Speaking through a noisy channel – Experiments on inducing clarification behaviour in human-human dialogue

David Schlangen and Raquel Fernández

Department of Linguistics
University of Potsdam, Germany
{das|raquel}@ling.uni-potsdam.de

Abstract

We report results of an experiment on inducing communication problems in human-human dialogue. We set up a voice-only cooperative task where we manipulated one channel by replacing (in real-time, at random points) all signal with noise. Altogether around 10% of the speaker’s signal was thus removed. We found an increase in clarification requests of a form that has previously been hypothesised to be used mainly for clarifying acoustic problems. We also found a correlation between the percentage of an utterance being manipulated and the use of devices for pointing out error locations. From our findings, we derive a gold-standard policy for clarification behaviour.

Index Terms: dialogue, clarification requests, error-handling

1. Introduction

There recently has been a number of studies [1, 2, 3, 4, 5, 6, 7, 8] of Clarification Requests (CRs), i.e. utterances like B’s in the following examples:

(1) A: Did you talk to Peter? B: Peter Miller?
A: I brought a 3-5 torx.
B: What’s that?

The interest in these constructions is well motivated, as understanding their use has eminent practical relevance (implementing similar clarification behaviour could improve the way spoken dialogue systems deal with understanding problems) as well as theoretical importance (their semantics has to be defined in terms of previous utterances, not propositions).

Most of these previous studies were done on corpora of dialogue recordings (see below for exceptions), and as we will argue in more detail below, this imposes certain limits:

- the causes for asking the CRs must be guessed post factum by the annotator;
- there is no control over the problem source;
- strategies for avoiding to ask for clarification cannot be studied straightforwardly.

In this paper, we present an experiment where we controlled the problem (by replacing signal with noise) and hence were able to overcome these limitations. Our findings further corroborate, by being achieved with a different methodology, previous results as well as offering more detailed insight into human clarification policies.

The remainder of the paper is structured as follows. In the next section we extend the discussion of previous work, both corpus-based and experimental. We then describe the method used in our experiment (Section 3), present the results (Section 4), and then close with a general discussion and conclusions.

2. Empirical Work on Clarification

2.1. Previous Corpus Studies

The CR investigation reported in [1] was based on text transcripts from the British National Corpus. They found a rate of 4% of all utterances being CRs. Their annotation scheme has good coverage, but was more motivated by theoretical concerns than by use as annotation scheme. (See detailed review in [4].)

In this paper, we use the more fine-grained scheme introduced in [4] (more on this below). Using both transcripts and audio, [4] annotated 5.8% of all utterances in their corpus of task-oriented German dialogue as CRs. The same scheme (with some modifications) has been used in [6] on an English task-oriented corpus, with 4.6% CRs.

One finding of [4] that we will take as a starting point here is that intonation disambiguated between fragmental (non-interrogative) fragments used for clearing up acoustic problems and those used for clearing up references, as illustrated in the left hand side of following example:

(2) A: I saw Peter. B: Peter ↗ Peter ↘ My cousin.
A: Yes. ↗ My cousin. B: Ah. OK. ↗ CR reply

What these studies have in common is that for annotating CR functions, they rely on the CR reply and the follow-up to clear up ambiguities. This does not always work; [4] e.g. labelled the high number of 14.3% cases as ambiguous. For this there is a systematic reason, namely that “over-answering” is always an option. In the right hand side example in (2) the CR clears up both reference resolution problems (by giving a different description of the intended referent) and acoustic problems (by repeating reference, albeit with a different form); in such cases there is little objective reason for preferring one annotation over the other. This shortcoming suggests that experimental work with more control over the CR-process could supplement the corpus work.

2.2. Experiments

There are two possible directions for such experimental work. Healey and colleagues used a paradigm in a number of studies [2, 8] where a modified text-based chat tool is used which can, based on patterns in the input, temporarily take one participant off line (without him noticing), in order to send a “fake” (i.e., not actually typed by the real dialogue participant) CR to the other participant. After the CR-sequence is done, the original participant is seamlessly put back on-line, and the conversation continues without the participants being aware of any modifica-
tion. With this setting, CRs can be controlled and hence interpretations (and other effects) can be better studied.

The other possibility is to control the problems in the dialogue, by creating them. [5] conducted an experiment where one channel in a dyadic conversation was filtered through an automatic speech recogniser, and the participant (the wizard) had to base her reactions solely on this (highly defective) input. One interesting finding of this study is that the wizard preferred to ask task-related questions rather than direct CRs, from which one can infer that the understanding of the actual utterance was in this setting less important than understanding the task-related intentions.

Our experiment reported here also follows this route. We control the problem by replacing some of the signal of one speaker with noise, hence creating acoustic understanding problems. By targeting a different level (acoustic understanding), our experiment can contribute evidence that is complementary to the findings described above. We also think, however, that it has certain advantages over [5], by being more clearly modelled on "natural" situations (e.g., transient noise through environment events like passing cars, etc.). In contrast, it is not clear how human reactions to the highly untypical ASR output are revealing of natural behaviour (but see discussion in [5]).

