Annotation and Features of Non-native Mandarin Tone Quality

Mitchell Peabody, Stephanie Seneff

Spoken Language Systems, CSAIL, MIT
{mizhi,seneff}@csail.mit.edu

Abstract

Native speakers of non-tonal languages, such as American English, frequently have difficulty accurately producing the tones of Mandarin Chinese. This paper describes a corpus of Mandarin Chinese spoken by non-native speakers and annotated for tone quality using a simple good/bad system. We examine inter-rater correlation of the annotations and highlight the differences in feature distribution between native, good non-native, and bad non-native tone productions. We find that the features of tones judged by a simple majority to be bad are significantly different from features from tones judged to be good, and tones produced by native speakers.

Index Terms: computer aided language learning, tone evaluation, Mandarin, Chinese

1. Introduction

Computer Aided Language Learning (CALL) systems in foreign language classrooms are becoming increasingly popular for assigning coursework to students, supplementing material learned in traditional language teaching classrooms, providing opportunities for practice in non-threatening contexts, and allowing self-study of foreign languages. CALL frameworks take many forms and are guided by considerations of technical practicality and language learning pedagogy.

Pronunciation assessment is a major component for speech based CALL systems, where students are given feedback on the quality of their pronunciation of the target foreign language. Assessing the pronunciation of foreign language learners is difficult because while their speech may be intelligible enough to native speakers, it may also be so heavily accented that understanding it can be taxing for the native speaking participant [1, 2]. The challenge for language teachers is to strike a balance between overly-criticizing students for pronunciation mistakes and not providing any pronunciation guidance at all.

This implies that an assessment engine for pronunciation must be able to tell when speech is so poorly pronounced that a human language teacher would point it out, but not necessarily when that speech is merely accented. This is a considerable challenge due to the fact that even non-native speech considered well-produced typically has more pauses, slower rate of speech, and much greater phonetic variation than native speech.

Tonal languages, such as Mandarin Chinese, pose additional problems because correct pronunciation depends not only on the phonetic realization of the target word, but also on the tone production for a given word. The correct realization of a tone depends on such factors as left and right contexts, anticipatory and carryover effects [3], intonation, and tone sandhi rules [4]. Furthermore, non-native speakers may not easily remember the lexical tone for a particular word.

We believe that speech technology can be effective in helping students learn the tones of Chinese words, as well as to understand how to properly express tonal aspects in production. Our research into CALL uses computer games that students interact with using their voice. These systems simulate conversational partners with which students are required to participate in dialogues centered around small domains and problems [5]. These dialogues are dynamically generated and enable the student to both understand and produce spontaneous speech in the target language, thus exercising their communication skills.

These games are presented on the web using the WAMI toolkit [6] but currently lack the facility for pronunciation assessment. We envision integrating pronunciation assessment into our CALL games such that students are given targeted feedback on their pronunciation errors. We make the assumption that only the most egregious pronunciation errors need to be pointed out and that it is unnecessary and counter-productive to point out every single pronunciation problem.

In order to accomplish the task of assessing non-native tone quality, we need to determine the features that may be useful for distinguishing good from bad non-native tone productions. This paper utilizes two corpora to quantify differences in tone features between native, non-native tones judged as good and non-native tones judged as bad.

2. Background

In general, speakers of a non-tonal language who are learning Mandarin as a foreign language have difficulty both perceiving and producing tone (see, for example [7]). A tonal language uses pitch, the perception of fundamental frequency (F_0), to lexically distinguish tones.

In Mandarin Chinese every syllable is marked with a tone. Syllables are composed of two parts: an initial and a final. The optional initial consists of just a single consonant. The final portion of the syllable is composed of vowels and possibly a post-vocalic nasal, and is also the tone bearing unit.

Mandarin has five official tones. The fifth tone, i.e., the neutral tone, is usually deemphasized. Mandarin tones are mainly distinguished by shape, although there are other perceptual cues such as duration [8] and amplitude [9]. Some tone languages, such as Cantonese, have tonal contrasts that depend on the pitch height (register) of the contour [10]. Mandarin tones also tend to be produced at different pitch registers: Tones 1 and 4 at high registers, Tone 2 at mid to low registers, and Tone 3 at a characteristic low register.

Recent work has involved the training of non-native speakers in the perception and production of Mandarin tones. Wang [11, 12] examined the effects of perceptual training on speakers’ ability to produce Mandarin tones in an isolated set of Chinese words. Prior work by Leather [7] looked at the use of visual feedback on the ability of non-native speakers without any prior perceptual training to produce the four tones of a single Chinese initial-final pair.
3. Methodology

This work makes use of two corpora, both in the flight domain: the Yinhe [13] corpus consisting of 5,218 spontaneous sentences from native Mandarin speakers, and ftgame, an annotated corpus of data collected during student practice sessions with our Flight Translation Game [14]. This section concerns the annotation procedure and pitch normalization algorithm used for the later analysis.

