11th Annual Conference of the International Speech Communication Association

Makuhari, Chiba, Japan
September 26-30. 2010

Decision Tree Based Tone Modeling with Corrective Feedbacks for Automatic Mandarin Tone Assessment

Hsien-Cheng Liao (1), Jiang-Chun Chen (1), Sen-Chia Chang (1), Ying-Hua Guan (2), Chin-Hui Lee (3)

(1) ITRI, Taiwan
(2) National Taiwan Normal University, Taiwan
(3) Georgia Institute of Technology, USA

We propose a novel decision tree based approach to Mandarin tone assessment. In most conventional computer assisted pronunciation training (CAPT) scenarios a tone production template is prepared as a reference with only numeric scores as feedbacks for tone learning. In contrast decision trees trained with an annotated tone-balanced corpus make use of a collection of questions related to important cues in categories of tone production. By traversing the corresponding paths and nodes associated with a test utterance a sequence of corrective comments can be generated to guide the learner for potential improvement. Therefore a detailed pronunciation indication or a comparison between two paths can be provided to learners which are usually unavailable in score-based CAPT systems.

Full Paper

Bibliographic reference.  Liao, Hsien-Cheng / Chen, Jiang-Chun / Chang, Sen-Chia / Guan, Ying-Hua / Lee, Chin-Hui (2010): "Decision tree based tone modeling with corrective feedbacks for automatic Mandarin tone assessment", In INTERSPEECH-2010, 602-605.