3. The Noisy Channel Experiment: Method

3.1. Overview; Hypotheses

The experiment consisted in a voice-only cooperative task between two participants where in one condition we manipulated one channel by replacing (in real-time, at random points) all signal with noise. Altogether around 10% of the speaker’s signal was thus removed. The roles of the participants were asymmetric: the instruction giver (IG) read items from a screen and dictated those to the instruction follower (IF). Only the channel from IG to IF was manipulated in the experiment group.

We expected the manipulation to have an effect on the effort needed to complete one dictation item, with different item types (see below) being vulnerable to different degrees. Further, and more specifically, given previously observed correlations between CR forms and problem types, we expected an increase in use of CR forms previously connected to clarifying acoustic problems. As our design tells us exactly which part of the stimulus was problematic, we also wanted to explore relations between this and the specificity of the CR.

3.2. Experimental Design

3.2.1. Subjects & Materials

A total of 32 subjects, arranged in 16 pairs, participated in the experiment. All were native English speakers (from a variety of native countries) that responded to a public call for participation. Half of them were college students while the other half had a range of different occupations (including web designers, teachers, musicians and waiters). 21 of them had a range of different occupations (including web designers, teachers, musicians and waiters). 21 of them had a range of different occupations (including web designers, teachers, musicians and waiters). 21 of them had a range of different occupations (including web designers, teachers, musicians and waiters).

As mentioned above, the task consisted in the IG dictating items to the IF. There were 44 items altogether, of 4 types: a) numbers: strings of numbers; b) sentences: "normal" sentences; c) idioms: conventional sentences or phrases like "a stitch in time saves nine"; d) modified idioms (e.g. idioms where we exchanged one word, e.g. "All doors lead to Rome").

These different types systematically vary the amount of available context (or mutual information): numbers offer none at all; sentences prime normal syntactic expectations and collocations; idioms set up very strong expectations; which in the manipulated idioms are misleading.

3.2.2. Procedure

IG and IF were placed in different sound-proof rooms, connected by an audio-line (via headphones; 22kHz frequency range). The subjects were then individually briefed on the task. The IG had in front of him a computer program that displayed the dictation items, one at a time, with the IG being able to skip to the next item (but not back). The IF used a computer to type the dictated items into a text editor. During the run, 2 (control group) or 3 (noise group) channels of audio were recorded (IG w/o and (if appropriate) w/ noise; + IF), as well as a screen capture video of the text editor. Logging messages of noise program on the duration of noise event were also kept (for synchronisation with the recordings).

The noise-insertion program is purpose-built. It operates in (near) real-time (with ~5ms response time); when a signal over a certain threshold is detected, user-changeable parameters determine the likelihood that the signal is replaced by noise or respectively that noise is switched off again. We used brown noise, as it is less unpleasant to the listener than white noise.

3.2.3. Data Analysis

For analysis, the recordings were transcribed using Praat [9] and annotated using MMAX [10]; the annotators had access to both the textual transcripts and the audio material.

- utterance: We followed the utterance segmentation conventions from [11]; roughly, independent syntactic units are grouped as one utterance.
- move: We grouped together as one move all utterances belonging to the dictation of one item, beginning with the first task-related utterance (such as “OK, now numbers again.”) and ending with the final confirmation by IF of task-completion.
- effort: We used ‘average repetition rate’ (arr) to measure the effort spent per dictation item. arr is calculated per move, as the number of words from the current item spoken by IG, normalised by the number of words in this item. I.e. if arr = 1, then every word from the dictation item was spoken once by IG (obviously, this is the minimum if the task is done correctly). A value of 1.5 means that some words have been repeated, etc.

This measure is rather coarse-grained, as it anchors the effort spent on one item only on the repetitions of IG and disregards for example check-questions or repetitions by IF, but it has the advantage of being relatively straightforward to code, and, more importantly, unlike time-based measures like ‘length of move’, it is robust against individual differences w.r.t. typing speed, delivery in installments, off-topic talk, etc.

- noise classification: Noise events were classified with the following features. dictated marks whether noise removed something that was part of a dictation item or not; noise gives information about what was in noise, it has the values a) part of word; b) whole word; c) whole phrase; d) everything. noise extent classifies the extent of the noise relative to the utterance length, as 0.01%, 10-35% etc. up to everything.
- CRs: We coded CRs with [4]'s scheme (see there for details).
- The possible values of the attribute mood are a) declarative: default word-order (not interrogative or imperative), modified
4. Results

4.1. Recordings

The 16 experimental runs resulted in 12 usable recordings (two runs had to be excluded for technical reasons (equipment failure) and two because subjects were not suitable for the task due to e.g. dyslexia). The usable recordings make up a total length of 3048 utterances (in average 622 per dialogue). The transcriptions were segmented into 7469 utterances (in average 622 per dialogue).

4.2. Analysis of Moves

To give an impression of the effect of the manipulation, the following example shows a typical exchange in the noise-group.

