Syllable timing patterns in Polish: results from annotation mining

Dafydd Gibbon 1, Jolanta Bachan 2, Grażyna Demenko 2

1 Fakultät für Linguistik und Literaturwissenschaft, Universität Bielefeld, Germany
2 Institute of Linguistics, Adam Mickiewicz University, Poznań, Poland

gibbon@uni-bielefeld.de, jolabachan@gmail.com, liin@amu.edu.pl

Abstract
Previous studies of duration variation in syllable constituents have yielded results for Polish which are clear outliers in relation to those for other languages. We report on a study of this issue in the context of TTS development, using a large annotated database. Global and local duration distance measures are applied to phoneme and syllable level units, and generalised iambic and trochaic duration patterns are compared with grammatical structure. The study suggests that Polish is more syllable-timed than previously thought, and that there is tendentially a relationship between syllable duration patterns and word sequences.

Index Terms: Polish, timing, duration, speech synthesis, annotation mining.

1. Introduction

Studies of duration in prosodic typology using read aloud data have shown Polish to be something of an outlier in respect of syllable constituent timing: relatively regular vowel durations, as in syllable-timed languages, but even greater variability in consonantal interval durations than in putative foot-timed languages; cf. [1] and [2]. The syllable constituent parameters concerned are: vocalic-consonantal interval ratio, vocalic and consonantal interval variability [1], length difference between vocalic intervals [2]. The measures are broad-ranging in terms of the languages they investigate, but rely on small data sets. The studies have also been criticised for not treating syllable and foot units [3], and for overstating the relevance of the measures to rhythm modelling [4].

The present study uses a large, richly annotated and rigorously validated corpus, also with read-aloud data, designed for unit-selection speech synthesis, and investigates segment and syllable units, rather than consonantal and vocalic intervals. The approach differs from many signal-based duration modelling approaches for speech synthesis, in that it focusses on sequential patterns in annotations. Clearly care is needed when generalising a single subject study.

We first outline duration determining factors in Polish, then summarise previous results and analyse duration relations at segment and syllable levels, and relate temporal patterns to words. Finally we draw provisional conclusions and point out related ongoing investigations.

2. Duration-determining factors

2.1. Phonotactic factors

It is likely [5] that standard deviations of syllable constituent intervals relate straightforwardly to phoneme counts, and that the results provide rough phonetic correlates, for instance, for the following properties of Polish phonotactics in rhetorically neutral speech [6]:

1. The low variability of vowels in Polish (in rhetorically neutral contexts) may relate to:
 • absence of vowel length contrast,
 • absence of vowel reduction (except for phrase final position, very fast tempo, speaking style, dialect, proximity to consonant clusters).
2. The very high variability of consonants and low proportion of vowels for Polish may relate to:
 • the complexity of Polish onset consonant clusters: ≤5 word initially, medially and finally, and more across word boundaries,
 • proclitic consonantal prepositions (e.g. /v/, /z/).

Polish vowel intervals appear to relate to syllable-timing, but consonantal intervals are highly variable, which may prevent Polish from being syllable-timed. We hypothesise

1. that a Zipf effect (‘longer items are rarer’) counters consonantal influence, and
2. that durations of segmental and syllable units in Polish are rather regular.

Polish syllable timing as such has not previously been investigated with the methods applied here. Polish constitutes a relatively clear case for this purpose, since vowels are clearly syllabic and consonants non-syllabic, therefore the distinction between consonantal and vocalic sequences is more clear-cut than in languages such as English.

2.2. Other factors

2.2.1. Linguistic and discourse factors

Several other factors are known to influence duration of syllable constituents [6]. Vowel length may depend, for instance, on vowel type, voicing of neighbouring consonants, position in word and phrase relative to stress and accent, focus, contrast, emphasis, emotion and other rhetorical factors. It is apparently the case that Polish has phrase-final syllable lengthening, and that there is a tendency to foot isochrony [7].

