8th Annual Conference of the International Speech Communication Association

Antwerp, Belgium
August 27-31, 2007

Multiband, Multisensor Robust Features for Noisy Speech Recognition

Dimitrios Dimitriadis, Petros Maragos, Stamatios Lefkimmiatis

National Technical University of Athens, Greece

This paper presents a novel feature extraction scheme taking advantage of both the nonlinear modulation speech model and the spatial diversity of speech and noise signals in a multisensor environment. Herein, we propose applying robust features to speech signals captured by a multisensor array minimizing a noise energy criterion over multiple frequency bands. We show that we can achieve improved recognition performance by minimizing the Teager-Kaiser energy of the noise-corrupted signals in different frequency bands. These Multiband, Multisensor Cepstral (MBSC) features are inspired by similar ones already been applied to single-microphone noisy Speech Recognition tasks with significantly improved results. The recognition results show that the proposed features can perform better than the widely-used MFCC features.

Full Paper

Bibliographic reference.  Dimitriadis, Dimitrios / Maragos, Petros / Lefkimmiatis, Stamatios (2007): "Multiband, multisensor robust features for noisy speech recognition", In INTERSPEECH-2007, 246-249.