ISI's 2005 Statistical Machine Translation Entries

Steve DeNeefe and Kevin Knight

Information Sciences Institute
University of Southern California
Outline

- Overview of two MT systems
- Syntax-based Translation Model
- Language Model
- Model Weight Training
- Syntax-based Decoder
- Decoding Example
- Results
- Discussion
Overview

- ISI's two statistical MT systems this year:
 - a phrase-based system
 - intended to be representative of current state-of-the-art techniques in MT
 - poor performance due to user error (OOPS!)
 - a syntax-based system
 - a current research effort at ISI
 - performance is steadily improving
Phrase-based MT system

- nothing new here, really
 - statistical model trained by learning phrase pairs from bilingual data
 - log-linear model allows combination with other knowledge sources (e.g. trigram LM)
 - parameter tuning required for best results
 - rule-based preprocessing for translating dates, numbers, etc.
 - translation model is string-to-string
Phrase-based MT system

- “small” problem during evaluation
 - phrase tables not collected correctly with respect to the evaluation source text
 - thus, our system did not have all the relevant phrase-pairs while decoding
Syntax-based MT system

- similarities to phrase-based system
 - statistical model trained by learning “translation rules” from bilingual data
 - log-linear model allows combination with other knowledge sources (e.g. trigram LM)
- parameter tuning required for best results
- rule-based preprocessing for translating dates, numbers, etc.
Syntax-based MT system

- differences from phrase-based system
 - translation model incorporates syntactic structure on the target language side
 - the decoder uses a parser-like method to create syntactic trees as output hypotheses
 - tree-to-string translation model
Syntax-based Translation Model

- rules translate source language phrase into target language syntactic chunks:
 - $\text{NPB}(\text{PRP/I}) \leftrightarrow 我$
 - $\text{NN/hotel} \leftrightarrow 酒店$
 - $\text{NP-C}(\text{NPB}(\text{DT/this NN/address})) \leftrightarrow 这个 地址$
Syntax-based Translation Model

- rules can have “holes” in the phrases:
 - NP-C(NPB(PRP$/my x_0:NN)) \leftrightarrow 我的 x_0
 - NP-C(NPB(PRP$/my x_0:NN)) \leftrightarrow 我 x_0
 - PP(TO/to NP-C(NPB(x_0:NNS NNP/park))) \leftrightarrow 去 x_0 公园
Syntax-based Translation Model

- rules can combine previously translated results together:
 - \(\text{VP}(x_0:VBZ \ x_1:NP-C) \leftrightarrow x_0 \ x_1 \)
 - combines a verb and a noun-phrase to build a new verb phrase
 - \(\text{VP}(x_0:VBZ \ x_1:NP-C) \leftrightarrow x_1 \ x_0 \)
 - takes a noun phrase followed by a verb, switches their order, then combines them into a new verb phrase
Learning the rules

• four steps:

1. word-align a bilingual parallel corpus
 • union of GIZA++ alignments in each direction
2. parse the target side
 • using our own implementation of Collins Model 2
3. extract a list of translation rules
 • using GHKM algorithm (Galley et al, 2004)
4. estimate probabilities according to relative frequency
 • rule probabilities are conditioned only on root of target syntax fragment – basically a joint \(p(e,f) \) model
Language Model

- all language models created with SRI toolkit on English portion of supplied data
- evaluation run
 - bigram model integrated into decoder search
 - 25,000 n-best list re-ranked with trigram model
- post-eval run
 - trigram model integrated into decoder search
Model Weight Training

- split provided development data into dev and test sets:
 - Chinese, Arabic, and Japanese:
 - devset 1 (CSTAR 03) for testing
 - devset 2 (IWLST 04) for development
 - Korean
 - first half of devset 1 (CSTAR 03) for testing, second half for development
Model Weight Training

- parameters trained for syntax system
 - translation model – $p(e, f)$
 - IBM model 1 inverse approximation
 - language model
 - length bonus and rule bonus
- used exhaustive method to train weights
 - run the decoder on the development set using hundreds of parameter settings, measure BLEU score for each, then use the best one
 - this is time intensive – we only did this for Chinese, and used the results for other languages
Syntax-based Decoder

- probabilistic CYK-style parsing algorithm with beams
- results in an English syntax tree corresponding to the Chinese sentence
- guarantees the output to have some kind of globally coherent syntactic structure
Decoding Example

我 不 懂 英语。

Literally: “I not understand English.”
Decoding Example

```
Rule 138452
PRP/I ↔ 我

我 不 懂 英语
```

Literal: “I not understand English.”
Decoding Example

Literally: “I not understand English.”
Decoding Example

Rule 138452
VP(VBP/do RB/not VP-C(VB/understand x_0:NP-C))
↔ 不 懂 x_0

Rule 138452
PRP/I ↔ 我

Rule 42386
NP-C(NPB(NNP/English)) ↔ 英语

Literally: “I not understand English .”
Decoding Example

Literally: “I not understand English.”
Decoding Example

“Literally: “I not understand English.”

Rule 138452
PRP/I ↔ 我

Rule 89263
S(NP-C(NPB(x₀:PRP)) x₁:VP ./.) ↔ x₀ x₁ .

Rule 42386
NP-C(NPB(NNP/English)) ↔ 英语

Rule 138452
PRP/I ↔ 我

不 懂 英语 .

我 不 懂 英语 .
Results: Phrase-based MT

<table>
<thead>
<tr>
<th>Language</th>
<th>Pre-eval</th>
<th>blind test</th>
<th>Evaluation</th>
<th>Post-eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>53.79</td>
<td>37.39</td>
<td>50.16</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>32.1</td>
<td>33.23</td>
<td>41.16</td>
<td></td>
</tr>
<tr>
<td>Japanese</td>
<td>44.07</td>
<td>28.31</td>
<td>33.82</td>
<td></td>
</tr>
<tr>
<td>Korean</td>
<td>35.48</td>
<td>23.74</td>
<td>30.02</td>
<td></td>
</tr>
</tbody>
</table>

- OOPS! Eval scores are very low!
- After correcting the phrase tables, scores are more competitive.

(note: reported numbers are BLEU scores)
Results: Syntax-based MT

<table>
<thead>
<tr>
<th>Language</th>
<th>Pre-eval blind test</th>
<th>Evaluation</th>
<th>Post-eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>43.84</td>
<td>39.62</td>
<td>44.47</td>
</tr>
<tr>
<td>Chinese</td>
<td>25.73</td>
<td>37.64</td>
<td>40.08</td>
</tr>
<tr>
<td>Japanese</td>
<td>36.66</td>
<td>27.41</td>
<td>29.98</td>
</tr>
<tr>
<td>Korean</td>
<td>26.2</td>
<td>25.22</td>
<td>27.65</td>
</tr>
</tbody>
</table>

- Evaluation scores are as expected.
- After evaluation, we were able to improve the scores using a trigram LM in search.

(note: reported numbers are BLEU scores)
Discussion

• Pleasant surprise for Chinese
 • Chinese post-eval syntax-based results were very close to phrase-based results
 • main change: integrating trigram language model into the decoder search
 • this is surprising because the syntax system is currently not learning as many phrase pairs as the phrase-based system
Discussion

- **Question Sentences**
 - Large percentage of data in this evaluation
 - Syntax for questions is different than the typical "expository text" that our system usually translates.
 - Current parser doesn’t handle questions well.
 - If it did, questions could become a strength rather than a weakness.
Thank You!