FAST DECODING FOR STATISTICAL MACHINE TRANSLATION

Ye-Yi Wang Alex Waibel

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

ABSTRACT

We investigated an efficient decoding algorithm for statistical machine translation. Compared to the other algorithms, this new algorithm is applicable to different translation models, and it is much faster. Experiments showed that the algorithm achieved an overall performance comparable to the state of the art decoding algorithms.

1. INTRODUCTION

A statistical machine translation system consists of three sub-tasks: the modeling task describes machine translation processes with stochastic models; the learning task estimates the parameters in the models; and the decoding task searches for the translation that has the highest score according to the models. [1, 2, 3] described different translation models and their learning algorithms. [4, 2, 5, 6] introduced different decoding algorithms. However, those decoding algorithms have many limitations. Below is a brief review of these algorithms:

1.1. IBM Stack Decoder

In the IBM Stack Decoder [4], a hypothesis is comprised of a source sentence prefix string and an alignment between the prefix string and the target input sentence. Each hypothesis is associated with a model score. For a given target sentence, each subset of the words in that target sentence is associated with a priority queue. A hypothesis is put into one of the priority queues according to the target words that have been accounted for by that hypothesis. Because there are 2^n (n is the target sentence length) subsets of target words that can be accounted for by a hypothesis, the number of priority queues is exponential in the target sentence length. A long target sentence will lead to huge number of priority queues; hence too much memory space will be allocated. When an input target sentence is longer than 15 words, the decoder can allocated more than 1 GB memory. Exponential number of priority queues also implies that exponential number of hypotheses have been generated by the decoder. Therefore the decoder is extremely slow. In our experiments with IBM decoder for Model 3 [1], we let the decoder stop searching and register a failure whenever it allocated more than 750 MB memory. Table 1 shows the number of sentences that IBM decoder had failed, as well as the number of states being extended.

<table>
<thead>
<tr>
<th>Sentence Length</th>
<th>Total</th>
<th>Failed</th>
<th>Pct</th>
<th>Extended Hypo #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>81</td>
<td>0</td>
<td>0%</td>
<td>16</td>
</tr>
<tr>
<td>5-8</td>
<td>128</td>
<td>0</td>
<td>0%</td>
<td>2,705</td>
</tr>
<tr>
<td>9-12</td>
<td>101</td>
<td>0</td>
<td>0%</td>
<td>11,600</td>
</tr>
<tr>
<td>13-16</td>
<td>41</td>
<td>19</td>
<td>46.3%</td>
<td>63,472</td>
</tr>
<tr>
<td>17-20</td>
<td>16</td>
<td>9</td>
<td>56.3%</td>
<td>145,468</td>
</tr>
<tr>
<td>All (1-20)</td>
<td>367</td>
<td>28</td>
<td>7.6%</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Performance for the IBM Model 3 Stack Decoder: Input target sentences are grouped according to their lengths. The second column lists the total number of sentences in each group. The third column lists the number of sentences that the decoder failed on. The fourth column lists the failure percentage. The fifth column lists the average numbers of hypotheses being extended by the decoder, which were collected with those successfully decoded sentences.

1.2. Dynamic Programming Decoding Algorithms

[2] and [6] described dynamic programming decoding algorithms for statistical machine translation. While dynamic programming algorithms worked fast, they imposed a strong constraint on the translation model: no crossover was allowed in word-to-word alignments between parallel sentences. This constraint basically requires that the source and target languages have very similar word orders. In case when the word orders are different (like English and German), a preprocessor is required to make the two languages similar.

1.3. A* Decoding Algorithm

[5] described an A* decoding algorithm. While this algorithm was much faster than the IBM decoder, it was only applicable to IBM Model 1 and Model 2, since its scoring mechanism relied on the reinterpretation of a probabilistic equation specific to the models. It is not clear how this algorithm can be used for more complicated models.

In summary, the current decoding algorithms are either too inefficient or too restrictive. And all of them are not generally applicable. For example, they will not work with the more complicated structure-based model [3].
2. FAST STACK DECODER FOR MODEL 1 AND MODEL 2

The high failure rate and the slow speed of the IBM stack decoder were due to the same reason — retaining the alignment between a source sentence prefix and the target sentence in a hypothesis. Because the number of possible alignments is exponential in sentence length, this results in exponential number of priority queues and hypotheses. Therefore the algorithm is too expensive with respect to both time and space complexities.

