12th Annual Conference of the International Speech Communication Association

Florence, Italy
August 27-31. 2011

Combining Evidence from Spectral and Source-Like Features for Person Recognition from Humming

Hemant A. Patil (1), Maulik C. Madhavi (1), Keshab K. Parhi (2)

(1) DA-IICT, India
(2) University of Minnesota, USA

In this paper, hum of a person is used in voice biometric system. In addition, recently proposed feature set, i.e., Variable length Teager Energy Based Mel Frequency Cepstral Coefficients (VTMFCC), is found to capture perceptually meaningful source-like information from hum signal. For person recognition, MFCC gives EER of 13.14% and %ID of 64.96%. A reduction in equal error rate (EER) by 0.2% and improvement in identification rate by 7.3% is achieved when a score-level fusion system is employed by combining evidence from MFCC (system) and VTMFCC (source-like features) than MFCC alone. Results are reported for various feature dimensions and population sizes.

Full Paper

Bibliographic reference.  Patil, Hemant A. / Madhavi, Maulik C. / Parhi, Keshab K. (2011): "Combining evidence from spectral and source-like features for person recognition from humming", In INTERSPEECH-2011, 369-372.