ROBUST FEATURE SELECTION USING
PROBABILISTIC UNION MODELS

Ji Ming, Peter Jancovic, Philip Hanna, Darryl Stewart, F. Jack Smith
School of Computer Science
The Queen’s University of Belfast
Belfast BT7 1NN, UK

ABSTRACT
This paper provides a summary of our recent work on robust speech recognition based on a new statistical approach - the probabilistic union model. In particular, we consider speech recognition involving partial corruption in frequency bands, in time duration, and further in feature components. In all these situations, we assumed no prior knowledge about the corrupting noise, e.g. its band location, occurring time and statistical distribution. The new model characterizes these partial, unknown corruptions based on the union of random events. For the evaluation, we have conducted isolated-word recognition tasks by using both a speaker-independent E-set database and the TiDigits database, each being corrupted by various types of additive noise with unknown, time-varying statistics. The results indicate that the probabilistic union model offers robustness to partial corruption in speech utterances, requiring little or no knowledge about the noise characteristics.

1. INTRODUCTION
This paper provides a summary of our recent work on robust speech recognition based on a new statistical approach - the probabilistic union model [1-5]. In particular, we consider speech recognition subjected to partial corruption in three aspects:

1) in frequency bands;
2) in time duration;
3) in feature components.

Partial corruption accounts for the effects of many real-world noises. Partial frequency-band corruption may be caused by frequency-selective noise, for example, a phone ring, a passing car, a siren or a random channel tone. Partial temporal duration corruption may be caused by abrupt noise, for example, a shut door, a channel impulse or any type of burst noise. For human beings, these temporally localized noises normally do not destroy the intelligibility of an utterance. However, for automatic speech recognition systems this typically proves problematic, especially if the noise is unpredictable and of an unknown or time-varying nature. Such noise characteristics cause particular difficulties for obtaining accurate and sufficient information for model adaptation or compensation, given that the noise may occur in the middle of a speech utterance.

Recent studies towards a solution to the partial frequency-band corruption have included the multi-band approach (e.g. [6][7]). This involves a division of the entire speech frequency-band into several sub-bands, to isolate the effect of the frequency-localized noise; those sub-bands that remain unaffected by the noise can thus be used for recognition. To achieve this, one needs to select, in a given set of bands, a sub-set of bands that carry useful information about the speech utterance. This selection can be difficult without prior information about the noisy bands.

To deal with the partial temporal corruption, we may use a multiple time-segment analysis method to extract features for the utterance [2][4]. This shares certain characteristics with the multi-band analysis method used for dealing with the partial frequency-band corruption. The multi-segment approach divides each utterance into several segments and processes each segment independently, such that the effect of any local temporal corruption could be isolated from other usable segments. Again, we face the problem of how to select, in a given set of segments, a sub-set of segments that carry useful information. This selection can be difficult without knowledge about the noisy segments.

In addition to the above partial frequency-band and partial temporal duration corruption, one may also encounter partial feature component corruption. This refers to some of the components in a given acoustic feature vector being noisy. In speech recognition, a speech utterance may be represented by multiple feature streams, typically, the static spectra and dynamic spectra, over varying time scales. In real-world applications, due to the background noise or channel effects, there may be only a subset of the given feature components that remains useful. For example, in the presence of stationary noise, the static spectral components will be corrupted; but because the dynamic spectral components (e.g. the delta components) are less affected by the stationary noise, they may still provide useful information for recognition. However, without prior knowledge about the noise conditions, it can be difficult to decide which subset of the feature components provides useful information.

The above three problems can be unified as a feature selection problem, i.e. selecting features that carry useful information from a given feature set , where each may represent a feature component for a specific sub-band, or for a specific segment, or for a specific feature stream. We are given that some of the ’s may be noisy, but without appropriate knowledge about the noise characteristics, particularly, the position (i.e. which ’s are affected) and intensity of the noise. We tackle this feature selection problem involving partial unknown corruption by using the probabilistic union model, previously described in [1-5]. In the following we start to
describe the general principle of the model, and then move to its applications to speech recognition involving partial unknown corruption in frequency-band, in temporal duration and in feature components, respectively.