On the other side, efficient algorithms are available for Model 1 and Model 2 to calculate \(P(g \mid e) = \sum_{A} P(g \mid A, e) \), the a posteriori probability of a target sentence \(g \) given a source \(e \), over all possible alignments \(A \). Therefore we do not have to make assumption about the alignment between a source sentence prefix and the target sentence. Instead, a hypothesis can be just a prefix string of the sentence source, whose score is the likelihood of the target sentence summed over all possible alignments. In doing so, we greatly reduced the size of hypothesis space and make the decoding algorithm more efficient.

To be specific, here we present a modified fast decoding algorithm for Simplified Model 2 [5]. The decoder for Model 1 can be simply derived from it.

An important feature here is how we score a hypothesis. In Simplified Model 2, the equation for the a posteriori likelihood of a target sentence \(g \) given a source sentence \(e \) can be used to assess a hypothesis:

\[
P(g \mid e) = \sum_{a_1=0}^{l} \ldots \sum_{a_m=0}^{l} \prod_{i=1}^{m} l(g_i \mid e_i) a_i(a_j \mid j)
\]

\[
= \sum_{j=1}^{l} \prod_{i=1}^{m} l(g_i \mid e_i) a_i(a_j \mid j)
\]

(1)

here \(l = |e| \) and \(m = |g| \).

Although (1) was obtained from the alignment model, it would be easier for us to describe the scoring method if we interpret the last expression in the equation as follows: each word \(e_i \) in the hypothesis contributes the amount \(\epsilon \cdot l(g_i \mid e_i) \times a_i(a_i \mid j) \) to the probability of the target sentence word \(g_j \).

Given the target sentence \(G = g_0 g_1 \ldots g_m \), assume that the source sentence length is \(l \) at this moment. The hypothesis \(H_l = e_1, e_2, \ldots, e_l \) has hypothesized \(k \) words as the prefix of the source sentence of length \(l \). Then the probability mass contributed by the source word \(e_i \) (\(0 \leq i \leq k \)) to the target word \(g_j \) is \(\epsilon \cdot l(g_j \mid e_i) \times a_i(a_i \mid j) \). For a source position \(k < i \leq l \), since the word at that position has not been introduced into the prefix, its contribution to the target word \(g_j \) is averaged over all possible source words, which is \(\epsilon \cdot a_i(i \mid j) \times \sum_{k=1}^{l} l(g_k \mid w_k) \times a_i(a_i \mid j) \). Here \(|L| \) is the size of the source language lexicon, \(w_k \) is the \(k^{th} \) word in the source lexicon, and \(\Pr(w_k) \) is the prior probability of the source word \(w_k \), which can be obtained with the maximum likelihood estimator. Therefore, if we use \(\tau_i(j \mid i, H_l) \) to denote the contribution of the \(i^{th} \) source position of \(H_l \) to the probability mass of the \(j^{th} \) target word, we have

\[
\tau_i(j \mid i, H_l) = \begin{cases} \epsilon \cdot a_i(i \mid j) l(g_i \mid e_i) & 0 \leq i \leq k \\ \epsilon \cdot a_i(i \mid j) \sum_{k=0}^{l} \Pr(w_k) l(g_j \mid w_k) & k < i \leq l
\end{cases}
\]

(2)

The translation model score of \(H_l \) is therefore

\[
\tau(H_l) = \prod_{j=1}^{m} \sum_{i=0}^{l} \tau_i(j \mid i, H_l)
\]

(3)

In practice, since we do not make any assumption of the source sentence length, the score of a hypothesis \(H = e_1, e_2, \ldots, e_k \) has to be averaged over all possible sentence lengths:

\[
\tau(H) = \sum_{i=k}^{L_m} \Pr(k \mid m) \times \tau(H_i)
\]

(4)

here \(\Pr(k \mid m) \) is the source sentence length distribution conditioned on the target sentence length, which was modeled with Poisson distributions. \(L_m \) is the maximum sentence length allowed.

Because our objective is to maximize \(P(e, g) \), we have to include the ngram language model probability of the prefix string. Therefore the score of \(H \) is

\[
S(H) = \tau(H) \times \prod_{i=1}^{k} P(e_i \mid e_{i-N+1} \ldots e_{i-1})
\]

(5)

Because of the different number of factors in the language model score, hypotheses of different prefix lengths are not comparable. Therefore hypotheses are stored in different priority queues according to their prefix lengths. This results in the following algorithm:

Algorithm 1 Fast Stack Decoder for Simplified Model 2

Input: target sentence \(T = t_1 t_2 \ldots t_n \).

