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Abstract
Computational Paralinguistics has several unresolved issues,
one of which is coping with large variability due to speakers,
spoken content and corpora. In this paper, we address the
variability compensation issue by proposing a novel method
composed of i) Fisher vector encoding of low level descrip-
tors extracted from the signal, ii) speaker z-normalization ap-
plied after speaker clustering iii) non-linear normalization of
features and iv) classification based on Kernel Extreme Learn-
ing Machines and Partial Least Squares regression. For ex-
perimental validation, we apply the proposed method on IN-
TERSPEECH 2015 Computational Paralinguistics Challenge
(ComParE 2015), Eating Condition sub-challenge, which is a
seven-class classification task. In our preliminary experiments,
the proposed method achieves an Unweighted Average Recall
(UAR) score of 83.1%, outperforming the challenge test set
baseline UAR (65.9%) by a large margin.
Index Terms: ComParE, computational paralinguistics, Eating
Condition, Fisher vector, PLS, ELM, signal representation

1. Introduction
Paralinguistics is the study of non-verbal aspects of speech. It
deals with how the words are spoken, rather than what is being
spoken. A set of paralinguistic tasks, such as emotion [1, 2],
depression [3] and personality [4] are popularly investigated and
yet there is a plethora of other tasks to be discovered.

In this context, INTERSPEECH 2015 ComParE chal-
lenge [5] introduces a novel problem, which is to classify the
eating condition (EC) of the speaker. There are seven different
ECs (speech with no food plus six different types of food) to be
classified using acoustic features. The challenge opens a new
area of paralinguistic research that can be beneficial for existing
studies e. g. by adapting speech and speaker recognizer systems
to ECs. The problem is related to a “state” of the speaker, rather
than a “trait”, and therefore, individual differences should be
minimized/compensated.

Modeling/compensating variability due to speakers is of in-
terest in many speech related disciplines. In speaker recogni-
tion, state-of-the-art systems are built using i-Vector (i. e. total
variability) modeling introduced by Dehak et al. [6], which has
its roots in Joint Factor Analysis (JFA) approach [7, 8]. In this
approach, the total variance is factorized, and it is postulated
that some factors encode for idiosyncratic variations, whereas
others are more general. i-Vectors are also used in other par-
alinguistic tasks [9, 10] for compensating variability due to
speakers, rather than augmenting speaker related information
for identification purposes.

We propose the use of Fisher vectors (FV) for encoding the

low level descriptors (LLD) over utterances. This super vector
modeling is introduced and popularly used in computer vision,
especially in large scale image retrieval [11, 12]. The idea is to
measure the amount of change induced by the utterance/video
descriptors on a background probability model, which is typ-
ically a Gaussian Mixture Model (GMM). In other words, FV
encodes the amount of change of model parameters to optimally
fit the new-coming data. This requires the computation of the
Fisher information matrix, which is the derivative of the log
likelihood with respect to model parameters (hence the name
“Fisher”). The encoding requires far less number of compo-
nents in a GMM than the Bag of Words (BoW) approach [13].

In order to address the speaker variability issue in the
EC sub-challenge by employing FV encoding, we first extract
Mel Frequency Cepstral Coefficients (MFCC) and RASTA-
style Perceptual Linear Prediction (PLP) Cepstrum to represent
the signal properties. We show that the combination of RASTA-
PLP and MFCC descriptors improve over their individual per-
formances. Moreover, our experiments have shown that the FV
encoding of extracted LLDs reaches the performance improve-
ment obtained by the speaker based z-normalization of base-
line feature set extracted via openSMILE tool [14]. The per-
formance of the FV is further improved by applying speaker
z-normalization. In order to apply this on the challenge test set,
where the speaker labels are missing, we implemented Hier-
archical Agglomerative Clustering (HAC), which is commonly
used to identify speakers [15, 16, 10].

For modeling, we use Extreme Learning Machines
(ELM) [17, 18] and Partial Least Squares (PLS) regression [19]
based classifiers, motivated by their fast learning capability and
outstanding performance in recent challenges [20, 21, 22].