2. PROBABILISTIC UNION MODEL

Assume an observation consisting of \(N \) feature components \(o = \{o_1, o_2, \ldots, o_N\} \). The recognition is based on the likelihood of \(o \) associated with each word model. To calculate this likelihood, the traditional approach is to combine the feature components \(o_n \)’s using the “and” (i.e. conjunction) operator \(\land \) (although this is not usually explicitly stated). Thus, assuming independence between the feature components, we can obtain the likelihood \(p(o) \) as the product of the individual likelihoods \(p(o_n) \)’s, i.e.

\[
p(o) = p(o_1 \land o_2 \land \cdots \land o_N) = p(o_1)p(o_2)\cdots p(o_N) \quad (1)
\]

For convenience, we call (1) the product model. This model has a drawback: when the individual probability densities \(p(x_n) \)’s are trained on clean speech and used for modeling an observation with some noisy components, then the corresponding \(p(\tilde{o}_n) \)’s for the noisy \(\tilde{o}_n \)’s will be highly inaccurate—when the noise is strong they can become almost zero. This destroys the model’s ability to discriminate between correct and incorrect word classes. Unless the noisy components can be identified this is difficult to correct.

As an alternative, given no knowledge about the noise, we can assume that the useful features in the given observation may be any of the \(o_n \)’s, \(n = 1, \ldots, N \), or any of the combinations among the \(o_n \)’s up to the complete feature set. This can be expressed, using the inclusive “or” (i.e. disjunction) operator \(\lor \), as

\[
o_o = o_1 \lor o_2 \lor \cdots \lor o_N \quad (2)
\]

where \(o_o \) is a combined observation based on \(\lor \), representing the useful features within \(\{o_1, o_2, \ldots, o_N\} \). For example, using a 3-component observation, the expression \(o_o = o_1 \lor o_2 \lor o_3 \) assumes that the useful features within the given \((o_1, o_2, o_3) \) may be \(o_1 \), or \(o_2 \), or \(o_3 \), or \(o_1 \lor o_2 \), or \(o_1 \lor o_3 \), or \(o_2 \lor o_3 \), or \(o_1 \lor o_2 \lor o_3 \). These combinations characterize, respectively, an observation in which there are two-component, one-component and no component corruption, therefore covering all possible combinations, including the no corruption case that may be encountered in a 3-component observation. In general, if an observation consists of \(N \) components, and these components may be subjected to some partial unknown corruption, then the useful information contained in this observation may be modeled by (2). This model takes into account all possible partial corruptions, thereby requiring no knowledge about the actual noise.

Assume that the \(o_n \)’s are discrete random events, then \(o_o \) is the union of the \(o_n \)’s. Thus, we can compute the probability \(P(o_o) \) based on the rules of probability for the union of random events. This probability, for each modeled word, can then be used to decide the recognized word based on the maximum-likelihood principle. Assume independence between the \(o_n \)’s, note that

\[
\forall_{n=1}^m o_m = (\forall_{m=1}^{n-1} o_m) \lor o_n \quad , \quad \text{so} \quad P(o_o) \quad \text{can be computed using a recursion}
\]

\[
P(\forall_{n=1}^m o_m) = P(\forall_{n=1}^{m-1} o_m) + P(o_n) - P(\forall_{n=1}^{m-1} o_m)P(o_n) \quad (3)
\]

for \(n = 2, \ldots, N \). This computation requires only the probability distributions of the individual components \(P(x_n) \)’s, which are assumed to be trained on clean training data. We call (2)-(3) the probabilistic-union model, as opposed to the product model (1).

Since the \(P(o_n) \)’s are generally not large, (3) is effectively the sum of the individual probabilities. The advantage of (3) over (1) for noisy speech is that, for \(P(x_n) \)’s trained for clean speech, the value of \(P(\tilde{o}_n) \) for a noisy \(\tilde{o}_n \) can be very small and as such makes a small contribution to (3). Therefore the almost random variation of \(P(\tilde{o}_n) \) between the correct and incorrect words will have little effect on \(P(o_o) \). So \(P(o_o) \) is dominated by noiseless feature components. The disadvantage of (3) is that it effectively averages the ability of each feature component to discriminate between correct and incorrect words, unlike (1) where each component reinforces the other. This problem may be overcome by combining the use of “and”, “or” operators between the feature components. For an \(N \)-component observation, such a combined model can be expressed in a general format as

