CASIA Statistical Machine Translation
System for IWSLT 2008

Chengqing Zong
NLPR, Institute of Automation
Chinese Academy of Sciences

cqzong@nlpr.ia.ac.cn

No.95, Zhongguancun East Road
Beijing 100190, China
http://www.nlpr.ia.ac.cn
Tel. No.: +86-10-6255 4263
Outline

- Our tasks
- System overview
- Technical modules
 - Preprocessing
 - Multiple translation engines
 - System combination
 - Rescoring
 - Post-processing
- Experiments
- Conclusions
Our tasks

- We participated in:
 1. Challenge task for Chinese-English
 2. Challenge task for English-Chinese
 3. BTEC task for Chinese-English.
System overview

- Using multiple translation engines
- Rescore the combination results to get the final translation outputs
Technical modules

- Preprocessing
 - Chinese
 - Chinese word segmentation
 - Transforming the Sexagesimal to Binary Converter (SBC) to Decimal to Binary Converter (DBC)
 - English
 - Tokenization of the English words - separates the punctuations with the English words;
 - Transforming the uppercase into lowercase.
Technical modules

- Phrase-based translation engines modeled in log-linear model

\[
 e^* = \arg \max_e \sum_{m=1}^{M} \lambda_m h_m(e, f)
\]

✓ Phrase translation probability
✓ Lexical phrase translation probability
✓ Inversed phrase translation probability
✓ Inversed lexical phrase translation probability
✓ English language model based on 3-gram
✓ English sentence length penalty
✓ Chinese phrase count penalty
Technical modules

- We use three phrase-based SMT:
 - In-home developed phrase-based decoder (baseline)
 - Moses decoder
 - Bandore: A sentence type based reordering decoder
Preprocessing for PB SMT engine

SVM is employed to divide the source (Chinese) sentences into three types, different types of sentences are reordered using different models

Three types:
- Special interrogative sentences
- Other interrogative sentences
- Non-question sentences
Technical modules - Bandore

- Architecture

- C1: special interrogative sentences
- C2: other interrogative sentences
- C3: non-question sentences
Technical modules- Bandore

- Special interrogative sentences

 - There is a fixed question phrase at the end of Chinese sentence, which is moved to the first position in the English translation. *(We call the question phrase as Special Question Phrase)*

 "你想要什么样的座位？"

 What kind of seats do you like?
Phrase-ahead reordering model moves the SQP to the frontal position in Chinese sentence.

Two problems:
- Identification of SQP
- What position should SQP be moved to
Technical modules- Bandore

- Special words in SQP
 - Some Chinese words indicate the sentence is a special interrogative sentence
 - Close set: 什么 (what)、哪 (where)、多 (how long)、怎 (how)、谁 (who, whom, whose)、几 (how many)、为什么 (why)、何 (when)
Definition of SQP:

- The syntactic component containing a special word in the close set

Identification:

- Use a shallow parsing toolkit (FlexCrf) (http://flexCRF.sourceforge.net)
Technical modules - Bandore

Where should SQP be moved to?

- Three possible positions:
 - The beginning of the sentence
 - After the rightmost punctuation before the SQP
 - After a regular phrase such as “请问 (May I ask)” and “你 知道 (Do you know)”
这道菜怎么样？ How about this dish?
你好，去海滩怎么走？ Hello, how can I get to the beach?
你知道到那里需要多长时间？ Do you know how long it takes us to there?
If we have known the SQP, S becomes S^0 SQP S^1, where S^0 is the left part of the sentence before SQP, and S^1 is the right part of the sentence after SQP. Therefore, we have learned the reordering templates from bilingual corpus to find the right position in S^0 where SQP will be moved to.
Other interrogative sentences

Some specific Chinese words like “会、能、可以” are simply translated into “Can …”, “Do …” or “May …” at the beginning of the English sentence.

This case is easy to process. So, we treat it as the no-question sentences.
Non-question sentences

- Some phrases are usually moved back during translation.
- Three types of Chinese phrases are usually moved after the verb phrase in English sentence: (1) Prepositional phrase (PP), (2) Temporal phrase, and (3) Spatial phrase (SP).

My wallet was stolen in the subway.
For the other interrogative sentences and non-question sentences, the phrase-back reordering model has been designed to move some phrases to the back positions.

Two problems:
- Identification of PP, TP, SP and VP
- Reordering rules
Technical modules- Bandore

- Identification
 Use a shallow parsing toolkit
 (http://flexCRF.sourceforge.net)

- Reordering rules
 - Maximum entropy model is employed to decide whether a PP, TP or SP is moved back after VP
Technical modules- Bandore

We develop a probabilistic reordering model to alleviate the impact of the errors caused by the parser when recognizing *PPs, TPs, SPs* and *VPs*. The form of phrase-back reordering rules:

\[
A_1XA_2 \Rightarrow \begin{cases}
A_1XA_2 & \text{straight} \\
XA_2A_1 & \text{inverted}
\end{cases}
\]

\(A_1 \in \{PP, TP, SP\} , \ A_2 \in \{VP, FVP\}\)

\(X\) is any phrases between \(A_1\) and \(A_2\).
A Maximum Entropy Model is trained from bilingual spoken language corpus to determine whether A_1 should be moved after A_2:

$$P(O \mid A) = \frac{\exp\left(\sum_i \lambda_i h_i(O, A)\right)}{\sum_O \exp\left(\sum_i \lambda_i h_i(O, A)\right)}$$

$O \in \{straight, inverted\}$, $h_i(O, A)$ is a feature, and λ_i is the weight.