2.2.2. Variable vowel duration in emotional prosody

Informal observations show that in spontaneous Polish speech, in emphatic, emotive, or other rhetorically marked contexts, vowel duration variability is extremely high, in contrast to findings for rhetorically neutral read aloud utterances. A functional reason for this may be that the degree of freedom resulting from lack of phonemic vowel contrast makes this parameter available for other purposes.
Rhetorical variability of vowel duration is not directly relevant to the data types represented in the corpus. It is, however, a factor which needs to be controlled for in empirical studies, and rhetorical differences in data genres (gender, age, register, style) may contribute to the differences pointed out by [2] between their results and those of [1].

3. Procedure

3.1. The data

The data consist of 5 sets of different utterance types designed for unit-selection TTS, read aloud by an adult professional male native speaker of Polish, and richly annotated with boundary and stress types. The total duration is 120 minutes, with 3244 utterances, mean utterance length 2.2 seconds. The read aloud data type was selected in order to reduce dimensionality and to create as near to a clear-case and application-friendly data set as possible. The following example (D1069) shows spelling, English translation, and annotation in modified and enhanced Polish SAMPA:

“This is not a small barrel, but a cask.”

(Enhanced diacritic set: # word boundary; . syllable boundary; *", " & accent types. Cf. [8].)
The annotation format was normalised to <label,duration> pairs [9]. For efficiency in processing the large corpus, all operations, including the models described below, were scripted in a Linux environment.

3.2. Smoothness measures

3.2.1. Standard deviation

Several variance-like methods have been used to examine the smoothness of syllable timing (isochrony), e.g. [1], [2] with intervocalic (consonantal) and vocalic intervals, [10], [11] with inter-stress (foot) intervals. Such measures were compared with other measures by [4]. Standard deviation is used in the present study to approximate to these approaches, and the units analysed are segments and syllables, not intervocalic and vocalic intervals, or feet.

3.2.2. PVI

A popular method for studying timing relations is Nolan’s PVI model of local evenness of durations. The PVI is derived from a standard set distance measure; its application to sequences of speech units is not indisputable, but yields interpretable results. The PVI is claimed to measure rhythm. The nPVI averages the normalised distance between adjacent pairs (e.g. segment, syllable), multiplied by 100; normalised distance is the absolute difference between durations of adjacent units, normalised by dividing by the average duration of the units. The nPVI values range from 0, i.e. totally even, towards an asymptote of 200, i.e. increasing irregularity; cf. [12]. The rPVI is a raw distance measure with no normalisation. In [2], nPVI is used for vowel intervals and rPVI for consonantal intervals.

However, the nPVI provides a only necessary and not a sufficient correlate of rhythm. First, it only addresses binary patterns. Second, the absolute difference invalidates the alternation criterion for rhythm: it can easily be verified that the nPVI yields the same values for alternating sequences such as 2, 4, 2, 4, ..., geometrical series such as 2, 4, 8, 16, ... or any mixture of these. However, on an interpretation of nPVI distance as “local smoothness”, it is a useful measure.

3.2.3. Syllable constituent analyses

The 18 languages treated by [2] include 7 languages treated by [1] (Table 1). Figures from the two sources (separated by “/” in Table 1) show considerable discrepancies for Polish in the standard deviation values, but not in the proportion of vocalic intervals. In the overall variation space bounded by minima and maxima in Table 1, discrepancies affect maxima only.