<table>
<thead>
<tr>
<th># of CRs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>mv ns mv</td>
<td>44.71</td>
<td>40.00</td>
<td>8.82</td>
<td>4.12</td>
<td>1.18</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>ns mv</td>
<td>98.90</td>
<td>1.10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: % of moves containing 0,1,...,6 CRs; by condition

noise	1.47	1.15	1.51	1.63	1.54
no-ns	1.30	1.23	1.21	1.30	1.54
sig	$p=0.01$	$p=0.01$	$p=0.001$	$p=0.001$	$p=0.001$

Table 2: Average Repetition Rate, Conditions / Item Types

<table>
<thead>
<tr>
<th>noise</th>
<th>part of word</th>
<th>whole word</th>
<th>whole phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>what</td>
<td>13.76%</td>
<td>38.67%</td>
<td>47.30%</td>
</tr>
<tr>
<td>extent</td>
<td>less than 10%</td>
<td>more than 10%</td>
<td>47.30%</td>
</tr>
<tr>
<td>half</td>
<td>39.00%</td>
<td>39.00%</td>
<td>47.30%</td>
</tr>
<tr>
<td>20.91%</td>
<td>20.91%</td>
<td>47.30%</td>
<td></td>
</tr>
<tr>
<td>70.00%</td>
<td>70.00%</td>
<td>47.30%</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Likelihood of triggering a CR, by “damage rate”

4.3. Analysis of Stimulus-Response Pairs

For analysis, we grouped all “noise-moves” (moves with at least one noise-event in them) together and all “no-noise-moves” (no noise events) Note that the latter can also occur in dialogues from the noise-group, if by chance there was no noise event for one whole move. CRs occurred overwhelmingly in noise-moves. Table 1 plots the percentage of CR-noise-moves that have various numbers of CRs in them. For noise-moves, it shows a power-law distribution: most have only one or two CRs, a few have 4 and more. It also shows the relatively high resistance against noise: even of the noise-moves, 45% were without CRs. There is a strong correlation between the number of noise events per move and the number of CRs ($r = 0.61; p = 0.001$), however.

Altogether, 71% of noise events did not elicit a CR; interestingly, the rates vary for the item types: 18.08%; 55.07%; 47.30%.

As discussed above already, the majority of noise-events (71%) did not result in CRs (at least not directly). This robustness differs with respect to what was said: noise in dictation instructions (as coded with dictated) is more likely to lead to CRs than noise in other utterances (30% vs. 1.2%). As Table 3 shows, the more material is missing, the more likely the utterance is to trigger a CR. Looking in more detail into the CRs that are triggered by noise, it can be seen that the greater the “damage” to the utterance, the less likely CRs. Figure 1 finally plots the distribution of CR-types found in our corpus (deauw) and in [4] (bautx). It shows that in our corpus there are relatively much more rising declaratives and

2Due to the low number of CRs in no-noise moves, comparisons between conditions were not meaningful and hence only this cross-corpora (and cross-language) comparison is shown. See [4] for a discussion of cross-linguistic CR similarities.
wh-questions, and much fewer falling declaratives. Our CRs are much more often repetitions of their antecedents, and much more often is the CR reply a repetition; conversely, in our corpus there were very few reformulations (in either CR or reply). The differences in the shown features are all significant (χ^2, $p = 0.001$). Differences in extent (hypothesis presented or not) were not significant.

5. Discussion and Conclusions
As our results show, different item types differ in robustness against damage. However, it is not quite "the more context, the more robust"; it’s more like those items where the IG expects problems in any case (numbers and modified idioms) have a higher base-line level of effort and hence are more robust. The relevance of the damage also seems to depend on the relevance of the damaged item; i.e., asking for clarification is not an automatic process, but rather depends on a judgement on the importance of the missing information. If possible, CRs are produced that point out the location of the problem and present a hypothesis (as the correlation between size of the damage and locating devices shows). The comparison to the baufix corpus finally confirmed the hypothesis that CRs that repeat material, with rising intonation, are predominantly used for clarification of acoustic problems. (Witness the significant increase in this type due to introduction of noise.)

To boil these observations down to a policy on when and how to clarify: a) decide if material is important; b) if at all possible, present hypothesis, and c) locate problem. If d) the problem was an acoustic one, repeat what was understood, with rising intonation.

In future work we will compare this with other task done in the same session, which has much higher contextual constraints and places much less "load" on individual utterances. It is there that we assume more global strategies for dealing with noise can be found. Also, we are planning to do another set of recordings with the noise level raised from the 10% here to a more disruptive 50%, to study behaviour under extreme limitations.

6. Acknowledgements
Thanks to our students for help with transcription and annotation, to M. Waeltermann for work on the noise program, to J. Dreyer at ZAS Berlin & P. Healey and Gregory Mills at Queen Mary U London for letting us use their labs; and to M. Stede and A. Corradini for early discussions of the set-up. This work was supported by the EU (Marie Curie Programme) and DFG (Emmy Noether Programme).

7. References