Complementarity and Redundancy in Multimodal User Inputs with Speech and Pen Gestures

Pui-Yu Hui, Zhengyu Zhou and Helen Meng

Human-Computer Communications Laboratory
The Chinese University of Hong Kong
Shatin, Hong Kong SAR of China
{pyhui, zyzhou, hmmeng}@se.cuhk.edu.hk

Abstract
We present a comparative analysis of multi-modal user inputs with speech and pen gestures, together with their semantically equivalent uni-modal (speech only) counterparts. The multimodal interactions are derived from a corpus collected with a Pocket PC emulator in the context of navigation around Beijing. We devise a cross-modality integration methodology that interprets a multi-modal input and paraphrases it as a semantically equivalent, uni-modal input. Thus we generate parallel multimodal (MM) and unimodal (UM) corpora for comparative study. Empirical analysis based on class trigram perplexities shows two categories of data: \((PP_{MM} = PP_{UM})\) and \((PP_{MM} < PP_{UM})\). The former involves complementarity across modalities in expressing the user’s intent, including occurrences of ellipses. The latter involves redundancy, which will be useful for handling recognition errors by exploring mutual reinforcements. We present explanatory examples of data in these two categories.

Index Terms: multi-modal input, spoken input, pen gesture, joint interpretation, human-computer interaction, perplexity

1. Introduction
This paper presents a comparative analysis of multimodal (MM, speech and pen gestures) user inputs with their semantically equivalent unimodal (UM, speech only) counterparts, in order to gain an empirical understanding of the inter-relations between the speech and pen modalities. Increasing use of mobile handheld devices for information access in our daily lives has led to the growing prominence of multimodal interactions are derived from a corpus collected with a Pocket PC emulator in the context of navigation around Beijing. We devise a cross-modality integration methodology that interprets a multi-modal input and paraphrases it as a semantically equivalent, uni-modal input. Thus we generate parallel multimodal (MM) and unimodal (UM) corpora for comparative study. Empirical analysis based on class trigram perplexities shows two categories of data: \((PP_{MM} = PP_{UM})\) and \((PP_{MM} < PP_{UM})\). The former involves complementarity across modalities in expressing the user’s intent, including occurrences of ellipses. The latter involves redundancy, which will be useful for handling recognition errors by exploring mutual reinforcements. We present explanatory examples of data in these two categories.

Index Terms: multi-modal input, spoken input, pen gesture, joint interpretation, human-computer interaction, perplexity

1. Introduction
This paper presents a comparative analysis of multimodal (MM, speech and pen gestures) user inputs with their semantically equivalent unimodal (UM, speech only) counterparts, in order to gain an empirical understanding of the inter-relations between the speech and pen modalities. Increasing use of mobile handheld devices for information access in our daily lives has led to the growing prominence of multimodal interactions, such as the CARE (complementarity, assignment, redundancy and equivalence) properties as identified in [2]. Complementary and redundant relations in input modes are further described in [7]. This paper leverages previous research and attempts to form an empirical, organizational view of MM integration patterns. Our long-term goal is to develop techniques for automatic semantic interpretation of MM user input as a front-end extension to UM spoken dialog systems. We begin with a comparative analysis between the MM inputs and their UM counterparts. We collected a MM corpus based on user interactions with a Pocket PC (PPC) emulator to seek navigational information about the Beijing area [5]. We have also devised a cross-modality integration model that accepts MM user inputs and generates semantically equivalent UM paraphrases. We trained a trigram language model using pooled MM and UM data in training set. We computed test set perplexities of disjoint, parallel test sets with MM and UM inputs respectively. Comparison of perplexities enables categorization into subsets for further analysis. Details of our approach are presented in the following.

2. The Multi-modal Corpus
Our experimental corpus is collected with a Pocket PC (PPC) emulator with which the user interacts in order to obtain navigational information about Beijing. This information domain involves references to maps and the communication of spatial semantics. The scope of the domain involves 6 maps (that fit the PPC screen-size) covering 5 districts and 930 locations with positional coordinates. There is a variety of location types (such as parks, streets and universities), as well as communicative goals on the part of the users (such as bus fares, route-finding and travel time). Data collection involves 21 subjects from a speech research group. Each subject is asked to formulate a set of input inquiries or requests based on a navigational task. The inputs may involve a spoken command (e.g. for map rendering), or a spoken question that references up to a maximum of six locations. The subjects are free to refer to the locative semantics either unimodally (with speech only) or multimodally (with speech and pen gestures). A typical user input may contain up to six spoken locative references and/or pen gestures. We collected 1,386 user inputs in total. Among these, 320 are UM and 1066 are MM inputs. We used approximately 70% of the MM utterances as training data (for analysis and parameter selection) and the remaining 30% as testing data. Recorded speech is in Chinese and has been endpointed and hand-transcribed (i.e. perfect transcriptions). The utterances cover 519 Chinese lexical entries and range between one to 28 words in utterance lengths. The MM inputs have 2,570 pen gestures in total, including pointing, circling and strokes. Each pen gesture is recorded with a time-stamp and relevant (x,y) coordinate(s), e.g. the pen-down and pen-up actions in a stroke. There are also spurious gestures that were captured during data collection but these are filtered out automatically. Below is an example of a MM input (Example 1):