3.1. Annotation

Utterances from the ftgame corpus were transcribed using the pinyin romanization of Chinese. A total of 2,073 utterances from 8 speakers, 2 female, 6 male, were transcribed. The speakers were all students of Mandarin Chinese with levels of study from under 1 year to approximately 4 years. Utterances that included English, disfluencies, or partial words were excluded. The remaining 1,702 utterances, containing 14,845 syllables, were selected for annotation.

The annotation was performed by 6 native Mandarin speakers from Taiwan using a web-enabled annotation interface [15]. Each annotator independently made a binary (good or bad) judgement on the tone quality for each syllable. The annotated corpus contained a total of 89,070 judgements.

3.2. \(F_0 \) Normalization

The major preceptual cue for distinguishing Mandarin tones is pitch shape, for which \(F_0 \) is the primary feature. We extract the \(F_0 \) using the pitch extraction algorithm detailed in [16]. Differences in the mean \(F_0 \) of speakers require that the \(F_0 \) of the data be normalized in order to make meaningful shape comparisons.

The normalization process, which is an extension of the method discussed in [17], has three main steps. First, the declination for each utterance is removed. Second, each \(F_0 \) in the utterance is scaled by a factor computed based on the utterance mean \(F_0 \) and a globally computed corpus mean \(F_0 \). Finally, a logarithmic value for each \(F_0 \) is computed and normalized to place the pitch on a common scale.

The intonation of a sentence and the lexical tones both contribute to \(F_0 \), and the effects of the two are not easily separated. Our approach can be seen as attempting to subtract the contribution of intonation to \(F_0 \) in order to gain access to the shape of the lexical tone. Although some research [18] has found that the rate of sentential downdrift in Chinese utterances depends on sentence length and can be modeled using exponential decay functions, Wang [19] found that a simple linear declination model still produced a significant improvement in tone classification. This is the method we have adopted here.

Each \(F_0 \) in the utterance is scaled by a constant factor to remove \(F_0 \) differences due to individual voice characteristics and gender. This makes the utterance mean \(F_0 \) equal to a fixed global value.

The final step of the normalization process is to use Equation 1 to compute a log for each \(F_0 \) value based on a method commonly used for Mandarin tone studies [12, 20, 21].

\[
T(x) = \frac{\frac{\log x - \log L}{\log H - \log L}}
\]

where \(H \) and \(L \) are the highest and lowest \(F_0 \) over all the tones after declination is removed and the utterance has been scaled. This places the \(F_0 \) on a common 5-pt scale for Mandarin originally proposed by [22], and allows for direct comparison of contour shapes.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45</td>
<td>0.59</td>
<td>0.45</td>
<td>0.53</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.51</td>
<td>0.50</td>
<td>0.51</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.42</td>
<td>0.53</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.57</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Cohen pairwise \(\kappa \)-statistics.

4. Results and Analysis

The analysis of the data is divided into two parts: correlation and feature analysis. We analyzed the good/bad judgements of the six annotators to confirm that they could provide consistent assessments. The feature analysis uses these assessments to examine differences between native, non-native good, and non-native bad tone productions.

4.1. Annotator Correlation

The annotation corpus was analyzed to assess the degree the annotators agreed with one another on the quality of the non-native tones. The average, pairwise raw percentage agreement was 91.1%; however, this agreement is primarily due to the fact that raters marked most syllables as having good tone quality.

We believe this is due to two main reasons: (1) the default rating for a syllable in our system is good and (2) we instructed the annotators to mark a tone as bad only if it would be a tonal mistake they would point out to a student learning Chinese. This was a deliberate design decision based on our approach to point out only the worst errors.

Better correlation statistics are the pairwise Cohen \(\kappa \)-statistic [23] and the Fleiss \(\kappa \)-statistic [24], which measure the amount of agreement when the probability of chance agreement is removed. Cohen \(\kappa \) is computed between two raters, while Fleiss \(\kappa \) is computed for multiple raters. Table 1 summarizes the Cohen \(\kappa \)-statistics. The Fleiss \(\kappa \)-statistic for all raters was 0.515. Overall, these correlations indicate a moderate amount of agreement among the raters, using the scale proposed by [25].

4.2. Tone Features

Previous work [17] that examined the differences between native and non-native productions of tones made the implicit assumption that all tones produced by non-native speakers were bad. This research further breaks down the non-native speech into syllables native speakers judged as good and those that were judged as bad, and examines differences in easily extracted \(F_0 \) features.

Specifically, we examine those features found to be perceptually important for tonal contrasts in native speech (sec. 2). We focus on tone shape and duration. The annotators did not always agree that tones were poorly produced. Since our eventual goal is to provide assessments of the worst tones, we restricted our analysis to tones with all good assessments or at least three bad assessments. The intuition is that if a tone was truly bad, more annotators would mark it as bad. This allows sharper contrasts to be seen in the analysis.

