NTT SMT System for IWSLT 2008

Katsuhito Sudoh, Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki Isozaki
NTT Communication Science Labs., Japan
Overview

• 2-stage translation system
 – k-best translation candidates are generated by hierarchical phrase-based SMT
 – The top-best candidate is chosen by a reranker based on Ranking SVMs with large-scale sparse features

• Evaluation on Chinese-to-English challenge task
Stage 1: Translation

• Hiero (Chiang, CL 2007): in-house implementation
 – Hierarchical phrase-based SMT
 – CKY-based decoder
 – Minimum Error Rate Training
 • Decoder features are same as our IWSLT ‘06 system
 – Hierarchical and lexical translation probabilities
 – Insertion, deletion, and reordering penalties
 – Length penalties (words / hierarchical phrases)
 – Word 5-gram language model scores
Stage 2: Reranking

- Reorder k-best translation candidates after decoding
 - Ranking SVMs with large scale sparse features
 - Incorporate context features
 - Difficult to use in decoding (e.g. MIRA-based method)
Ranking SVMs (Joachims, 2002)

• Ranking samples (not classification)
 – Trained using ordered k-best candidates \(e_1^*, \ldots, e_k^* \)
 – Metric: Approximated BLEU

• Converted to top-best vs. non-best pairwise difference pairs \(D \)
 \(D = \{ d_{ij} = e_i^* - e_j^* \mid e_i^* \in \text{top-best}, e_j^* \in \text{non-best} \} \)

\[
D' = \{ d_{ij} = e_i^* - e_j^* \mid 1 \leq i < k, 1 < j \leq k, i < j \}
\]

• Optimizing classification SVMs on \(D \)
 – Test: choose highest-scored candidate
Approximated BLEU

- BLEU: document-wise score
 - Requires re-computation in every iteration
 - Not suitable for independently assigning scores to k-best candidates

- Approximated BLEU (Watanabe, IWSLT 2006)
 - Sentence-wise approximation of document-wise BLEU (not sentence-wise BLEU)
 - Independently calculated for each candidate
 - Constant throughout optimization
Approximated BLEU (cont’d)

1-best

i-best

k-best

1st sentence

t-th sentence

T-th sentence

(Normal) BLEU

Approximated BLEU for sentence e^t_i
Reranker Features

• Intra-sentence features
 – Word alignments
 • Source-target word pairs aligned by IBM Model 1
 • Target-source direction was also considered
 • Alignment bigram : $a(i)*a(i+1)$
 – Word pairs
 • Arbitrary source-target unigram/bigram pairs within each sentence
 – Target-side skip bigrams
Reranker Features (cont’d)

• Inter-sentence feature
 – Context-dependent word pairs
 • Arbitrary pair of [target word unigram] and [source/target word unigram in the previous sentence]
Pegasos

- Fast optimization algorithm for linear-kernel SVMs (Shalev-Shwartz et al., ICML 2007)
 - Use sub-gradients calculated based only on k samples in each iteration
 - Learning time does not depend on data size
Post-evaluation

- Optimize SVM soft-margin parameter
 - 2-/3-fold cross validation on devset.CT_CE (246 sentences)
 - We didn’t optimize it in the official evaluation!!

- Use the whole rank order in training R-SVMs
 - The whole rank order did not increase BLEU in our development phase
Results (ASR 1-best input)

- No reranking: 35.62
- Score + Align.: 37.55
- +W.pair+skip2gram: 39.71
- +context: 36.87

Official
Post-Eval.
Post-Eval.(whole rank order)
Results (Clean input)

BLEU (%)

- Official
- Post-Eval.
- Post-Eval. (whole rank order)

No reranking: 42.16
Score + Align.: 40.01
+W.pair+skip2gram: 38.47
+context: 37.1

Score + Align. 44.13 44.43
+W.pair+skip2gram 44.38 44.97
+context 42.62 42.96
Results: Summary

- Reranking with *optimized soft-margin parameters* achieved good BLEU results.
- Alignment-independent features were effective.
- Context features were *not* effective.
Discussion

- Reranker chose **adequate** candidates
 - Word alignment features captured *lexical correspondence*

- Reranker chose **fluent** candidates
 - (Skip-)Bigram features captured *target-side natural word order*
 - Bigram pair features captured *source-target co-occurrence* of bigrams

- Reranker failed to utilize context information
 - Context features turned out to capture many *general word co-occurrence*
Distinctive Word Alignment Features

ST: ?-<EOS>/ 吗
ST: 可以 / can
ST: tell-me / 请问
ST: i-would / 我-想
ST: would-like / 想
ST: you-have / 有
ST: <BOS>-i / 我

TS: 吗-<EOS>/ <$.$>
TS: ?/ 吗
TS: 吗-<EOS>/ ?
TS: 我-想 / i*like
TS: 在-哪里 / where
TS: 最近-的 / nearest^the
Distinctive Bigram Features

Bigram: ?-<EOS>
Bigram: .-<EOS>
Bigram: me-the
BigramPair: <BOS>-我 / <BOS>-i
BigramPair: <BOS>-我 / would-like
BigramPair: 吗-<EOS> / <BOS>-can
BigramPair: 吗-<EOS> / ?-<EOS>
BigramPair: 多少-钱 / how-much
BigramPair: 多少-钱 / ?-<EOS>
BigramPair: <BOS>-能 / <BOS>-can
BigramPair: 给-我 / give-me
SkipBigram: would-*--to
SkipBigram: <BOS>-*--would
SkipBigram: <BOS>-*--can
SkipBigram: do-*--have
SkipBigram: tell-*--the
Distinctive Context Features

TargetContext: for -> ?
TargetContext: is -> ?
TargetContext: a -> you
TargetContext: i -> you
TargetContext: . -> is
TargetContext: ? -> can
TargetContext: please -> ?
TargetContext: , -> can
SourceContext: 的 -> ?
SourceContext: 一 -> me
SourceContext: 吗 -> me
SourceContext: 我 -> .
Conclusion

• NTT’s 2-stage SMT system
 – Hierarchical phrase-based SMT decoder
 – SVM-based reranker with sparse features
 – Achieved 39.71%(ASR), 44.97%(clean) BLEU in Chinese-to-English challenge task
 – Reranker effectively utilized both monolingual and bilingual sparse features
 – Current context-dependent features are not effective