We explain the effect of each component of our framework
separately and in a combined fashion. The remainder of this pa-
per is organized as follows. In Section 2 we introduce the pro-
posed method and give background on its major components.
The experimental results are given in Section 3, Section 4 con-
cludes with future directions.

2. Proposed Method
The overview of the proposed speech signal representation
method is given in Figure 1, where speaker IDs are used for
speaker z-normalization as the first stage of cascaded normal-
ization.

2.1. Speech Signal Processing

MFCC and RASTA-PLP [23, 24] are the most popular de-
scriptors used in a variety of speech technologies ranging from
speaker identification to speech recognition, although they are
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Figure 1: Overview of the proposed method: speech signal rep-
resentation using Fisher vectors with cascaded normalization

initially designed to minimize the speaker dependent effects.
They are also commonly employed in state-of-the-art paralin-
guistics studies, together with prosodic and voicing related fea-
tures. Since the task at hand is to recognize the EC, which can
be identified with the existence of specific acoustic characteris-
tics (e. g. due to the sound of crunching or chewing), we imple-
ment an acoustic model, ignoring the prosody that can be biased
towards the speaker identity.

For the purpose of speech signal representation, we extract
MFCCs 0-24, and use a 12th order linear prediction filter giving
13 coefficients. Raw LLDs are augmented with their first and
second order delta coefficients, resulting in 75 and 39 features
for MFCC and RASTA-PLP, respectively. After a preliminary
analysis, we have found that MFCC bands 22-24 are linearly
dependent on the first 21 bands; nonetheless, their removal de-
creased the performance. Moreover, although they are known
to be alternative representations, RASTA-PLP and MFCC fea-
tures are not found to be linearly dependent, therefore they have
complementary rather than redundant information.

To distinguish the speech and non-speech frames, we use an
energy based voice activity detector. In this approach, frames
with lower energy than a threshold τE are considered to be non-
speech. To smooth the decision boundary, we take the mean
energy in a symmetric window of nine frames, centered at the
frame of interest. As a measure of frame-level energy, we tried
sum of RASTA-style auditory spectrum and MFCC 0 and ob-
served that thresholding MFCC 0 gives more reliable results on
speech signal segmentation.

2.2. Fisher Vector Encoding

The Fisher vector (FV) provides a supra-frame encoding of the
local descriptors, quantifying the gradient of the parameters of
the background model with respect to the data. Given a proba-
bility model parametrized with θ, the expected Fisher informa-
tion matrix F(θ) is the expectation of the second derivative of
the log likelihood with respect to θ:

F(θ) = −E[
∂2 log p(X|θ)

∂θ2 ]. (1)

The idea in FV in relation to F(θ) is taking the derivative
of the model parameters and normalizing them with respect
to the diagonal of F(θ) [11]. To make the computation fea-
sible, a closed form approximation to the diagonal of F(θ) is

proposed [11]. As a probability density model p(θ), GMMs
with diagonal covariances are used. A K-component GMM is
parametrized as θ = {πk, µk,Σk}

K
k=1 where the parameters corre-

spond to zeroth (mixture proportions), first (means) and second
order (covariances) statistics, respectively. It has been shown
that using the zeroth order statistics is equivalent to the BoW
model, however in FV, they have a negligible effect on perfor-
mance [11]. Therefore, only gradients of {µk,Σk}

K
k=1 are used,

giving a 2×d×K dimensional super vector, where d is the LLD
dimensionality.

In order to efficiently learn an Acoustic Background Model
(ABM) using GMM with diagonal covariances, we first need
to decorrelate the data gathered from all utterances. Principal
Component Analysis (PCA) is applied on the data for this pur-
pose. To reduce the computational cost, we take LLDs from
every second frame to learn PCA and GMM. In our preliminary
tests, this sub-sampling did not decrease the performance. Once
the parameters of PCA projection and GMM are learned, we use
all speech frames from each utterance without sub-sampling to
represent them as a FV.