Speech: 我從這裡 要到 這四個大學 要多久？
Pen: •
3. Cross-Modality Integration

Each modality in a MM input abstracts the user’s message differently into a sequence of input events, e.g., spoken keywords/keyphrases or pen gestures. Each carries semantic meaning but may contain ambiguity. For example, the user may refer to a location directly by its name or abbreviation, e.g., “CUG” for “China Univ. of Geosciences” and these direct references have little ambiguity. However, there are also indirect spoken references, or spoken deictic expressions, e.g., “這裡” (here), “這些地方” (these places) or “這四所大學” (these four universities). As can be seen, these indirect deictic expressions may carry numeric features or location type information. They may also be semantically ambiguous. Similarly, for pen-based input, a pointing gesture may refer to the map’s coordinates (e.g., “zoom in here” in a desired region); a circling gesture may refer to a single location, a group of locations or a region; and a stroke may refer to one more locations, a path or a demarcation. Hence, pen gestures may also contain considerable ambiguity.

We devised a cross-modality integration framework that accepts a MM input expression and generate a UM paraphrase. The speech modality is first parsed for spoken locative reference expressions. For each expression, our framework generates a list of hypothesized locations. Referring to Example 1, the parsed expressions are underlined. The expression “這裡” will produce a list of all landmarks present in the map in focus, while the expression “這四所大學” will produce a list of all locations of type UNIVERSITY from the map in focus. As regards the pen modality, our framework generates a list of possible semantics based on the gesture type and its (x,y) coordinate(s). Referring again to Example 1, the pointing gesture produces a list of locations whose icons lie in the vicinity (within fifty pixels) of the point’s coordinates, ordered with increasing distances. The circling gesture produces a list of locations whose icons were encircled. As can be seen, our cross-modality integration framework first generates, for each individual modality, partial interpretations represented by a series of listed locations, where each list correspond to an input event (spoken locative reference expression or pen gesture). These are then integrated with a Viterbi alignment algorithm, whose scoring function incorporates semantic compatibility (in terms of numeric and location type features) and temporal order. The integration process is illustrated in Figure 1 and details of the algorithm are described in [5]. Table 1 also presents the UM paraphrase based on the MM expression in Example 1. Evaluation based on the MM test set (342 inputs) shows that the cross-modality integration framework can correctly generate UM paraphrases for 97% of the data. The remaining minority with errors is described in [5].

Table 1. UM paraphrase generated by the cross-modality integration framework, based on the MM input expression in Example 1.

<table>
<thead>
<tr>
<th>MM Expression</th>
<th>UM Paraphrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>我從 身處點 要到 北京航空航天大學 中國 地質大學 北京科技大學 北京醫科大學 要多久?</td>
<td>我想從我目前的位置去到北京航空航天大學、中國地質大學、北京科技大學、北京醫科大學，要多久？</td>
</tr>
</tbody>
</table>

Translation: “I want to go from my current location to Beihang Univ., China Univ. of Geosciences, Univ. of Science and Technology Beijing, Beijing Medical Univ. How much time will it take?”

4. Generated Parallel Multimodal and Unimodal Corpora

We ran the cross-modality integration algorithm on the MM user expressions and selected correct UM paraphrases (over 97% of the entire data set) to form parallel corpora of MM inputs with their semantically equivalent, UM counterparts. More specifically, we obtain 725 MM and UM expression pairs from our training set and 314 pairs from our testing set. Comparative statistics of the MM and UM inputs are shown in Table 2 (shadowed). We see that the spoken components of MM inputs are generally shorter and cover a smaller vocabulary than their UM counterparts. The difference is less pronounced than expected. One reason, based on our observation, is the diversity of spoken deictic expressions and Chinese measure words. For example, “my current location” may be verbalized in many ways (such as “身處點”, “所在地”, “目前所在的地方”, “現在的位置”, “這裡”, “我的位置”, “我的當前位置”, “這裡”, “目前的地點”, “我目前的位置”, “我現在的位置”, etc.) Chinese measure words relating to location types (including “間”, “個”, “所”, “條”, “裏”, “頭”, “裡”, “片”, “帶”, “塊”, “點”, “米”, “圍”, “塊兒”, etc.) also contribute towards alternatives in verbalization.

