ACOUSTIC MODELING OF SENTENCE STRESS USING DIFFERENTIAL FEATURES BETWEEN SYLLABLES FOR ENGLISH RHYTHM LEARNING SYSTEM DEVELOPMENT

Nobuaki MINEMATSU† Satoshi KOBASHIKAWA† Keikichi HIROSE‡ Donna ERICKSON‡

†University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN
‡Gifu City Women’s College
7-1, Hitoichibakita-machi, Gifu-shi, Gifu 501-0192, JAPAN
{mine, kobashi, hirose}@gavo.t.u-tokyo.ac.jp erickson@gifu-cwc.ac.jp

ABSTRACT
This study proposes a new technique for acoustic modeling of stressed/unstressed syllables in sentence utterances of American English. Here, relative differences of acoustic features between two consecutive syllables characterizing “stressed” or “unstressed” are introduced into HMM-based acoustic modeling. This is because syllables can be identified as stressed or unstressed only after comparing them with their neighboring syllables. For training syllable HMMs, speech samples were recorded by ourselves because we could not find any database which can be directly used for this modeling. The fourth author put multi-level stress marks (syllable magnitude) on individual syllables of a given sentence set, which was done according to guidelines for teaching English rhythm to non-native speakers of English, proposed and used in class by the fourth author. After the stress mark assignment, the sentences were uttered by her and recorded for the HMM-based modeling. Experiments showed that stress/unstress identification errors were reduced by about 25% in comparison to the modeling technique without the relative differences. With this new technique, an English sentence stress detector is being developed.

1. INTRODUCTION
Recent advances in speech recognition techniques enable development of CALL systems especially for pronunciation learning. Since the speech recognition techniques have been basically devised only to identify phonemes, however, acoustic features irrelevant to the identification are often discarded. Only the segmental features are extracted from the signals and the prosodic features are generally ignored. Therefore, the application of the speech recognition techniques without any extension can support only the phonemic aspect of pronunciation learning. But we can easily find many studies which emphasize the importance of learning pronunciation in terms of prosody[1]. In this study, it is reported that English words with wrong stress patterns tend to be more difficult for native speakers to accept than those with wrong phonemic features so long as the wrong features are found consistently.

In our previous studies, a technique was proposed to model English lexical stress generated in isolated word utterances[2, 3]. Syllables were clustered into several tens of syllable classes according to positional attributes of the syllable in a word and structural attributes of the syllable. Four acoustic features of power, pitch, duration, and vowel quality, which are said to be affected by accentual attributes of syllables, were integrated into HMM-based modeling of each of the syllable classes. Using the modeling technique, a stressed syllable detector was developed. A visualizer was then built, based on Japanese-specific manners of controlling the four factors when generating stressed syllables. The visualization was implemented using the abstract and integrated representation of acoustic information. Direct presentation of acoustics observed in learners’ utterances are not always adequate because they rarely have enough knowledge to understand the presented acoustics. Furthermore, separate presentation of the four acoustic factors is not necessarily good because the learners don’t know how to integrate the presented factors. Our proposed visualizer solved the two problems simultaneously and experiments showed that the visualized patterns had quite high correlation with pronunciation proficiency scores rated by human English teachers. Figure 1 shows an example of the abstract and integrated representation of acoustic information, called a “triangular representation.”

In this paper, to develop a sentence stress detector, research focus was placed upon selecting acoustic features adequate especially for modeling stressed syllables in sentence utterances. In sentences, some of the four acoustic factors of power, pitch, duration, and vowel quality, were affected largely by other linguistic events than sentence stress. A typical example of the events is intonation, which can change pitch patterns easily. In this study, the acoustic feature selection for sentence stress modeling was done mainly to remove these variations irrelevant to the sentence stress.

2. PREPARATION OF SPEECH WITH STRESS LABELS
2.1. Strategy for collecting speech samples with stress labels
To build HMMs for stressed syllables and unstressed ones, a speech database with sentence stress labels is required. However, most of
the speech databases are developed to be used as training/testing samples of speech recognizers. This means that available databases do not contain labels of sentence stress. These labels can be assigned to any of the available speech databases by asking phoneticians to do the stress marking. However, this would result in rather large variation among labelers. One solution to reduce labeler-dependency and speaker-dependency is to ask many phoneticians to label a large speech database. But it is evident that this solution is quite costly. In this work, we adopted another strategy. We asked that the stress markings be done by an English teacher (the fourth author) who had developed a method of teaching English rhythm to non-native speakers of English and who also was a speech researcher with good knowledge of prosody. After the stress marking to a given sentence set, all the sentences were uttered by her and recorded for the modeling. After the recording, all the speech samples were checked by her listening to whether the individual syllables were adequately produced according to the stress labels which she assigned before the recording. The recorded speech samples were divided into two sets for training and testing (Set-A0-a/b). Additional speech samples were prepared for testing, which were from CDROMs of an English coursework (Set-A1) and TIMIT database (Set-A2). Further, English sentences spoken by Japanese students were collected (Set-J). Table 1 shows speech samples prepared. The stress marking for Set-A1/2 and Set-J was also done by the fourth author by listening to the samples.

