Simultaneous German-English Lecture Translation

Muntsin Kolss, Matthias Wölfel, Florian Kraft, Jan Niehues, Matthias Paulik, Alex Waibel

IWSLT 2008, October 21, 2008
• **Unlimited Domain:**
 - Wide variety of topics
 - Lectures often go deeply into detail: specialized vocabulary and expressions

• **Spoken Language:**
 - Most lecturers are not professionally trained speakers
 - Conversational speech, more informal than prepared speeches
 - Long monologues, often not easily separable utterances with sentence boundaries

• **Strict Real-time and Latency requirements**

• **German-English specific:**
 - English words embedded in German, especially technical terms
 - German compounds
 - Long-distance word reordering
System Overview

German Speech

Input

Front-End

Decoder

Segmentation

Front-End

Decoder

Synthesis

Output

German Text

English Text

English Speech

ASR

MT
English Words in German Lectures

<table>
<thead>
<tr>
<th>Language</th>
<th>German</th>
<th>English</th>
<th>Both</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Words</td>
<td>4195</td>
<td>110</td>
<td>1397</td>
<td>887</td>
</tr>
<tr>
<td>Deletions</td>
<td>52</td>
<td>1</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>Insertions</td>
<td>58</td>
<td>9</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>Substitutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>258</td>
<td>37</td>
<td>91</td>
<td>113</td>
</tr>
<tr>
<td>English</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Both</td>
<td>68</td>
<td>10</td>
<td>33</td>
<td>56</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Error</td>
<td>448</td>
<td>66</td>
<td>215</td>
<td>182</td>
</tr>
<tr>
<td>WER</td>
<td>10.7%</td>
<td>60.0%</td>
<td>15.4%</td>
<td>20.5%</td>
</tr>
</tbody>
</table>
• **Two Approaches:**

- Use two phoneme sets in parallel, one each for German and English (parallel)
- Map the English pronunciation dictionary to German phonemes (mapping)

<table>
<thead>
<tr>
<th>Language</th>
<th>All</th>
<th>German</th>
<th>English</th>
<th>Both</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>13.8%</td>
<td>10.7%</td>
<td>60.0%</td>
<td>15.4%</td>
<td>20.5%</td>
</tr>
<tr>
<td>Mapping</td>
<td>12.7%</td>
<td>11.1%</td>
<td>34.6%</td>
<td>13.8%</td>
<td>16.1%</td>
</tr>
<tr>
<td>Parallel</td>
<td>13.4%</td>
<td>11.4%</td>
<td>26.4%</td>
<td>14.7%</td>
<td>18.9%</td>
</tr>
</tbody>
</table>
Machine Translation: Adaptation to Lectures

- Training data: German-English EPPS, News Commentary, Travel Expression Corpus

- 100K corpus of German lectures held at Universität Karlsruhe, transcribed and translated into English

<table>
<thead>
<tr>
<th></th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>31.54</td>
<td>27.18</td>
</tr>
<tr>
<td>Language Model (LM) Adaptation</td>
<td>33.11</td>
<td>29.17</td>
</tr>
<tr>
<td>Translation Model (TM) Adaptation</td>
<td>33.09</td>
<td>30.46</td>
</tr>
<tr>
<td>LM and TM adaptation</td>
<td>34.00</td>
<td>30.94</td>
</tr>
<tr>
<td>+ Rule-based word reordering</td>
<td>34.59</td>
<td>31.38</td>
</tr>
<tr>
<td>+ Discriminative Word Alignment</td>
<td>35.24</td>
<td>31.40</td>
</tr>
</tbody>
</table>
• **Text Translation**

source sentence → MT Decoder → target sentence

• **Speech Translation** (turn-based, „push-to-talk“ dialog systems)

source utterance → MT Decoder → target utterance

• **Simultaneous Translation**

continuous ASR input → Segmentation → MT Decoder → target segment
Low latency translation is easy...

![Graph showing BLEU score vs. segment length with fixed segment length line]

Segment Length

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 50, 100, 10K]

[0, 5, 10, 15, 20, 25, 30, 35, 40]
Disadvantages of Input Segmentation

• Choosing meaningful segment boundaries is difficult and error-prone
• No recovery from segmentation errors, input segmentation makes hard decisions
• Phrases which would match across the segment boundaries can no longer be used
• No word reordering across segment boundaries is possible
• Language model context is lost across the segment boundaries
• If the language model is trained on sentence segmented data there will often be a mismatch for the begin-of-sentence and end-of-sentence LM events
“I have heard traditional values referred to”

“he escuchado relacionarlo con valores tradicionales”
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
“... and the inspiration for the exact motivation of the stimuli was derived from experiments in which we use these networks for geometrical figures and we ask subjects to describe ...”

- No input segmentation: process “infinite” input stream from speech recognizer, extending/truncating the translation lattice
Stream Decoding: Asynchronous Input and Output

- Each incoming source word from the recognizer triggers a new search through the current translation lattice.
- Output of resulting best hypothesis is partially or completely delayed, until either a time out occurs or new input arrives, which leads to lattice expansion and a new search.
- Creates sliding window during which translation output lags the incoming source stream.

![Diagram showing the flow of words: use, these, networks, for, and an ellipsis.]
Stream Decoding: Output Segmentation

- Decide which part of the current best translation hypothesis to output, if any at all:
 - Minimum Latency L_{\min}: The translation covering the last L_{\min} untranslated source words received from the speech recognizer at any point is never output (except for time-outs)
 - Maximum Latency L_{\max}: When the latency reaches L_{\max} source words, translation output covering the source words exceeding this value is forced
• Backtrace hypothesis until L_{min} source words have been passed

• If the hypothesis reached contains reordering gaps, continue backtracing until state with no open reorderings

• If no such state can be found, perform a new restricted search that only expands hypotheses which have to open reorderings at the node where the maximum latency would be exceeded
Stream Decoding Performance under Latency Constraint

L_{min} and L_{max} chosen to optimize translation quality
Choosing optimal parameter values for L_{min} and L_{max}
Summary

• Current system for simultaneous translation of German lectures to English combines state-of-the-art ASR and SMT components

• ASR system modified to handle German compounds, and English terms and expressions embedded in German lectures

• SMT system uses additional compound splitting and model adaptation to topic and style of lectures

• Experiments with Stream Decoding to reduce latencies of the overall system

• Generated translation output provides a good idea of what the German lecturer said

• Major challenge for the future is better addressing long-range word reordering requirements between German and English