Output: source sentence \(S = s_1 s_2 \ldots s_m \).

Data Structures: a set of priority queues \(Q_0, Q_1, \ldots, Q_{L_m} \) for hypotheses.

1. Initialize with a null hypothesis (with prefix string length 0) \(H_0 \), compute \(S(H_0) \) with (2), (3), (4) and (5).
2. \(Q_0 \leftarrow H_0 \)
3. For each \(Q \in \{Q_0, Q_1, \ldots, Q_{L_m}\} \) and \(H \in Q \)
4. set the threshold for \(Q \)
5. if \(S(H) > \text{Threshold}(Q) \)
6. for each promising source word s
7. $H' = \text{append}(H, s)$
8. score H' with (2), (3), (4) and (5).
9. $Q_{H'} \leftarrow H'$
10. exit the loop if N complete source sentences are available in Q's.
11. Report the hypothesis with the highest score in Q's as the translation of T.

3. HYPOTHESIS RESHUFFLING

The aforementioned algorithm is only applicable to Model 1 and Model 2. There is no efficient way to compute the likelihood of a target given a source over all possible alignments for more complicated models. To apply the algorithm to those models, we present a hypothesis reshuffling algorithm here. The idea of hypothesis reshuffling was based on the observation that the fast stack decoder often found, in the top N translation candidates, the correct translations, or almost correct translations, of the correct bag of words arranged in wrong orders.

The hypothesis reshuffling algorithm uses the decoder for a simple model (e.g., the fast stack decoder for Simplified Model 2) to find top N hypotheses. It then searches for the translation that is the best according to a more complicated model, in the neighborhood of those candidate hypotheses. We define the following terminology to describe the algorithm:

Definition 1 Word move

Two hypotheses $H = e_1e_2e_3...e_n$ and $H' = e'_1e'_2e'_3...e'_n$ differ by a word move if there exist $1 \leq i \leq j \leq n$ such that either of the following holds:

$$(e_1...e_{i-1} = e'_1...e'_{i-1}) \land (e_i = e'_j) \land (e_{i+1}...e_n = e'_{i+1}...e'_n)$$

or

$$(e'_1...e'_{i-1} = e_1...e_{i-1}) \land (e'_i = e_j) \land (e'_{i+1}...e'_n = e_{i+1}...e_n)$$

Definition 2 Word swap

Two hypotheses $H = e_1e_2e_3...e_n$ and $H' = e'_1e'_2e'_3...e'_n$ differ by a word swap if $e_k = e'_k$ holds for all $1 \leq k \leq n$ except for $1 \leq i \leq j \leq n$, for which we have $(e_i = e'_j) \land (e_j = e'_i)$.

Definition 3 Neighbor hypothesis

Two hypotheses H and H' are neighbors iff H and H' differ by a word move or a word swap.

The search process can be described with the following algorithm:

Algorithm 2 Decoding with Hypothesis Reshuffling

Input: target sentence $T = t_1t_2...t_m$.
Output: source sentence $S = s_1s_2...s_m$.

Data Structures:
- a priority queue Q for hypotheses.
- a base model M_1 for candidate hypothesis;
- a model M_2 for rescoring the candidate hypotheses and their neighbors.

1. Using the decoder for M_1, find the top N hypotheses. Score the hypotheses with M_2, and then add these hypotheses to Q.
2. Repeat Step 3-7, until there is no change of the top K hypotheses in Q.
3. For each of the top K hypotheses in Q
4. $N_H \leftarrow \text{neighbor set}(H)$;
5. for each $H' \in N_H$
6. score H' with M_2
7. $Q \leftarrow H'$
8. Report the hypothesis with the highest score in Q as the translation of T.

The choice of the value N and K is a trade-off between speed and accuracy. A large N and K make the hill-climbing search in the hypothesis neighborhood less likely to stop at a local maximum, while the decoding process takes more time. In experiments reported here, $N = 12$ and $K = 6$ was selected by trial and error.

When we apply the algorithm, we often let M_1 “borrow” the translation parameters from M_2, because in general the translation distribution of a source word in a more advanced model is less ambiguous and more accurate [3].