\[
o_o = \lor_{n_1, n_2, \ldots, n_{N-M}} o_{n_1}o_{n_2}\cdots o_{n_{N-M}} \quad (4)
\]

where the \(\lor \) operator between the \(o_n \)’s has been omitted; \(0 \leq M < N \); and the “or” is taken over all possible combinations of \(n_1, n_2, \ldots, n_{N-M} \) with each \(n_i \in \{1, \ldots, N\} \), giving a total of \(\binom{N}{N-M} \) combinations. We call (4) a union model of order \(M \). This model is suited to the observation with a maximum of \(M \) noisy components but without information about where these are located. In this case (4) will include, through the inclusion of all possible conjunctions of \((N-M) \) clean components which will dominate the union probability. The other conjunctions including noisy components will have low probabilities (because the \(P(x_n) \)’s are trained on clean speech) and therefore make only a small contribution to the union probability. Model (4) is reduced to model (2) when order \(M = N-1 \) and to the product model (1) when order \(M = 0 \). In our experiments, we choose a model order to accommodate as much noise as possible, subject to an acceptable performance for clean speech recognition [5].

3. APPLICATION TO SUB-BAND BASED SPEECH RECOGNITION

Consider speech recognition subjected to partial unknown frequency-band corruption. We tackle this problem based on the multi-band analysis method. Then the feature set \(o = \{o_1, o_2, \ldots, o_N\} \) corresponds to \(N \) sub-band observations, with a possibility that some of the \(o_n \)’s are corrupted, but no information about the noisy bands. The union model described above is employed to select the sub-band features from the given feature set for recognition. In particular, the above union model (4) has been built into an HMM to combine these sub-band observations on the frame level [1][3][5]. To calculate the sub-
The models are trained on clean training data and tested on noisy test data, generated by adding noise to each test utterance. Various types of noise are considered, including: 1) the stationary narrow-band noise, with a bandwidth of 100 Hz and different central-frequencies, i.e., 900, 1800, 2700 and 3500 Hz, respectively; 2) time-varying narrow-band noise, with a bandwidth of 100 Hz and a time-varying central-frequency which changes from 900 to 1800 Hz and then to 2700 Hz during the utterance; and 3) real-world noises including the sounds of a ding, a telephone ring and a laser, extracted from the sound files “ding.wav”, “ringin.wav” and “laser.wav”, respectively, provided in the Windows NT OS. It can be found that both the ding and telephone ring included multiple narrow-band components, and the laser included one dominant narrow-band component with both the bandwidth and central frequency being time-varying [3][5]. The entire speech frequency band is divided into 5 sub-bands (i.e. \(N = 5 \)). Table 1 presents a summary of the performance of the union model, with an order \(M = 2 \), over all the above test conditions. For comparison, we also included the performance of the product model given in (1), which generates the likelihood of the observation by simply taking the product of the individual sub-band likelihoods.

Table 1 indicates that the union model offers a significant improvement over the product model throughout all the noisy test conditions. The union model reduced the error rate by an average of 57.1% in comparison to the product model.

Table 1: Summary of performance of the union model for speech recognition involving partial, unknown, time-varying frequency-band corruption and comparison with the product model

<table>
<thead>
<tr>
<th>Noise condition</th>
<th>SNR (dB)</th>
<th>Union model (%)</th>
<th>Product model (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean</td>
<td></td>
<td>84.7</td>
<td>87.0</td>
</tr>
<tr>
<td>Stationary narrow-band</td>
<td>10</td>
<td>81.9</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>77.2</td>
<td>40.7</td>
</tr>
<tr>
<td>Time-varying narrow-band</td>
<td>10</td>
<td>81.2</td>
<td>44.1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>72.8</td>
<td>17.3</td>
</tr>
<tr>
<td>Ding</td>
<td>10</td>
<td>74.9</td>
<td>34.9</td>
</tr>
<tr>
<td>Phone ring</td>
<td>10</td>
<td>65.1</td>
<td>37.8</td>
</tr>
<tr>
<td>Laser</td>
<td>10</td>
<td>71.9</td>
<td>36.2</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>76.2</td>
<td>44.5</td>
</tr>
</tbody>
</table>

Figure1: A speech utterance, “one”, with 20%, 30% and 40% (top to bottom) corruption by white noise at the beginning, middle and end (left to right), respectively.