Table 2. Corpora statistics (shadowed) and comparison of the class-trigram perplexities between the parallel MM and UM test sets.

<table>
<thead>
<tr>
<th>MM Input</th>
<th>UM Paraphrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of words</td>
<td>9,455</td>
</tr>
<tr>
<td>Average utterance length</td>
<td>9.1 words</td>
</tr>
<tr>
<td>Range of utterance lengths</td>
<td>1 to 25 words</td>
</tr>
<tr>
<td>Vocabulary size</td>
<td>526 words</td>
</tr>
<tr>
<td>Total # utterances</td>
<td>314</td>
</tr>
<tr>
<td># of words</td>
<td>3,157</td>
</tr>
<tr>
<td>Perplexity (PP)</td>
<td>6.03</td>
</tr>
<tr>
<td># of unigram hits</td>
<td>225 (6.05%)</td>
</tr>
<tr>
<td># of bigram hits</td>
<td>374 (10.06%)</td>
</tr>
<tr>
<td># of trigram hits</td>
<td>3119 (83.89%)</td>
</tr>
<tr>
<td># of OOVs</td>
<td>30 (0.8%)</td>
</tr>
</tbody>
</table>

4.1. Language Modelling

We pooled the MM and UM spoken expressions together (1,450 in all) to train a class trigram language model. We classified the proper names (i.e. location names) into 12
equivalences classes, e.g., UNIVERSITY, HOSPITAL, STREET, etc. We also have 4 other equivalences classes including: ARTICLES, NUMBERS (i.e. numeric expressions), MEASURE, and LOCATION_TYPE (e.g. the words “university”, “parks”, etc.) The language model was developed using the CMU SLM toolkit [8]. The resulting model contains 290 unigrams, 1,375 bigrams, and 2,795 trigrams. The probabilities are smoothed by Katz backoff smoothing [9] with discount ratios 0.04 for unigrams, 0.36 for bigrams, and 0.38 for trigrams. The discounting thresholds for unigrams, bigrams and trigrams are 1, 5 and 7 respectively. We computed the class trigram perplexities for the MM and UM test sets respectively. Results are shown in Table 2 (lower part). We observe from Table 2 that for the semantically equivalent, parallel MM and UM corpora, the UM paraphrases have significantly higher perplexities. Results from pairwise comparisons between each MM input and its UM paraphrase are in Table 3.

Table 3. Comparison of Per-Utterance Perplexities between the MM Inputs and their UM Paraphrases.

PP_{UM} > PP_{MM}	# utterances	264 / 314 inputs (84%)
PP_{MM} = PP_{UM}	50 / 314 inputs (16%)	
PP_{MM} < PP_{UM}	0%	

5. Data Analysis

These results in Table 3 prompted us to divide the testing data into two subsets, according to \((PP_{MM}=PP_{UM})\) and \((PP_{MM}≠PP_{UM})\) for further analysis.

5.1. Category \((PP_{MM}=PP_{UM})\):

For this category, we found that the majority (33/50=66%) of the expressions involve redundancy between the speech and pen modalities. As shown in Example 1 of Table 4, each pair of \((x,y)\) coordinates of each pointing gesture in the MM input matches with the abbreviation of the location name that was uttered. The UM paraphrase incorporates the full name of each location during generation. However, since our class-based language model gives the same probability values to both the abbreviated and full names of the same location, the per-utterance perplexity values are the same. Example 2 in Table 4 illustrates the use of ellipsis, which occurred for (16/50=32%) of the cases in this data subset. The subject input four pen strokes that connects four locations and simply uttered “the fastest route”. We interpret that the redundant with the pointing gesture, followed by an ellipsis. Again, we observe equal per-utterance perplexities and the explanations are consistent with the two previous examples. Redundancy between the speech and pen modalities should be very useful in face of imperfect recognition outputs, e.g. in automatic speech and pen gesture recognitions. Handling ellipsis merits further investigation for automatic interpretation of MM input.

