k \) is the transfer function matrix, its \((m,n)\) element being the transfer function of the direct path from the \(m \)th source to the \(n \)th microphone. The \(n \)th column vector of \(A_k \) is termed the location vector of the \(n \)th source.

2.2. Sound Localization
The spatial spectrum is obtained as an average of the MUSIC spatial spectrum as

\[
\hat{P}(r,\theta) = \frac{1}{K} \sum_{k=k_L}^{k_U} P(r,\theta,k),\tag{2}
\]

where

\[
\hat{a}_k(r,\theta) = \frac{a_k(r,\theta)}{||a_k(r,\theta)||},\tag{4}
\]

is the normalized location vector for the scanning point \((r,\theta)\) [1]. The matrix \(E_k^1 \) consists of the eigenvectors obtained by the eigenvalue decomposition of \(R_k \) as

\[
R_k = E_k A_k E_k^{-1},\tag{5}
\]

where \(R_k \) is the spatial correlation matrix defined as

\[
R_k = E[x(k,t)x^H(k,t)].\tag{6}
\]

The eigenvectors are split as \(E_k = [E_k^1, E_k^2] \) where \(E_k^1 \) and \(E_k^2 \) denote the sets of eigenvectors corresponding to the \(N \) dominant eigenvalues and the rest of the eigenvalues, respectively. The location of sources can be known from the peak of this spatial spectrum.

2.3. Sound Separation
By using MVBF, the spectrum of the \(n \)th sound source is recovered by the following filtering:

\[
\hat{S}_n(k,t) = w^H(k) x(k,t),\tag{7}
\]

where

\[
w = \frac{R_k^{-1} a_{\hat{m},n}}{a_{\hat{m},n}^H R_k^{-1} a_{\hat{m},n}}\tag{8}
\]

The vector \(\hat{a}_{\hat{m},n} \) is the location vector for the \(n \)th source estimated by the sound localization. Two modified versions of MVBF were employed in this paper.
Table 1: Differences of MV1 and MV2.

<table>
<thead>
<tr>
<th>Correlation</th>
<th>MV1</th>
<th>MV2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantage</td>
<td>K_n</td>
<td>Q_n</td>
</tr>
<tr>
<td>Disadvantage</td>
<td>high noise reduction</td>
<td>high tracking capability</td>
</tr>
<tr>
<td></td>
<td>absence of target must be detected</td>
<td>performance depends on localization accuracy</td>
</tr>
</tbody>
</table>

Table 2: Results of the benchmark test. The processing time for 1 s data is shown.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time [s]</th>
<th>Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT & Correlation</td>
<td>0.86</td>
<td>DSP-B</td>
</tr>
<tr>
<td>MUSIC</td>
<td>0.34</td>
<td>Host</td>
</tr>
<tr>
<td>MVBF</td>
<td>0.16</td>
<td>Host</td>
</tr>
<tr>
<td>Filtering</td>
<td>0.52</td>
<td>DSP-A</td>
</tr>
</tbody>
</table>

When the spatial correlation matrix K_n is used instead of R_n in (8) as

$$w_{MV1} = \frac{K_n^{-1} \hat{a}_{n,k}}{\hat{a}_{n,k}^T K_n^{-1} \hat{a}_{n,k}}$$ (9)

(8) becomes the maximum likelihood (ML) estimator [3]. The matrix K_n denotes the spatial correlation that is estimated in the period where the target signal $S_n(k,t)$ is absent. The ML estimator w_{MV1} yields a high noise reduction performance with a relatively small amount of data compared with (8) and termed “MV1” hereafter.

On the other hand, the authors previously proposed the modified MVBF [1], in which the spatial correlation R_n is replaced by the following synthesized spatial correlation:

$$Q_n = \hat{A}_n \hat{A}_n^H + \gamma I$$ (10)

The second modified MVBF using this Q_n is termed “MV2”, and is given by

$$w_{MV2} = \frac{Q_n^{-1} \hat{a}_{n,k}}{\hat{a}_{n,k}^T Q_n^{-1} \hat{a}_{n,k}}$$ (11)

As described above, a salient feature of MV2 is the use of Q_n that is synthesized using the estimate of the localization \hat{A}_n. The estimate of the localization can be obtained with less input observation (0.2-0.5s) [1] compared to that for K_n (more than 1 s). Thus, the advantage of this method is its faster capability of tracking environmental changes compared with MV1. This is a desired feature for applications such as the mobile robot. The differences of MV1 and MV2 are summarized in Table 1.

The second term in (10) corresponds to the correlation for the background noise. The parameter γ functions as weight in the weighted least-square problem. When the real background noise is high, the reduction performance for the background noise can be raised by employing a larger γ.

3. System

3.1. Hardware

A block diagram of the system is depicted in Fig. 1. First, the microphone-array input is Fourier-transformed and the spatial correlation is calculated by the FFT and COR modules. Then the spatial correlation R_n is sent to the MUSIC module and the source location (A) is estimated. In the MVBF module, beamformer coefficients are calculated. For MV1, the correlation in the absence of the target, K_n, is also estimated in the COR module and is sent to the MVBF module. The length of data used for estimating R_n and that used for K_n is 1.0 s and 0.5 s, respectively; in this paper. The estimated coefficients are transformed to the time domain by Fourier transform and the input signal is filtered in Filter with these time-domain coefficients.