The features include the leftmost, rightmost, and the POSs of A_1 and A_2.

Technical modules - Bandore
Technical modules

Other translation engines:

- Two formal syntax-based SMT engines:
 - HPB: A hierarchical phrase-based model
 - MEBTG: A maximum entropy-based reordering model

- A linguistically syntax-based SMT:
 - SAMT: A syntax-augmented machine translation decoder
System combination

- We implement system combination on N-Best list from multiple translation engines.
System combination

Find a hypothesis as the alignment reference with the minimum Bayesian risk.

Align all the hypotheses against the alignment reference and forms a consensus alignment.

Merge the similar words being aligned together at the same position and assign each word an alignment score based on a simple voting scheme. It thus forms a confusion network.

The final translation is found by the confusion network decoding with the language model feature and word penalty introduced.
Rescoring

Use global feature functions to score the new n-best list

- Direct and inverse IBM model 1 and model 3
- 2, 4, 5-gram target language model
- 3, 4, 5-gram target pos language model
- Bi-word language model
- Length ratio between source and target sentence
- Question feature
- Frequency of its n-gram ($n=1, 2, 3, 4$) within n-best translations
- n-gram posterior probabilities within n-best translations.
- Sentence length posterior probabilities.
Post-processing

The post-processing for the output results mainly includes:

- Case restoration in English words
- Recombination the separated punctuations with its left closest English words
- Segmenting the Chinese output into characters
Experiments

Corpus

- Besides the training data provided by IWSLT 2008, we collected all the data from the website of IWSLT2008.
- We extract the bilingual data which are highly correlative with the training data of each track.
- We also filter some development sentences and their reference sentences from all the released development data of the track as our development data according to the similarity calculation.
Experiments

- The detailed statistics of our corpus for development set

<table>
<thead>
<tr>
<th>Track</th>
<th>Data</th>
<th>Sen.</th>
<th>Running words</th>
<th>Voc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT CE CRR</td>
<td>Train set</td>
<td>Chi 324,626</td>
<td>2.4M</td>
<td>11,214</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 324,626</td>
<td>2.57M</td>
<td>9,488</td>
</tr>
<tr>
<td></td>
<td>Dev set</td>
<td>Chi 534</td>
<td>3,163</td>
<td>649</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 3,204</td>
<td>22,861</td>
<td>1,132</td>
</tr>
<tr>
<td>CT EC CRR</td>
<td>Train set</td>
<td>Chi 311,438</td>
<td>2.28M</td>
<td>11,113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 311,438</td>
<td>2.42M</td>
<td>9,370</td>
</tr>
<tr>
<td></td>
<td>Dev set</td>
<td>Chi 2275</td>
<td>15,266</td>
<td>797</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 325</td>
<td>2,061</td>
<td>404</td>
</tr>
<tr>
<td>BTEC CE CRR</td>
<td>Train set</td>
<td>Chi 321,770</td>
<td>2.38M</td>
<td>11,202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 321,770</td>
<td>2.51M</td>
<td>9,493</td>
</tr>
<tr>
<td></td>
<td>Dev set</td>
<td>Chi 764</td>
<td>4,899</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng 4,584</td>
<td>34,310</td>
<td>1,536</td>
</tr>
</tbody>
</table>
Experiments

- **ASR translation**
 - We first translate the ASR \(n \)-best list.
 - For our experiments the value \(n=5 \) is used.
 - We pass the translation results into our combination module and rescore all the translation hypotheses.
 - With the feature functions of translation hypotheses plus the features of ASR.
Experiments

- Results of development set for CT_CE track

<table>
<thead>
<tr>
<th></th>
<th>CRR BLEU</th>
<th>CRR NIST</th>
<th>ASR BLEU</th>
<th>ASR NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>0.4505</td>
<td>7.4649</td>
<td>0.4732</td>
<td>7.4777</td>
</tr>
<tr>
<td>MOSES</td>
<td>0.5048</td>
<td>7.9175</td>
<td>0.4980</td>
<td>7.7488</td>
</tr>
<tr>
<td>Bandore</td>
<td>0.5033</td>
<td>8.0267</td>
<td>0.4651</td>
<td>7.4983</td>
</tr>
<tr>
<td>MEBTG</td>
<td>0.4571</td>
<td>7.6887</td>
<td>0.4969</td>
<td>7.8267</td>
</tr>
<tr>
<td>HPB</td>
<td>0.4412</td>
<td>6.8600</td>
<td>0.4536</td>
<td>7.4474</td>
</tr>
<tr>
<td>COM</td>
<td>0.5109</td>
<td>8.1780</td>
<td>0.5093</td>
<td>8.0045</td>
</tr>
<tr>
<td>Rescore</td>
<td>0.5741</td>
<td>8.3162</td>
<td>0.5787</td>
<td>8.7570</td>
</tr>
</tbody>
</table>
Experiments