2.3. Speaker Clustering

Despite the fact that FV encoding aims to compensate the
speaker dependent variability, there may still be bias in this rep-
resentation towards speakers. To further enhance the features in
eliminating the speaker dependent information, we use speaker
based z-normalization. Since the speaker IDs of utterances are
given only for the training/validation set, we need to employ a
clustering method to obtain speaker ID information on the chal-
lenge test set.

A literature review on speaker clustering reveals that GMM
or K-Means clustering on LLDs do not give desirable results.
Moreover, the must-link condition for LLDs of an utterance is
not met with these partitional clustering methods. The most
popular method employed for this purpose is single Gaus-
sian based bottom up Hierarchical Agglomerative Clustering
with Generalized Likelihood Ratio (GLR) as distance mea-
sure [10, 15, 16]. In this method, initialization is done by mod-
eling LLDs of each utterance with a full covariance Gaussian.
Then the GLR is computed for each pair of components, and the
pair with minimum GLR distance is merged into a single Gaus-
sian component. This continues until one component is left. If
the optimal number of components K∗ is known, the cluster-
ing with K∗ components can be taken. Otherwise, one needs to
use automatic model selection criteria, such as Bayesian Infor-
mation Criterion (BIC) [25], or Minimum Description Length
(MDL) [26]. In our problem, the number of speakers in the test
set is given in the challenge [5].

In HAC, we use MFCC 1-12 as in [16], instead of 75 di-
mensional MFCCs used in the ABM. We also use a higher en-
ergy threshold compared to the one used in ABM, since here we
are interested in clean speech rather than “eating noise” that is
useful in discrimination of the EC.

2.4. Feature Normalization

Perronnin et al. further improve the FV representation to be
used in linear classifiers (e. g. Linear Kernel Support Vec-
tor Machines) with power normalization, followed by instance
level L2 normalization [27]. The authors argue that power nor-
malization helps “unsparsify” the distribution of feature values,
thus improves discrimination:

f (x) = sign(x)|x|α, (2)
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where 0 ≤ α ≤ 1 is a parameter to optimize. In [27] the au-
thors empirically choose α = 0.5. In this study we investigate
the suitability of sigmoid function, which is commonly used as
hidden layer activation function of Neural Networks:

h(x) =
1

1 + exp (−x)
. (3)

This way we avoid a hyper-parameter to optimize, while provid-
ing a non-linear normalization into [0,1] range. The flowchart
of the normalization steps we applied on the baseline openS-
MILE features and extracted FVs is given in Figure 2. We use
the combination of feature, value (applied to each value of the
data matrix separately) and instance level normalization strate-
gies. Without using feature level normalization the performance
is poor for the baseline set, while FV encoding does not neces-
sitate this step.

Figure 2: Cascaded feature normalization pipeline

2.5. Model Learning

To learn a classification model, we use Kernel ELM and PLS
regression due to their fast and accurate learning capability.

ELM proposes unsupervised, even random generation of
the hidden node output matrix H ∈ RN×h, where N and h denote
the number of instances and the hidden neurons, respectively.
The actual learning takes place in the second layer between H
and the label matrix T ∈ RN×L, where L is the number of classes.
T is composed of continuous annotations in case of regression,
therefore is a vector. In the case of L-class classification, T is
represented in one vs. all coding:

Tt,l =

{
+1 if yt = l,
−1 if yt , l. (4)

The second level weights β ∈ Rh×L are learned by least squares
solution to a set of linear equations Hβ = T. The output weights
can be learned via:

β = H†T, (5)

where H† is the Moore-Penrose generalized inverse [28] that
gives the minimum L2 norm solution to ||Hβ − T||, simultane-
ously minimizing the norm of ||β||. This extreme learning rule is
generalized to use any kernel K with a regularization parame-
ter C, without generating H [18], relating ELM to Least Square
SVM [29]:

β = (
I
C

+ K)−1T, (6)

where I is the N×N identity matrix. In our experiments, we use
Kernel ELM learning rule given in eq. (6).