Table 1: Syllable constituent duration indices for Polish and other languages, summarised from [2].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Polish</th>
<th>Min (all)</th>
<th>Max (all)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% vocalic:</td>
<td>42.3</td>
<td>41.1</td>
<td>40.1</td>
</tr>
<tr>
<td>Intervocalic SD:</td>
<td>71.4</td>
<td>51.4</td>
<td>31.9</td>
</tr>
<tr>
<td>Vocalic SD:</td>
<td>44.9</td>
<td>25.1</td>
<td>20.7</td>
</tr>
<tr>
<td>Vocalic nPVI:</td>
<td>46.6</td>
<td>27.0</td>
<td>65.8</td>
</tr>
<tr>
<td>Consonantal rPVI:</td>
<td>79.1</td>
<td>40.0</td>
<td>79.1</td>
</tr>
</tbody>
</table>

The data of [1] and [2] show a low standard deviation for vocalic intervals, comparable with that of syllable-timed languages. The standard deviation of intervocalic intervals is very high (the highest of any of the languages studied), suggesting that Polish may not be a syllable-timed language.

In [3] both the exclusive use of syllable constituents in [2] rather than syllables or feet in analysing timing patterns and also the use of the speech-rate dependent rPVI are criticised. In [3], the nPVI measure is also applied to syllable and foot units. This approach is followed in the present study, in which the nPVI is applied at segment and syllable levels.

3.3. Annotation mining for Polish

3.3.1. Levels of analysis

In order to obtain a more differentiated view of timing in Polish, two levels were analysed:

1. Phoneme units, not distinguishing between segment types, because duration gradients also apply within consonantal and vocalic intervals; [1] and [2] imply that segment durations are highly irregular.

2. Syllable units, using the clear distinction between the strictly non-syllabic consonants and strictly syllabic vowels of Polish; [1] and [2] imply that there is no clear syllable or foot timing.

3.3.2. Descriptive statistics

Table 2 and Table 3 show results for the 5 data sets.

1Division by total length would yield a more conventional asymptote of 100.

2In Table 2 of [2] the nPVI and rPVI columns for Polish have erroneously been reversed. This is evidently a typographical error and has no substantive effect on the authors’ argumentation.
reported by [2] for vocalic intervals. It is also consistently
distinguished. Syllables are very evenly distributed, and the
variation is relatively large in relation to the mean, which is
expected because consonants and vowels were not
longer consonantal intervals occurring with shorter vowel
intervals in [2], possibly due to different phonemic analyses.

Small data sets may provide useful results. Segment
the range is due to rhetorical factors, or to a personal, gender-
syllables are very constant across data sets, indicating that
syllable types is an indicator of the complexity of Polish
extremes, with expected skew of the duration scale. Whether
whether or not this is rich in consonant clusters
A
C
D
E
All

Table 2: Data set: N\text{utt} = number of utterances, Dur\text{tot} =
total duration in min, Dur\text{utt} = mean utterance
duration in sec).

<table>
<thead>
<tr>
<th>Set</th>
<th>N\text{utt}</th>
<th>Dur\text{tot}</th>
<th>Dur\text{utt}</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>288</td>
<td>13</td>
<td>2.7</td>
<td>Rich in consonant clusters</td>
</tr>
<tr>
<td>B</td>
<td>109</td>
<td>3</td>
<td>1.7</td>
<td>Semantically unpredictable</td>
</tr>
<tr>
<td>C</td>
<td>669</td>
<td>18</td>
<td>1.6</td>
<td>W. all accented CVC triphones</td>
</tr>
<tr>
<td>D</td>
<td>1030</td>
<td>29</td>
<td>1.7</td>
<td>Keyword carrier sentences</td>
</tr>
<tr>
<td>E</td>
<td>1148</td>
<td>57</td>
<td>3.0</td>
<td>Very long sentences</td>
</tr>
<tr>
<td>All</td>
<td>3244</td>
<td>120</td>
<td>2.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Analysis of segments and syllables. Tok:Type
is the Token:Type ratio; Δt is duration in ms. The
minimum measurable duration is 30 ms.