This strategy of preparing speech samples has an evident defect in that HMMs built only based on a single speaker will surely have large speaker-dependency. This problem can be solved by collecting speech samples spoken by others, which is often done in the speech recognition community. The main research focus in this paper is whether HMMs built only with her speech samples can automatically identify stressed syllables in her sentence speech as correctly as she can identify them by listening. In other words, the performance of the proposed method has to be comparable at least with her own ability of identification by listening. Otherwise, the proposed method comes to have clear drawbacks.

2.2. Sentence stress assignment done before the recording

The kinds of labels assigned to individual syllables, done by the fourth author, are described as follows. They are based on a practical approach she developed for approximating syllable magnitudes she tentatively proposed several modifications for the principles. For example, more-than-four level marks and shift of the largest stress were examined for emotional and/or emphasized speech. In the rest of this paper, unstressed syllables were defined as those of level 1 and stressed syllables were as those of level 2 or more. In all the experiments, binary identification of stressed syllables and unstressed ones were carried out. Separate modeling of syllables of each level is left as a future work.

Table 1. English speech samples used in the experiments

<table>
<thead>
<tr>
<th>set</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set-A0-a</td>
<td>592 sentences spoken by the fourth author</td>
</tr>
<tr>
<td>Set-A0-b</td>
<td>120 sentences spoken by the fourth author</td>
</tr>
<tr>
<td>Set-A1</td>
<td>75 sentences spoken by a male native American English speaker</td>
</tr>
<tr>
<td>Set-A2</td>
<td>90 sentences spoken by 15 male and 15 female native American English speakers</td>
</tr>
<tr>
<td>Set-J</td>
<td>125 sentences spoken by 5 male and 5 female Japanese students</td>
</tr>
</tbody>
</table>

3. MODELING OF STRESSED/UNSTRESSED SYLLABLES IN SENTENCE UTTERANCES

English is estimated to have as many as approximately ten thousand different kinds of syllables. Therefore in this paper, English syllables were grouped into syllable classes in terms of the accentual, positional, and/or structural attributes to be modeled by HMM. The grouping methods used here are described below.

SIMPLE (2 classes) : stressed and unstressed syllables. Only the accentual attribute of the syllable is considered.

POS (6 classes) : \(S_H, S_T, \) and \(S_0 \) separately for stressed and unstressed syllables, where \(S_H \) and \(S_T \) denote a syllable at the head and tail of a phrase, and \(S_0 \) indicates a syllable at the other parts. In this case, the accentual and positional attributes of the syllable in the phrase are introduced into the HMMs.

STR (24 classes) : \(V_X, CV_X, V_X C, CV_X C (X = L, S, D) \) separately for stressed and unstressed syllables, where \(V_X, V_C, \) and \(V_D \) represent a short vowel, a long vowel, and a diphthong respectively and \(C \) is a sequence of consonants. In this grouping, the accentual and structural attributes of syllables are integrated.

POS_STR (72 classes) : integration of the above two groupings.

To model each of the above syllable classes, four acoustic features of power, pitch, duration, and vowel quality were used. Speech samples were digitized with 12 kHz & 16 bit sampling and the 14-th order LPC analysis was carried out using 21.3 ms frame length and 8.0 ms frame rate to calculate LPC mel cepstrums. \(F_0 \)
and power were also extracted with the same rate and, after being transformed to the logarithmic scale, they were shifted to have zero as mean values over all the utterances in our baseline method and over local segments in our proposed method. Detailed description of the proposed normalization will be found in the following section. F_0 values for unvoiced segments were required for the modeling and were estimated by non-linear interpolation between the preceding voiced segment and the succeeding one. After the analysis, the following three feature streams were used to make a parameter vector: 1) 1 to 4 dimensions of LPC mel cepstrum coefficients and their derivatives, 2) power and its derivative, 3) F_0 and its derivative. It should be noted that CMN (Cepstrum Mean Normalization) was done on cepstrum coefficients. Using the feature streams, each of the syllable classes was acoustically modeled by using duration controlled continuous density HMMs.

4. EXPERIMENTS OF DETECTING SENTENCE STRESS

4.1. Detection with the conventional modeling technique

As the baseline performance, we experimentally evaluated the stress modeling with the previously proposed technique[2], where F_0 and power were normalized over all the utterances. Before the detection, input speech was segmented syllable by syllable. This segmentation was done with phoneme-level forced alignment and an automatic syllabification tool which took an arbitrary phoneme sequence as text input and estimated syllable boundaries in the sequence[5]. By comparing likelihood score as stressed and that as unstressed for each segmented syllable, the stress detection was carried out. Likelihood score calculation was done by matching the acoustic features of the segmented syllable with the corresponding HMM. In the process of detecting stressed syllables, we can introduce a word-level constraint that each polysyllabic word must have one stressed syllable. This constraint may not be good for detecting the stressed syllable from utterances of students with poor pronunciation proficiency, and therefore, all the detection results will be shown separately for two cases, namely, with/without that constraint. Figure. 2 shows the baseline performance of the stress detection from sentence utterances.