PLS regression between two sets of variables X ∈ RN×d

and Y ∈ RN×p is based on decomposing the matrices as X =

UxVx + rx, Y = UyVy + ry, where U denotes the latent factors,
V denotes the loadings and r stands for the residuals. The de-
composition is done by finding projection weights Wx,Wy that
jointly maximize the covariance of corresponding columns of
Ux = XWx and Uy = YWy. For further details of PLS regres-
sion, the reader is referred to [19]. PLS is applied to classi-
fication in one-versus-all setting between the feature matrix X
and the binary label vector Y, then the class giving the highest
regression score is taken as prediction. The number of latent
factors is a hyper-parameter to tune via cross-validation.

3. Experimental Results
The corpus of the EC sub-challenge is from [30], which features
a total of 1 414 speech utterances produced by 30 speakers with
either no food or eating one of the following six food types: ap-
ple, nectarine, banana, crisp, biscuit, gummy bear. Each speaker
is expected to give data for 7 utterances for each class. How-
ever, since some speakers refuse to eat some food, some classes
are missing for these speakers. The challenge measure is Un-
weighted Average Recall (i. e. mean recall of all seven classes),
used as challenge measure since INTERSPEECH 2009 chal-
lenge [1]. The challenge organizers provide a baseline feature
set consisting of 6 373 suprasegmental features extracted via the
latest version of openSMILE tool [14].

The data are segmented into a training set with 20 speak-
ers, and a test set with 10 disjoint speakers. Model optimiza-
tion is done via 20-fold leave-one-speaker-out (LOSO) cross-
validation (CV). The test set labels and speaker IDs are not
known by the competitors. For further details on challenge pro-
tocol, reader is referred to the challenge paper [5].

For ease of reproducibility, we use open source tools in our
experiments. For MFCC and RASTA-PLP feature extraction
we use RASTAMAT library [31], for GMM training and FV
encoding we use MATLAB API of VLFeat library [32]. Prior
to the experiments with FV, we analyze the baseline features
with cascaded normalization strategies.

In all our experiments we generated linear kernels from the
preprocessed data and used these kernels in ELM and PLS.
The regularization parameter in ELM is optimized in the set
10−6,−5,...,5 with exponential steps. The number of latent factors
for PLS is searched in [2,24] range with steps of two.

3.1. Experiments with the Baseline Feature Set

As mentioned earlier, the baseline UAR for the train-
ing/validation set is computed via LOSO CV by combining
the predictions on each fold to get an overall performance.
The baseline UAR scores are 61.3% and 65.9%, for the train-
ing/validation and the test sets, respectively.

We first analyzed the features using the combination of nor-
malization strategies described in Section 2.4. Combination of
z-norm + logistic sigmoid + L2-norm reached the highest LOSO
UAR score (63.2%) among other alternatives.

We analyzed the effect of feature selection separately us-
ing z-normalization and min-max normalization with two fea-
ture filters: multi-view discriminative projection based feature
selection [33] that generated the best performance in INTER-
SPEECH 2014 Physical challenge [34] and a randomized ver-
sion of this filter [35]. To our surprise, the highest improvement
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over the baseline was less than one percent, remaining below
the individual contribution of the cascaded normalization.

Using the ground truth speaker IDs for speaker z-
normalization, it was possible to dramatically increase the UAR
performance to 70.1% with PLS and to 70.8% with ELM. When
speaker z-norm is augmented with logistic sigmoid + L2-norm
combination, UAR reaches 71.6% with ELM. The results indi-
cate that the features are highly biased towards speakers and a
marked improvement can be obtained by minimizing speaker
variability.

3.2. Experiments with the Proposed Method

We test the effect of RASTA-PLP and MFCC separately to eval-
uate their individual and combined performance. We then ap-
ply speaker z-normalization using ground truth and predicted
speaker IDs for our final system.

Fisher vectors for RASTA-PLP are tested with a range
of PCA dimensions, and K = {64, 128, 256} components for
GMM. The best UAR performance (62.7%) is obtained with 30
PCA dimensions, 128 GMM components, preprocessed using
power-normalization + L2-norm and PLS based classifier. Note
that this performance is slightly higher than the baseline.

