A Unified Framework for phrase-based, Hierarchical and Syntax SMT

Hieu Hoang
Philipp Koehn
Adam Lopez

University of Edinburgh
Decoding methods

• Phrase Based
 – Alignment Template System (Och 2004)
 – Pharaoh (Koehn 2003)
 – Moses (Koehn et al 2007)

• Hierarchical
 – Hiero (Chiang 2007)
 – ITG (Wu 1997)

• Syntactic
 – ISI (Yamada and Knight 2001)
 – SAMT (Zollmann 2006)
Phrase-based Decoding Pipeline

Preprocessing
- tokenizer
- tagging
- lemmatization

Alignment

Phrase extraction

Tuning

Decoding

Postprocessing
- recasing
- detokenizer

Scoring
- BLEU score
Hierarchical Decoding Pipeline

Preprocessing
- tokenizer
- tagging
- lemmatization

Alignment

Phrase extraction

Tuning

Chart Decoding

Hierarchical phrase extraction

Postprocessing
- recasing
- detokenizer

Chart decoder

Scoring
- BLEU score
Syntactic Decoding Pipeline

Preprocessing
- tokenizer
- tagging
- lemmatization

Alignment

Parse
Phrase extraction

Tuning

Chart Decoding

Postprocessing
- recasing
- detokenizer

Scoring
- BLEU score

Linguistic information

Syntactic phrase extraction

Chart decoder
Decoding

Preprocessing
- tokenizer
- tagging
- lemmatization

Alignment

Phrase extraction

Tuning

Decoding

Postprocessing
- recasing
- detokenizer

Scoring
- BLEU score
Phrase-Based

• Translate contiguous phrases

 assumes || geht davon aus, dass
 with regard to || bezüglich
 translation system ||
 Übersetzungssystem

• Finite state machine decoding
 – Stack based
 – Beam search
Hierarchical

• Discontiguous phrases

 $X \rightarrow$ take X_1 into account $||$ berücksichtigt X_1
 $X \rightarrow$ must explain X_1 $||$ muss X_1 erklären
 $X \rightarrow$ either X_1 or X_2 $||$ entweder X_1 oder X_2

• CKY+ decoding algorithm

 – chart decoding

 – simultaneous parsing and generation
Syntax

• Discontiguous phrases
• Labeled non-terminals

 \[VP \rightarrow \text{take } NP_1 \text{ into account} \mid \mid \text{berücksichtigt } NP_1 \]
 \[VP \rightarrow \text{must explain } NP_1 \mid \mid \text{muss } NP_1 \text{ erklären} \]
 \[S \rightarrow \text{either } S_1 \text{ or } S_2 \mid \mid \text{entweder } S_1 \text{ oder } S_2 \]

• CKY+ decoding
Similarities

• Trained using aligned corpus
• Phrase tables
• Linear scoring
• N-best list for weight tuning
• Dynamic programming
• Language model context
Phrase-based decoder

• Base functionality
 – Incremental scoring
 – LM context
 – Dynamic programming
 – Search graph

• Decoding
 – Stacks
 • 1 stack for number of words covered
 • Future cost for better intra-stack comparison.
 – Search strategy
 • Bottom up, least number of words first
Hierarchical decoder

• Base functionality
 – Incremental scoring
 – LM context
 – Dynamic programming
 – Search graph

• Decoding
 – Stacks
 • 1 stack for each source contiguous coverage
 – Search strategy
 • Bottom up, smallest span first
Syntax decoder

• Base functionality
 – Incremental scoring
 – LM context
 – Dynamic programming
 – Search graph

• Decoding
 – Stacks
 • 1 stack for each non-terminal, for each source contiguous coverage
 – Search strategy
 • Bottom up, smallest span first
Inherited from the Moses decoder

- Factored word representation
- Multiple language models
- Multiple phrase tables
- Multiple implementations of LM and phrase tables
Phrase-based Decoding Pipeline

Preprocessing
- tokenizer
- tagging
- lemmatization

Alignment

Phrase extraction

Tuning

Decoding

Postprocessing
- recasing
- detokenizer

Scoring
- BLEU score
Phrase-based rule extraction

• Heuristic algorithms
 – Phrase extraction

• Probability estimates
 – Phrase and lexical probabilities
 – Smoothing

• Filtering
Hierarchical rule extraction

- Heuristic algorithms
 - Phrase extraction
 - Replace subphrases with non-terminals
- Probability estimates
 - Phrase and lexical probabilities
 - Smoothing
- Filtering
Hierarchical rule extraction

Alignment
hat das Haus gekauft
bought the house

Extracted Phrase
Hierarchical rule extraction

Alignment

hat das Haus gekauft
bought the house

Extracted Phrase

X → Ich hat das Haus gekauft || bought the house
Hierarchical rule extraction

Alignment

hat das Haus gekauft
bought the house

Extracted Phrase

\(X \rightarrow \text{hat das Haus gekauft} \mid \mid \text{bought the house}\)

\(X \rightarrow \text{das Haus} \mid \mid \text{the house}\)
Hierarchical rule extraction

Alignment

hat das Haus gekauft
bought the house

Extracted Phrase

X \rightarrow \text{hat das Haus gekauft} \mid\mid \text{bought the house}

X \rightarrow \text{das Haus} \mid\mid \text{the house}

X \rightarrow \text{hat X gekauft} \mid\mid \text{bought X}
Syntactic rule extraction

- Heuristic algorithms
 - Phrase extraction
 - Replace subphrases with non-terminals
 - New rule
 - Labeled non-terminals
 - Constrain extraction
 - merge non-terminal symbols - SAMT
 - Binarization
- Probability estimates
 - Phrase and lexical probabilities
 - Smoothing
- Filtering
Syntactic rule extraction

Alignment

hat das Haus gekauft
bought the house

Extracted Phrase

X → hat das Haus gekauft || bought the house
X → das Haus || the house
X → hat NP gekauft || bought NP
Results

German-English

- WMT09 new commentary corpus
 - 82k sentences
 - 1.8m German, 1.7m English words

<table>
<thead>
<tr>
<th>Model</th>
<th>Rule count</th>
<th>BLEU %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phrase-based</td>
<td>6.2m</td>
<td>13.0</td>
</tr>
<tr>
<td>Hierarchical</td>
<td>59.1m</td>
<td>12.9</td>
</tr>
<tr>
<td>Target syntax</td>
<td>2.2m</td>
<td>12.5</td>
</tr>
<tr>
<td>SAMT syntax</td>
<td>35.1m</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Summary

• Extend Moses toolkit
 – Synchronous CFG formalism
 • Hierarchical
 • Syntactic decoding
 – Decoding algorithm
 – Rule extraction
• Re-use mature SMT pipeline
• Comparison of different decoding models
 – Use the same training data
 – Use the same translation & language models
• Merge different models