First, we examine the slope of the linear regression computed as part of the normalization process. We found that our native and non-native utterances have different declination patterns. Figure 1 shows plots of the \(F_0 \) for utterances in the Yinhe and ftgame corpora. Linear regressions on both datasets show
of the pitch contour. Figure 3 shows normalized
are consistently slower for both good and bad productions.
representative of all tones), this is not the case - non-native speakers
longer in duration than those of native speakers:
non-native speakers tend to produce syllables that are 58.7%
native pronunciation quality. Our measurements indicate that
of phonetic segments has been found in other studies (see for
is in the middle, and Tone 3 is usually the longest [8]. Duration
plays a role in tonal contrasts for Mandarin speak-
ners. Tones 1 and 4 tend to have the shortest durations, Tone 2
their sentences and contribute to a slower declination.
may manifest itself in the
duration of the syllables and pauses between them. This
that the native speakers exhibit a steeper decline over the nor-
malized length of an utterance than the non-native speakers.
We hypothesize three reasons for the non-native speakers’
tonation patterns. First, intonation patterns from English have
been shown to interfere with production of Mandarin tones [26].
Second, users interacting with the Yinhe system mostly issued
commands. Students playing the Flight Translation Game were
given English language prompts and told to provide a transla-
tion into Chinese. The students may have marked uncertainty in
correctly accomplishing this task through a final intonation rise
after the 80% time mark, as if asking for confirmation. Third,
non-native speakers tend to have a slower rate of speech in both
the duration of the syllables and pauses between them. This
may manifest itself in the F_0 as minor “pitch resets” throughout
their sentences and contribute to a slower declination.
Duration plays a role in tonal contrasts for Mandarin speak-
ers. Tones 1 and 4 tend to have the shortest durations, Tone 2
is in the middle, and Tone 3 is usually the longest [8]. Duration
of phonetic segments has been found in other studies (see for example [27]) to correlate well with human judgements of non-
native pronunciation quality. Our measurements indicate that
non-native speakers tend to produce syllables that are 58.7% longer in duration than those of native speakers: 146.2ms vs
92.1ms. We expected that duration would be a salient feature for
tone quality perception; however, as Figure 2 shows (repre-
sentative of all tones), this is not the case - non-native speakers
are consistently slower for both good and bad productions.
The key contrasting feature for Mandarin tones is the shape
of the pitch contour. Figure 3 shows normalized F_0 contours
for Tones 1-4. The blue and green lines represent the native
and good non-native tones, and the red lines represent the bad
non-native tones.
Our first observation is that in all four tones, bad contours
are completely separated from the native contours in terms of
normalized pitch register and that the good contours are very
close to the native counterparts. Work in [17] found that, while
native speakers are remarkably consistent in the relative order-
ing of the tone registers (Tone 1 and 4 are rendered at the highest
pitches, then Tone 2, and then Tone 3), the non-native speakers
are not as consistent. These results show that this inconsistency
is due to bad productions of the tones.
Our second observation is that the shapes of the contours
for the native and good productions are almost identical. The
bad productions, in contrast, are completely different. Tone 1
is produced at a high register with a flat slope; the bad productions
are produced at a lower register with a negative slope. Tone 2
is produced at a lower pitch register with a flat initial slope that
becomes slightly positive after the 30% time mark; the bad pro-
ductions are initially produced at a high register with a sharply
negative slope that is the complete opposite. The bad Tone 3
contour is much higher in register and flatter than the good Tone
3 and native Tone 3 contours.
The one good-tone production anomaly is tone 4. Al-
though both the native and good contours start out at a high
register (as expected), the non-native good productions have a
much sharper negative slope overall than the native productions.
Non-native speakers seem to be over-enunciating the Tone-4
falling contour feature, although it could also be the case that
they are producing an appropriate contour for emphasis in En-
lish, which resembles Tone 4 in contour shape. There is some
prior evidence that non-native speakers may experience more
difficulties producing Tone 4 due to native language interfer-
ence [28]. Our own research indicates that non-native produc-
tions of Tone 4 were much more likely to be rated as bad than
the other tones.

5. Conclusions and Future Work

This paper presents our research quantifying non-native Man-
darin tone production errors based on native-speaker assess-
ment. We showed that the annotators had a moderate agree-
ment with one another on a binary good/bad decision for the
tone quality of each syllable. We then used these assessments
to compare and contrast the features of good tone productions
and bad tone productions and found that they manifest them-
selves mainly in the shapes and height of the pitch contours. We
plan to use these features to implement assessment algorithms which will be incorporated into CALL games for students learning Mandarin.

6. Acknowledgements

This research was supported by Information Technology Research Institute (ITRI) in Taiwan. We would like to thank Hsien-Cheng Liao for coordinating the annotation effort in Taiwan and for his patience while bugs were removed from the annotation system.

7. References