<table>
<thead>
<tr>
<th>Segments</th>
<th>Tokens</th>
<th>Types</th>
<th>Tok:Type</th>
<th>Min Δt</th>
<th>Max Δt</th>
<th>Mean Δt</th>
<th>Median Δt</th>
<th>SD Δt</th>
<th>StdErr Δt</th>
<th>nPVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11289</td>
<td>41</td>
<td>275</td>
<td>30</td>
<td>238</td>
<td>71</td>
<td>66</td>
<td>27</td>
<td>0.25</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>2160</td>
<td>40</td>
<td>54</td>
<td>30</td>
<td>263</td>
<td>84</td>
<td>74</td>
<td>30</td>
<td>0.65</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>15533</td>
<td>40</td>
<td>388</td>
<td>30</td>
<td>230</td>
<td>70</td>
<td>68</td>
<td>28</td>
<td>0.21</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>23650</td>
<td>41</td>
<td>577</td>
<td>30</td>
<td>256</td>
<td>74</td>
<td>66</td>
<td>25</td>
<td>0.18</td>
<td>36</td>
</tr>
<tr>
<td>E</td>
<td>52565</td>
<td>41</td>
<td>1282</td>
<td>30</td>
<td>310</td>
<td>66</td>
<td>61</td>
<td>26</td>
<td>0.11</td>
<td>36</td>
</tr>
<tr>
<td>All</td>
<td>105197</td>
<td>41</td>
<td>2566</td>
<td>30</td>
<td>710</td>
<td>66</td>
<td>61</td>
<td>26</td>
<td>0.08</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syllables</th>
<th>Tokens</th>
<th>Types</th>
<th>Tok:Type</th>
<th>Min Δt</th>
<th>Max Δt</th>
<th>Mean Δt</th>
<th>Median Δt</th>
<th>SD Δt</th>
<th>StdErr Δt</th>
<th>nPVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4221</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>781</td>
<td>71</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>39</td>
</tr>
<tr>
<td>B</td>
<td>803</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>550</td>
<td>74</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>40</td>
</tr>
<tr>
<td>C</td>
<td>6321</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>585</td>
<td>74</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>9476</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>575</td>
<td>74</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>20959</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>620</td>
<td>74</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>35</td>
</tr>
<tr>
<td>All</td>
<td>41780</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>710</td>
<td>74</td>
<td>74</td>
<td>50</td>
<td>1.09</td>
<td>35</td>
</tr>
</tbody>
</table>

Token and type counts and ratios are a useful indicator of
the representativeness of the corpus. The large number of
syllable types is an indicator of the complexity of Polish
phonotactics. The lengths of units vary considerably at the
extremes, with expected skew of the duration scale. Whether
the range is due to rhetorical factors, or to a personal, gender-
specific or dialectal style, has not been determined.

Standard deviation and nPVI of both segments and
syllables are very constant across data sets, indicating that
smaller data sets may provide useful results. Segment
variation is relatively large in relation to the mean, which is
expected because consonants and vowels were not
longer consonantal intervals occurring with shorter vowel
intervals yielding relatively even syllable intervals, but this
requires further investigation.

Another consideration is that the durations of consonant
clusters were not investigated here, and it is likely that the
longer the cluster, the less frequent it is (Zipf effect), and the
lower its overall influence on syllable duration. The absence
of phonemic vowel length variation may also contribute to the
syllabic “smoothness” of rhythmically neutral speech.

Present results therefore indicate more clearly than in
previous work first, that Polish may tend towards syllable-
timing; second, that vowel duration alone is not necessarily
a predictor of syllable duration; third, that compensatory
durational adjustment of segments may be involved. Polish
seems to be more syllable-timed, for example, than Estonian
(syllable nPVI=46) and English (syllable nPVI=54); cf. [3].

3.4. Structured patterns

3.4.1. Duration chunk patterning

An initial study of the relation between timing units and
grammatical units was undertaken, using the same data.

As already noted, the nPVI, useful though it is, does not
show alternating or rhythmic patterns, contrary to claims in
the literature: it shows distance, but does not specify
directionality of difference (e.g. longer or shorter), i.e. the
rhythmic directionalitiy of iambic (short-long, decelerando)
or trochaic (long-short, accelerando). Nor has it been used to
investigate the relation of duration patterns to lexico-syntactic
structural patterns, for which a concept of directionality
(though not necessarily of alternating patterning) is required.