In the speaker-closed condition (Set-A0-b), the finer models gave us the higher performance and the constraint was shown to improve the performance. On the other hand, for other native American English speakers, while the constraint brought about the improvement, the modeling with structural attributes didn’t work well. This is because the models were built in a speaker-specific mode; this can be solved by collecting speech samples of other speakers. As for Set-J, the improvement by the positional attribute of syllables was shown but the absolute performance of the detection was still low. To improve the performance, some other methods will be devised in section 4.4 for Japanese utterances.

4.2. Detection with relative differences between syllables

Syllables can be perceived as stressed when they have larger sonority than their neighboring syllables. This means that the detection of stressed/unstressed syllables should be done by looking at relative differences between consecutive syllables, namely, local variation of the parameters. In the previous section, however, the local variation was not captured directly because the normalization was done over all the utterances. The immediate parameterization of the local variation will give us another benefit. Some of the four acoustic features characterizing the accentual attribute of the syllable can be changed by other linguistic events. One typical example of the events is intonation, which can result easily in large F_0 changes. For the stress detection, it is desirable to delete F_0 variation caused by intonation. This intonation-related variation often draws a global pattern compared to the sentence stress-related variation. And therefore, the immediate use of the local variation will ignore the undesired and global variation of the parameters.

In this work, we examined three methods for the local normalization of log-F_0 and log-power. In the first method, the average values over the target syllable and its preceding one were obtained and the normalization was done so that the average values became zero. The normalization could also be done with the target and the succeeding syllables. In the second method, the average values over only the preceding syllable were used for the normalization. In this case, the normalization was also possible with the succeeding syllable only. In the first and second methods, the average values over a certain speech segment were shifted to zero. In the third method, however, log-F_0 and log-power at the starting point of the target syllable were shifted to zero. A similar normalization was also possible by shifting the parameters at the ending point.

In each method of the local normalization, two kinds of likelihood scores could be generated: one related to the preceding syllable or the starting point and the other, to the succeeding syllable or the ending point. Another likelihood score could be used here, which is the score calculated in section 4.1. The detection experiments in this section were carried out by using the two likelihood scores with the local normalization and another score without it. The integration of these three scores was done by adding them with experimentally-defined adequate weightings.

Experiments showed that the performance was improved in every method, irrespective of the speaker group. Due to the limitation of space, the best performance was shown in Figure. 3 with/without the word-level constraint, which was obtained in the third method. Clearly shown in the figure, the performance was improved in every speaker group and approximately 94% detection rate was obtained in Set-A0-b. It should be noted that a large improvement was observed in POS modeling. As shown in section 4.1,
POS, STR modeling tended to be speaker-dependent. Large improvement in POS modeling was helpful when building the HMMs with a limited amount of training data available.

4.3. Performance comparison with human detection ability

As told in section 2.1, the main focus of this study is to investigate whether the speaker-specific model built with the proposed technique can be comparable with human performance in the stress detection. Listening experiments were carried out, where three-syllable-sequences were presented through headphones to the fourth author. The sequences were segmented from her speech samples so that every segmented sequence had a stressed syllable and an unstressed syllable at least and no sequence comprised a single word. This is because the lexical information should not be used in the listening. The total number of the presented sequences was 190. The task was to judge whether the central syllable was stressed or not. The reason for three-syllable-sequence presentation was that the proposed technique used the relative differences of acoustic features between the target syllable and its adjacent syllables. One-syllable presentation was also tentatively conducted. In this case, however, the judgment was dependent on the volume level when presenting the syllables and therefore, the obtained results were considered less reliable. Experiments of three-syllable-sequences showed that the human performance was 95.8 % and the machine performance was also 95.8 % for the 190 sequences with the proposed local normalization, which clearly indicates that the proposed method can detect completely as well as humans can. It is interesting that, while the performance is the same, errors can be found in different sequences between human and machine.

4.4. Detection only with acoustic features of vowels

In the previous sections, the detection performance was quite low in Japanese speech. This is mainly because of the speakers’ poor pronunciation ability. The stress labels were assigned to the Japanese samples by the fourth author’s listening and it is desirable that this assignment or judgment can be simulated. To improve the simulation performance, the modeling of stress/unstress with only acous-

5. CONCLUSION

In this paper, technical investigations were done to correctly detect the stressed syllables in sentences. Here, relative differences between consecutive syllables were introduced to acoustically model stressed and unstressed syllables. Experiments showed the proposed technique had exactly the same performance of a human English teacher with good knowledge of English rhythm. Further, to improve the performance for utterances spoken by Japanese, vowel-based detection was examined, which showed validity only for speech samples of Japanese. Currently, a tool for detecting sentence stress and generating a rhythm pattern extracted in a learner’s utterance is being developed. GUI of this tool is shown in Figure 4. Generation of the rhythm pattern is realized by putting a strong hand clap sound on the locations of the detected stressed syllables and a weak sound on the others. By comparing this rhythm pattern to that of a teacher’s utterance, the learner can easily perceive the difference between the two utterances in terms of English rhythm.

6. REFERENCES