In the remaining experiments, we use K = 128 to train
GMMs, as it gives a good compromise between computational
complexity and UAR performance. Using MFCC features, the
performance is increased to 66.9% with 70 PCA dimensions,
with logistic sigmoid + L2 norm. In results not reported here,
we observed that the classifiers react differently to non-linear
preprocessing alternatives. We also noticed a jump in UAR
performance (64.3%→66.9%) from 60 to 70 PCA dimensions.
This implies that the “devil is in the details”, as the variability
due to eating noise that is useful for discrimination might be
contained in these eigenvectors.

When the two descriptors are combined, the best overall
UAR is obtained as 70.4%, with 110 PCA dimensions and
power-norm + L2 norm combination. Further dramatic im-
provement is attained when speaker z-normalization is applied.
We reach 76.1% and 77.0% UAR using speaker clustering and
real speaker IDs, respectively (see Table 1). Score fusion of
the best two systems gave 77.5% UAR both with predicted and
ground truth speaker IDs.

Table 1: UAR scores of RASTA-PLP + MFCC combination
UAR (%) Power-L2 Logsig-L2 No-norm
Preprocess PLS ELM PLS ELM PLS ELM
PCA 80 66.1 64.2 65.5 64.8 65.7 64.0
PCA 100 67.5 63.9 65.7 67.4 66.8 65.8
PCA 110 69.4 70.4 66.8 67.9 66.0 68.7

PCA 110 with speaker z-normalization
Real ID 75.3 75.6 77.0 77.3 76.3 76.5
Pred. ID 74.2 73.9 75.5 74.4 76.1 74.1

For the challenge test set, we have submitted predictions of
five systems. The first is score fusion of the best two systems
with predicted speaker IDs (see the last row of Table 1). This
resulted in a test set UAR of 81.4%. For the second submission,
we re-trained GMM based ABM using the descriptors from the
training and test sets. This increased the best training set UAR
to 78.9% using logistic sigmoid + L2-norm combination with
PLS. The test set UAR increased slightly to 81.6%. This result
is motivating as it shows that using only training set for acous-
tic background modeling generalizes as good as combination of

the training and test sets. We observed that the predicted labels
for the first two submissions differ in 72 instances, therefore we
fused their scores for the third submission. This combination
reached a test set UAR of 83.1%. The corresponding confu-
sion matrix is given Figure 3, where we see a perfect recall of
“No Food” class. We also observe high recall for “Crisp” and
“Biscuit” classes, where we may expect high confusion. The
lowest recall is observed with “Nectarine”, which is confused
generally with “Apple” (25%) and “Banana” (13%).

Figure 3: Confusion matrix of submission 3 (UAR 83.1%)

We finally employed a weighted fusion scheme on the best
performing four base classifiers, reaching test set UAR scores
of 74.5% and 82.9%, for our fourth and fifth submissions, re-
spectively.

4. Conclusion
In this study, we proposed a novel method combining the FV en-
coding with cascaded normalization that is composed of speaker
z-normalization and non-linear normalization. The results in-
dicate superior performance of the proposed method over the
challenge baselines obtained with openSMILE features. The
experiments with the baseline feature set reveal the importance
of compensating speaker variability, which is handled partly by
the FV approach and partly by speaker z-normalization em-
ployed after Hierarchical Agglomerative Clustering. The best
overall test set performance is obtained with score fusion of
systems trained on combination of RASTA-PLP and MFCC de-
scriptors. The results on both baseline and extracted features in-
dicated that proposed sigmoid normalization is a good alterna-
tive to power-normalization used to enhance non-linear discrim-
ination capability of linear classifiers. Application of the pro-
posed method on the challenging task of cross-corpus acoustic
emotion recognition constitutes our nearest future work. Cas-
caded normalization can be improved using other speaker adap-
tation transforms such as the one proposed in [36].
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