As a first step towards modelling directionality and
lexico-syntactic structural patterns, a simple chunking
algorithm was used, which items of increasing length (i.e. not
necessarily binary) together. Extensions to take other
annotation parameters into account are in progress. This
simple algorithm promises more structural information than
evenness measures, and more direct interpretability than the
complex tree construction algorithms introduced by [12]. The
core of the algorithm is:

```
create empty accumulator string for labels
append current label to accumulator
if current duration > next duration
emit contents of accumulator
empty accumulator
next duration
```

Labels are strung together until the duration of a label
interval is longer than that of the following unit, then stored,
and the accumulator is re-set for the next chunk. This is the
“iambic” or “decelerando” algorithm.

The converse pattern is generated by the “trochaic” or
“accelerando” algorithm, which chunks labels into sequences
of decreasing duration. Both algorithms were applied to each
of the 5 data sets. Chunks were automatically compared with
the annotated (non-phrase-final) word final boundaries to
determine the match between chunk ends and word ends.
Each utterance was chunked separately and results were
averaged (cf. Table 4).
Percentages for all segment chunk types are low: duration patterns inside words are uneven. Syllable chunk matches are a little higher; particularly for the rallentando pattern and in some data sets. Set B (meaningless sentences) has the smallest difference between iambic and trochaic conditions, and set E (long sentences) has the largest. Sets A, C and D show smaller preferences for increasing duration sequences leading up to word final boundaries. In the best case, there is 50% coincidence of duration chunk end and word end. Variation between different data sets is high, perhaps a function of different data types. In view of the small single-speaker data set and the obvious variation between data sets, more detailed analyses are needed which go beyond the scope of the present study.

4. Conclusions and further work

Duration patterns of segments and syllables in a large, richly annotated and rigorously validated single-speaker read corpus of Polish were examined with standard deviation and nPVI measures. The study focuses on sequencing rather than classification, and thus differs from the classification and regression tree (CART) type duration models used in speech synthesis [6]. However, the results of the present analysis may enter into the criteria for CART analyses at a later stage.

We have shown that syllable timing in rhetorically neutral Polish speech could tend more towards the syllable isochrony end of the syllable timing scale than has previously been thought. Further, segment sequences turned out to be somewhat even, but the role of consonantal sequence variability in syllable timing thus turns out to be less than previously thought. It remains to be seen whether this means that the more complex consonant clusters of Polish are less frequent than simpler items, whether the lack of a phonemic vowel length contrast in Polish leads to shorter vowels which have more uniform durations and are more comparable on average with consonant durations, and whether there is compensatory duration modification which supports syllable timing.

Finally, there appears to be a mild tendency for Polish syllable sequencing to be of the generalised iambic (rallentando) type, though results are not conclusive. This needs confirmation from further studies using more annotation categories, on the lines of [13]. The word analyses need to be complemented by analyses based on inter-stress intervals (feet), along the lines of [3], and by investigation of the role of different levels of stress and different boundary types. Comparable results based on these measures are not yet available for other languages, so no typological comparisons can be made at this stage.

5. Acknowledgements

The authors are grateful to many, but particularly to Wiktor Jassem for numerous discussions on prosody. His influence on this study is pervasive. This work was partially carried out under grant R0003502 from the Polish Ministry of Scientific Research and Information Technology and with an EU ERASMUS Student Mobility grant.

6. References

<table>
<thead>
<tr>
<th>Datasets:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{iamb}</td>
<td>288</td>
<td>109</td>
<td>669</td>
<td>1030</td>
<td>1148</td>
<td>3244</td>
</tr>
</tbody>
</table>

Table 4: Percent iambic/trochaic chunk to word matches for segments and syllables.