4. APPLICATION TO SPEECH WITH PARTIAL TEMPORAL CORRUPTION

In speech recognition, a speech utterance may be represented by a time series of short-term spectral vectors (i.e. frames). By partial temporal corruption we mean that some of the frames are noisy. This can result when a shut door, a channel impulse, or any type of burst noise occurs during the utterance. As described in Section 1, we tackle this problem by using a multi-segment analysis method, in which each frame sequence is divided into \(N \) consecutive segments, forming the feature set \(o = [o_1, o_2, \ldots, o_N] \), where each \(o_k \) corresponds to a segment. Thus, we deal with speech recognition given that some of the \(o_k \)’s may be noisy, but without information about where the noise occurs. The union model is employed to select the segments from the given segment set for recognition. This has been implemented by incorporating the union model (4) into an HMM framework [2][4].

Experiments are based on the TiDigits database, containing the speech data of connected digit sequences from 225 adult speakers (111 male and 114 female) for speaker-independent recognition. From this database the isolated-digit parts were extracted for the tests. This includes eleven isolated-digit words: “one” to “nine”, “zero”, and “oh”. The noisy data were generated by adding noise into different positions of each test utterance, in particular, the beginning, the middle and the end of each utterance. The duration of the noise is measured in percentages relative to the duration of the speech. The noise is controlled for each utterance so that all utterances are corrupted to an equal percentage. Fig.1 shows some examples of the noisy speech data dealt with in recognition, involving 20%, 30% and 40% temporal corruptions, respectively. Different types of corrupting noise are considered, which include the white noise, and some real-world noises including a ding, a door slam, a telephone ring and a gunshot. In the experiments, each utterance is divided into 10 segments (i.e. \(N = 10 \)), and a union model with an order \(M = 3 \) is used. Fig.2 shows the average performances of the union model and product model (which is equivalent to a baseline HMM in this case) subject to the white noise corruption, as a function of the SNR and noise duration. Similar relationships have been obtained for those real-world noise cases [4].
As shown in Fig.2, the recognition accuracy was affected by a number of factors, particularly the SNR and the duration of the noise. While the baseline HMM was sensitive to both factors, the union model showed strong robustness to the variations of SNR, which thus was affected only by the duration of the noise. We can see that there was no significant performance degradation for the union model as the SNR was decreased.

5. APPLICATION TO PARTIAL FEATURE COMPONENT CORRUPTION

Consider the feature set $o = \{o_1, o_2, \ldots, o_N\}$ represents N different feature streams. Then we may use the union model to select a sub-set of features that provide the most discriminative information. In particular, we apply this to the selection of static spectral features and dynamic spectral features. Because the static features are more sensitive to background noise than the dynamic features, they should play a less significant role if they are affected. However, this is difficult to decide without knowledge about the environment (i.e. clean or noisy). This uncertainty can be dealt with by using the union model.

We have included this feature selection union model into the sub-band union model described in Section 3, for modeling both band corruption and feature-stream corruption. Experiments are based on the TiDigits database, corrupted by stationary narrow-band noise of the same type as in Section 3, and by some wide-band noise (e.g. pub and railway station). Table 2 presents the results, showing the performance of the sub-band union model with and without feature selection. This feature selection is particularly significant for the tests without endpoint detection, as in these cases the static features corresponding to the silence parts before and after each utterance will contain pure noise.

6. SUMMARY

This paper provided a summary of our recent work on the use of the probabilistic union model for speech recognition subjected to partial unknown corruption in frequency band, in time duration and in feature streams. We have conducted isolated-word recognition experiments using both the TiDigits database and BT E-set database. The results have shown the great potential of the new model for dealing with partial, unknown, time-varying noise. Current work is focused on the application of the new model to continuous speech recognition.

This work is supported by UK EPSRC grant GR/M93734.

7. REFERENCES