Performance Prediction and Shrinking Language Models

Stanley F. Chen†

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA

27 June 2011

†Joint work with Stephen Chu, Ahmad Emami, Lidia Mangu, Bhuvana Ramabhadran, Ruhi Sarikaya, and Abhinav Sethy.
What Does a Good Model Look Like?

(test error) ≡ (training error) + (overfit)
Overfitting: Theory

- *e.g.*, Akaike Information Criterion (1973)
 \[-(\text{test LL}) \approx -(\text{train LL}) + (# \text{ params})\]

- *e.g.*, structural risk minimization (Vapnik, 1974)
 \((\text{test err}) \leq (\text{train err}) + f(\text{VC dimension})\)

- Down with big models!?
The Big Idea

- Maybe *overfit* doesn’t act like we think it does.
- Let’s try to fit *overfit* **empirically**.
What This Talk Is About

- An empirical estimate of the overfit in log likelihood of . . .
 - Exponential language models . . .
 - That is really simple and works really well.
- Why it works.
- What you can do with it.
Outline

1. Introduction
2. Finding an Empirical Law for Overfitting
3. Regularization
4. Why Does the Law Hold?
5. Things You Can Do With It
6. Discussion
Exponential N-Gram Language Models

- Language model: predict next word given previous, say, two words.

 $$P(y = ate \mid x = the\,\, cat)$$

- Log-linear model: features $f_i(\cdot)$; parameters λ_i.

 $$P(y \mid x) = \frac{\exp(\sum_i \lambda_i f_i(x, y))}{Z_{\lambda}(x)}$$

- A binary feature $f_i(\cdot)$ for each n-gram in training set.
- An alternative parameterization of back-off n-gram models.
Details: Regression

- Build hundreds of (regularized!) language models.
- Compute actual overfit: log likelihood (LL) per event = log PP.
- Calculate lots of statistics for each model.
 - \(F = \# \text{ parameters}; \ D = \# \text{ training events}. \)

 \[
 \frac{F}{D}; \quad \frac{F \log D}{D}; \quad \frac{1}{D} \sum \lambda_i; \quad \frac{1}{D} \sum \lambda_i^2; \quad \frac{1}{D} \sum |\lambda_i|^{\frac{4}{3}}; \quad \ldots
 \]

- Do linear regression!
What Doesn’t Work? AIC-like Prediction

\[(\text{overfit}) \equiv LL_{\text{test}} - LL_{\text{train}} \approx \gamma \frac{\text{ (# params)}}{\text{ (# train evs)}}\]
What Doesn’t Work? BIC-like Prediction

\[LL_{test} - LL_{train} \approx \gamma \frac{(# \text{ params}) \log (# \text{ train evs})}{(# \text{ train evs})} \]

Stanley F. Chen (IBM)
\[LL_{\text{test}} - LL_{\text{train}} \approx \frac{\gamma}{(\text{# train evs})} \sum_{i=1}^{F} |\lambda_i| \]
$\gamma = 0.938$

- Holds for many different types of data.
 - Different domains (e.g., Wall Street Journal, ...)
 - Different token types (letters, parts-of-speech, words).
 - Different vocabulary sizes (27–84,000 words).
 - Different training set sizes (100–100,000 sentences).
 - Different n-gram orders (2–7).

- Holds for many different types of exponential models.
 - Word n-gram models; class-based n-gram models; minimum discrimination information models.
What About Other Languages?

\[LL_{test} - LL_{train} \approx \frac{0.938}{(# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i| \]
What About Genetic Data?

\[LL_{\text{test}} - LL_{\text{train}} \approx \frac{0.938}{(# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i| \]

Stanley F. Chen (IBM)

Performance Prediction

27 June 2011 14 / 41
Outline

1. Introduction
2. Finding an Empirical Law for Overfitting
3. Regularization
4. Why Does the Law Hold?
5. Things You Can Do With It
6. Discussion
Regularization

- Improves test set performance.
- ℓ_1, ℓ_2, $\ell_1 + \ell_2$ regularization: choose λ_i to minimize

\[
(\text{obj fn}) \equiv LL_{\text{train}} + \alpha \sum_{i=1}^{F} |\lambda_i| + \frac{1}{2\sigma^2} \sum_{i=1}^{F} \lambda_i^2
\]

- The problem: γ depends on α, σ!
Regularization: Two Criteria

- Here: pick single α, σ across all models.
- Usual way: pick α, σ per model for good performance.
- Good performance and good overfit prediction?