Table 4. Illustrative examples from the testing data subset with \((PP_{MM}=PP_{UM})\).

Example 1:
MM Expression, PP_{MM}=3.61
(Translation: How much time will it take from BUPT to Beihang, CUG, USTB and BJMU?)

| S: | 從 北航 到 北航 地質大學 北科大 和 北醫 要多久 |
| P: | • • • • • |

Example 2:
MM Expression, PP_{MM}=4.93
(Translation: The fastest route.)

| S: | 最快的交通路線 |
| P: | → → → |
5.2. Category ($PP_{MM} < PP_{UM}$):

The testing data subset with this inequality contains 264 (84%) expressions. We present illustrative examples in Table 5. As shown in Example 4, the speech and pen modalities complement each other in specifying a group of intended locations. Either modality alone is semantically ambiguous, e.g. the spoken expression “here” that corresponds to the point, or the expression “those universities” that correspond to the circle. However, when the semantics across modalities are combined, the semantic meaning is clear. Hence we can see that part of intended message is conveyed via the speech modality, while the remaining part is conveyed via the pen modality. The UM paraphrase, however, capture the full semantics of the subject’s intended message. Consequently, the perplexity of the spoken component in the MM expression is less than that of the UM paraphrase.

Example 5 in Table 5 illustrates the possibility that a MM expression can exhibit both redundancy and complementarity in sequential locative reference expressions. The first rendition shows five reference expressions, all of which exhibit complementarity between the speech and pen modalities. There are 242 (92%) similar cases (i.e. complementarity across modalities) in this data subset. The second rendition shows redundancy in the first reference expression, while the remaining four expressions exhibiting complementarity. Hence the per-utterance perplexity rose slightly (c.f. the first rendition) even though both renditions are semantically equivalent. There are 22 (8%) similar cases (i.e. combined redundancy and complementarity) in this data subset. The third rendition is the UM paraphrase, which has the highest per-utterance perplexity value.

5.3. Findings and Implications

Categorization of the test set based on perplexity values, followed by analysis of the categories enables us to visualize the effects of complementarity and redundancy [2] across the speech and pen modalities in MM user inputs.

Complementarity offers expressive power, because the user is free to distribute various parts of the message to different modalities to ease (complex) communication and to reduce cognitive loading [3]. Semantic decoding of an individual modality generates a partial interpretation of the intended message and these partial semantics need to be integrated in order to gain a complete understanding of the user’s intent. This motivates the use of the late semantic fusion architecture for MM input interpretation.

Redundancy occurs when both the speech and pen modalities carry the same semantic content. As a preliminary step, the current work only deals with perfect transcriptions of the speech recordings and filtered pen gesture recognition outputs. However, we may conceive that in real applications, the recognition outputs corresponding to different input modalities may be erroneous. Redundancy across modalities motivates the use of mutual disambiguation techniques [10]. In addition, we also observe occurrences of ellipses, where some locative references are omitted from the speech component in the MM expression and is expressed only with the pen component. Ellipses motivate further investigations in the syntax of the MM language, as well as the use of such MM integration approaches as finite-state transducers [11].

6. Conclusions and Future Work

This paper presents a comparative analysis of multimodal (MM) user inputs with speech and pen gestures, together with their semantically equivalent unimodal (UM, speech only) counterparts. These are generated by a cross-modality framework that applies the Viterbi algorithm to align the speech and pen components in a MM expression in order to generate a UM paraphrase. We trained a class trigram language model with 1,450 MM/UM speech utterances and compared the perplexities (PP) between parallel MM and UM test sets (with 314 utterances each). We observe that the speech components of MM expressions are generally shorter with lower lexical variability than their UM counterparts. Comparison with per-utterance perplexities affirms the relationships of complementarity and redundancy across the speech and pen modalities. One subset of our data exhibits the equality of ($PP_{MM} = PP_{UM}$) and consists mainly of MM expressions where speech and pen modalities carry redundant semantics. The other subset exhibits the inequality of ($PP_{MM} < PP_{UM}$) where the speech and pen modalities carry complementary semantics. We also observe the occurrences of ellipsis, where certain semantics appear in one modality but not the other, and forms a special case of complementarity. These observations have implications on the choice of fusion architectures for MM input interpretation. Future work will include processing erroneous recognitions and implementation of MM fusion.

7. Acknowledgements

This work is partially supported by a grant from the HK SAR Government Research Grants Council (Project No. 415105) and is affiliated with the Microsoft-CUHK Joint Laboratory for Human-centric Computing and Interface Technologies.

8. References