4. EVALUATION

Two experiments were conducted to evaluate the performance of the new stack decoder + reshuffling algorithm (henceforth SD+R algorithm). In the first experiment, we compared the performance of the algorithm (with fast stack decoder for the base model, henceforth FSD+R algorithm) with that of the IBM stack decoder for Model 3. In the second experiment, we compared the performance of two different SD+R algorithms for our structure-based model
\footnote{A slight modification was made for the reshuffling algorithm for the structure-based model — we introduced phrase move and phrase swap in addition to word move and word swap in defining the neighboring hypotheses.} [3]: the first one used IBM Model 1 as the base model and applied the fast stack decoding algorithm to find the hypothesis candidates (FSD+R); the second one used IBM Model 3 as the base model and applied the IBM stack decoder to find the hypothesis candidates (IBM+R). Table 2 compares the performance, among the successfully decoded sentences, the IBM decoder and IBM+R decoder had higher accuracy (Accuracy column). However, the different algorithms performed similarly if the accuracy is
Table 2: Performance Comparison. The first row is the performance of IBM Model 3 with the stack decoder. The second row is the performance of IBM Model 3 with fast stack decoder and hypothesis reshuffling. The third row is the performance of the structure-based model with the IBM stack decoder and hypothesis reshuffling, and the fourth row is the performance of the structure-based model with fast stack decoder and hypothesis reshuffling. The “failed” column lists the number of sentences for which the search was aborted. “Accuracy” was calculated with respect to the successfully decoded sentences, and “Accuracy*” was calculated with respect to the total input sentence (367). Here a correct translation gets 1 credit; an okay translation gets 1/2 credit; and an incorrect translation gets 0 credit.

<table>
<thead>
<tr>
<th>Model</th>
<th>Decoder</th>
<th>Total</th>
<th>Failed</th>
<th>Corr.</th>
<th>Okay</th>
<th>Incorr.</th>
<th>Accuracy</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3</td>
<td>IBM</td>
<td>367</td>
<td>28</td>
<td>191</td>
<td>38</td>
<td>80</td>
<td>66.4%</td>
<td>61.3%</td>
</tr>
<tr>
<td>Model 3</td>
<td>FSD+R</td>
<td>367</td>
<td>2</td>
<td>188</td>
<td>44</td>
<td>103</td>
<td>61.6%</td>
<td>61.3%</td>
</tr>
<tr>
<td>SModel</td>
<td>IBM+R</td>
<td>367</td>
<td>28</td>
<td>202</td>
<td>77</td>
<td>60</td>
<td>70.9%</td>
<td>65.5%</td>
</tr>
<tr>
<td>SModel</td>
<td>FSD+R</td>
<td>367</td>
<td>2</td>
<td>203</td>
<td>66</td>
<td>86</td>
<td>66.0%</td>
<td>65.7%</td>
</tr>
</tbody>
</table>

Table 3: Reference vs. Machine-Made Translations. $S(e)$ is the score of reference translation, $S(e')$ is the score of the machine made translation. When $S(e) > S(e')$, we know, for sure, that a decoding error has occurred calculated among all input sentences (Accuracy* column).

<table>
<thead>
<tr>
<th>Model</th>
<th>Decoder</th>
<th>Total Errors</th>
<th>$S(e) > S(e')$</th>
<th>$S(e) \leq S(e')$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3</td>
<td>IBM</td>
<td>148</td>
<td>17 (11.5%)</td>
<td>131 (88.5%)</td>
</tr>
<tr>
<td>Model 3</td>
<td>FSD+R</td>
<td>177</td>
<td>26 (14.7%)</td>
<td>151 (85.3%)</td>
</tr>
<tr>
<td>SModel</td>
<td>IBM+R</td>
<td>137</td>
<td>18 (13.1%)</td>
<td>119 (86.9%)</td>
</tr>
<tr>
<td>SModel</td>
<td>FSD+R</td>
<td>162</td>
<td>28 (17.3%)</td>
<td>134 (82.7%)</td>
</tr>
</tbody>
</table>

Another advantage of the new decoding algorithm is its general applicability. Base model decoding plus reshuffling according to an advanced model provides a general framework for any complicated models.

5. CONCLUSIONS

The base model decoding plus reshuffling algorithm achieved performance comparable to the IBM stack decoder. It works much faster, and it is generally applicable to more complicated models.

6. REFERENCES