The system consists of dual DSPs (T1 C6701) and the host PC (Pentium III-600MHz). The architecture of the system is depicted in Fig. 2. The assignment of the computational resources and the results of the benchmark tests are shown in Table 2.

The microphone array was circular in shape with a diameter of 0.5 m and $M = 8$ and was mounted on a mobile robot XR-8000 as depicted in Fig. 4(b). The frequency range of averaging in (2) was [500, 3000] Hz.

3.2. Location Vector Database

Prior to the operation of the system, the location vectors for the possible source locations were measured as a database for the source localization and separation. The data were taken in the range of 60-160 cm as indicated in Table 3. The total number of the data entries is 492 points. The database is used for $a_{n,k}(r, \theta)$ in (4) for the sound localization, and $a_{n,k}$ in (9) and \hat{A}_n in (10) for the sound separation. The measured data and the details of the measurement are available from the RWCP sound scene database web-site [4].
Table 3: Location vector database.

<table>
<thead>
<tr>
<th>Range</th>
<th>Direction</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-90 cm</td>
<td>every 10°</td>
<td>every 10 cm</td>
</tr>
<tr>
<td>100-150 cm</td>
<td>every 5°</td>
<td>every 20 cm</td>
</tr>
</tbody>
</table>

Table 4: Source Location

<table>
<thead>
<tr>
<th>Source</th>
<th>Angle</th>
<th>Range</th>
<th>Angle</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>10</td>
<td>80</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>Estimated</td>
<td>10</td>
<td>90</td>
<td>70</td>
<td>140</td>
</tr>
</tbody>
</table>

3.3. Online ASR System

The above sound source localization/separation system is connected through a network to the ASR server currently being developed by the authors as depicted Fig. 3. The ASR system, denoted as RVCP-niJna hereafter, consists of a discrete-HMM ASR engine (niJna) [5] and a network interface with the network protocol specially designed for exchanging speech information through the network (Remote Voice Control Protocol, RVCP) [6]. This ASR system is useful for applications such as the mobile robot employed in this paper which have limited local resources. By using RVCP, the ASR system itself can be distributed over several computational resources on a network, a useful feature for the cases with heavy ASR load such as multiple mobile robots.

4. Evaluation

4.1. Condition

The evaluation experiment was conducted in an ordinary office. The configuration of the source and the microphone array is shown in Fig. 4. The location of the sound sources (loudspeakers) is shown in Table 4. The sound sources, S1 and S2, emit speech and music respectively. The sound levels of S1, S2 and the background noise at the position of microphone #1 were 68, 67, 48 [dBA], respectively. The background noise mainly consists of the noise of the PC fan.

Figure 3: Online ASR system.

4.2. Results

Figure 5 shows the obtained spatial spectrum. From the peak position of this spectrum, the location of the sources was estimated. The estimated location is shown in Table 4. It can be seen that the estimation of the direction is accurate while the range was estimated as being a little larger. This is considered to be mainly an effect of room reflections.

Figure 6 shows the recognition rate for 492 Japanese words. For the sake of comparison, an off-line continuous-HMM speech recognizer (HTK [7] with IPA phonetic model [8]) was employed as well as RVCP-niJna. When MV1 was employed, a high recognition rate was achieved. On the other hand, when employing MV2, the recognition rate was reduced by around 20%. As described in Table 1, this is due to the accuracy of the sound localization. As indicated in Table 3, the location vectors were measured every 5° in the range of 1-1.6 m. This means that, even when the localization is the most accurate, the estimated location and the real location could differ by ±2.5°.

Figure 7 shows the gain of MV2 in the vicinity of the interference direction. From this figure, it can be seen that, when the real and the estimated location differ by ±2.5°, the noise reduction performance is reduced to around 10 dB at the higher frequencies. When higher performance is required, a database with higher resolu-
5. Discussion and Conclusion

In this paper, a real-time system of sound source localization/separation for sources in the near-field range was developed and evaluated. The system consists of dual DSPs and a PC.

Regarding the sound localization, the directions of the two sound sources were accurately estimated. As for the range estimation, the resolution was lower compared with that of the direction estimation, due to the variation of phase difference between the microphones being smaller. The accuracy of the range estimation is even lower than those of the off-line experiments in [1]. This is considered to be due mainly to the higher background noise and the early reflections as compared with the environment used in [1].

Regarding the sound separation, a high recognition rate was achieved when MV1 was employed. Future work on MV2 includes the detection of the presence/absence of the target signal. MV1 requires both R_e (spatial correlation for the target being present) for determining the beam (focus) location and K_s (spatial correlation for the target being absent) for determining the null location. In the present study, the presence/absence of the target signal is indicated to the system by a human operator.

Automation of this detection is required.

When employing MV2 for the sound separation, the performance was reduced by around 20%. This is a trade-off between high noise reduction performance and high tracking capability. MV2 requires only R_e. In the off-line experiment, it was shown that the beamformer coefficients were able to be updated every 0.2 s [1]. However, the evaluation of the tracking capability such as that for moving sources has not yet been conducted and remains for future study.

6. References