- Results of development set for BTEC_CE track

<table>
<thead>
<tr>
<th></th>
<th>CRR</th>
<th>ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU</td>
<td>NIST</td>
</tr>
<tr>
<td>PB</td>
<td>0.4659</td>
<td>7.9333</td>
</tr>
<tr>
<td>MOSES</td>
<td>0.5100</td>
<td>8.0298</td>
</tr>
<tr>
<td>Bandore</td>
<td>0.5127</td>
<td>8.3513</td>
</tr>
<tr>
<td>MEBTG</td>
<td>0.4717</td>
<td>7.8045</td>
</tr>
<tr>
<td>HPB</td>
<td>0.4764</td>
<td>6.5603</td>
</tr>
<tr>
<td>COM</td>
<td>0.5308</td>
<td>8.5689</td>
</tr>
<tr>
<td>Rescore</td>
<td>0.6100</td>
<td>8.7823</td>
</tr>
</tbody>
</table>
Experiments

- Results of development set for CT_EC track

<table>
<thead>
<tr>
<th></th>
<th>CRR</th>
<th>ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLEU</td>
<td>NIST</td>
</tr>
<tr>
<td>PB</td>
<td>0.4385</td>
<td>7.0469</td>
</tr>
<tr>
<td>MEBTG</td>
<td>0.4399</td>
<td>7.5303</td>
</tr>
<tr>
<td>MOSES</td>
<td>0.4522</td>
<td>7.3626</td>
</tr>
<tr>
<td>HPB</td>
<td>0.4298</td>
<td>7.0914</td>
</tr>
<tr>
<td>COM</td>
<td>0.4555</td>
<td>7.6200</td>
</tr>
<tr>
<td>Rescore</td>
<td>0.5242</td>
<td>7.7361</td>
</tr>
</tbody>
</table>
Experiments

- Engines for combination on development set

<table>
<thead>
<tr>
<th></th>
<th>CT_CE</th>
<th></th>
<th>CT_EC</th>
<th></th>
<th>BTEC_CE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRR</td>
<td>ASR</td>
<td>CRR</td>
<td>ASR</td>
<td>CRR</td>
</tr>
<tr>
<td>PB</td>
<td></td>
<td></td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>MOSES</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Bandore</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>MEBTG</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>HPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Experiments

Results of test set for each track

- Con1: our system combination
- Con2: the rescoring module
- Primary: we RE-rescore “Con1” and “Con2” by using the feature of the prior probability of the length-ratio of source sentence to target sentence.
Experiments

<table>
<thead>
<tr>
<th>Track</th>
<th>System</th>
<th>CRR</th>
<th>ASR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BLEU</td>
<td>NIST</td>
</tr>
<tr>
<td>CT CE</td>
<td>Primary</td>
<td>0.4844</td>
<td>7.5859</td>
</tr>
<tr>
<td></td>
<td>Con1</td>
<td>0.4803</td>
<td>7.4277</td>
</tr>
<tr>
<td></td>
<td>Con2</td>
<td>0.4767</td>
<td>7.4237</td>
</tr>
<tr>
<td>CT EC</td>
<td>Primary</td>
<td>0.5122</td>
<td>7.3513</td>
</tr>
<tr>
<td></td>
<td>Con1</td>
<td>0.4968</td>
<td>7.1525</td>
</tr>
<tr>
<td></td>
<td>Con2</td>
<td>0.4817</td>
<td>6.7254</td>
</tr>
<tr>
<td>BTEC CE</td>
<td>Primary</td>
<td>0.5077</td>
<td>8.5389</td>
</tr>
<tr>
<td></td>
<td>Con1</td>
<td>0.4842</td>
<td>8.4094</td>
</tr>
<tr>
<td></td>
<td>Con2</td>
<td>0.5162</td>
<td>8.2884</td>
</tr>
</tbody>
</table>
Experiments

- The best performance relatively compared with PB decoder among the scores on development set.

<table>
<thead>
<tr>
<th>System</th>
<th>Compared with PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandore</td>
<td>11.72%</td>
</tr>
<tr>
<td>MEBTG</td>
<td>5.03%</td>
</tr>
<tr>
<td>HPB</td>
<td>4.45%</td>
</tr>
</tbody>
</table>
Conclusions

- Our system combines the output results of multiple machine translation engines and by using some global features we rescore the combination results to get the final translation outputs.
Conclusions

- In all the translation engines, Moses has a performance with considerable robustness.
- Bandore has an outstanding performance among the three engines.
 - It uses Moses as its decoder.
 - The reordering model of Bandore aims at the spoken language. It has an effective ability to translation in the domain of IWSLT.
Thanks
谢谢！