<table>
<thead>
<tr>
<th></th>
<th>performance</th>
<th>overfit prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ_1</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>ℓ_2^2</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\ell_1 + \ell_2^2$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

$(\alpha = 0.5, \sigma^2 = 6)$ as good as best n-gram smoothing.
The Law and $\ell_1 + \ell_2^2$ Regularization

$$LL_{\text{test}} - LL_{\text{train}} \approx \frac{0.938}{(\text{# train evs})} \sum_{i=1}^{F} |\lambda_i|$$
The Law and ℓ_2^2 Regularization

\[LL_{test} - LL_{train} \approx \frac{0.882}{(# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i| \]

predicted vs. actual values graph
Outline

1. Introduction
2. Finding an Empirical Law for Overfitting
3. Regularization
4. Why Does the Law Hold?
5. Things You Can Do With It
6. Discussion
Why Exponential Models Are Special

Do some math (and include normalization features):

$$LL_{test} - LL_{train} = \frac{1}{(# \text{ train evs})} \sum_{i=1}^{F'} \lambda_i \times (\text{discount of } f_i(\cdot))$$

Compare this to The Law:

$$LL_{test} - LL_{train} \approx \frac{1}{(# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i| \times 0.938$$

If only...

$$(\text{discount of } f_i(\cdot)) \approx 0.938 \times \text{sgn } \lambda_i$$
What Are Discounts?

- How many times fewer an n-gram occurs in test set . . .
 - Compared to training set (of equal length).
- Studied extensively in language model smoothing.
- Let’s look at the data.
Smoothed Discount Per Feature

\[(\text{discount of } f_i(\cdot)) \approx 0.938 \times \text{sgn } \lambda_i\]
Why The Law Holds More Than It Should

- Sparse models all act alike.
- Dense models don’t overfit much.

\[\log L_{\text{test}} - \log L_{\text{train}} \approx \frac{0.938}{(\# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i| \]
Outline

1. Introduction
2. Finding an Empirical Law for Overfitting
3. Regularization
4. Why Does the Law Hold?
5. Things You Can Do With It
6. Discussion
Explain Things

- Why backoff features help.
- Why word class features help.
- Why domain adaptation helps.
- Why increasing n doesn’t hurt.
- Why relative performance differences shrink with more data.
\[(\text{test error}) \approx (\text{training error}) + (\text{overfit})\]

- Decrease overfit \Rightarrow decrease test error.
Reducing Overfitting

\[
(\text{overfit}) \approx \frac{0.938}{(\# \text{ train evs})} \sum_{i=1}^{F} |\lambda_i|
\]

- In practice, the number of features matters not!
- More features lead to less overfitting . . .
 - If sum of parameters decreases!
A Method for Reducing Overfitting

- **Before:** $\lambda_1 = \lambda_2 = 2$.

 $$P_{\text{before}}(y|x) = \frac{\exp(2 \cdot f_1(x, y) + 2 \cdot f_2(x, y))}{Z_\Lambda(x)}$$

- **After:** $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 2$, $f_3(x, y) = f_1(x, y) + f_2(x, y)$.

 $$P_{\text{after}}(y|x) = \frac{\exp(2 \cdot f_3(x, y))}{Z_\Lambda(x)}$$

 $$= \frac{\exp(2 \cdot f_1(x, y) + 2 \cdot f_2(x, y))}{Z_\Lambda(x)}$$
What’s the Catch? (Part I)

- Same test set performance?
- Re-regularize model: improves performance more!

\[(\text{obj fn}) \equiv LL_{\text{train}} + \alpha \sum_{i=1}^{F} |\lambda_i| + \frac{1}{2\sigma^2} \sum_{i=1}^{F} \lambda_i^2\]
What’s the Catch? (Part II)

- Select features to sum in hindsight?
- When sum features, sums discounts!

\[LL_{\text{test}} - LL_{\text{train}} = \frac{1}{(\# \text{ train evs})} \sum_{i=1}^{F'} \lambda_i \times (\text{discount of } f_i(\cdot)) \]

- Need to pick features to sum \textbf{a priori}!
Heuristic 1: Improving Model Performance

- Identify features \textit{a priori} with similar λ_i.
- Create new feature that is sum of original features.
Example: N-Gram Models and Backoff

- $\lambda_{w_{j-2}w_{j-1}w_j}$, $\lambda_{w'_{j-2}w_{j-1}w_j}$ tend to be alike \Rightarrow create $\lambda_{w_{j-1}w_j}$!
- Bigram features reduce overfitting for trigram features.

![Graph showing overfitting comparison for 1g, 2g+3g, and 3g parameters]

Stanley F. Chen (IBM)
Example: N-Gram Models and Word Classes

- Group related words into classes, e.g., \{Monday, Tuesday, \ldots\}
 - Add class n-gram features to address sparsity.
- Problem: space of word/class n-gram features is large.

\[
c_{j-2}c_{j-1}c_j; \ w_{j-2}w_{j-1}c_j; \ w_{j-1}c_jw_j; \ldots
\]

- Apply Heuristic 1 to word n-gram model!
Goldilocks and the Three Class-Based LM’s

- Model S

 \[p(c_j | c_{j-2}c_{j-1}) \]
 \[p(w_j | c_j) \]

- Model M (Heuristic 1)

 \[p(c_j | c_{j-2}c_{j-1}) \times p(c_j | w_{j-2}w_{j-1}) \]
 \[p(w_j | w_{j-2}w_{j-1}c_j) \]

- Model L

 \[p(c_j | w_{j-2}c_{j-2}w_{j-1}c_{j-1}) \]
 \[p(w_j | w_{j-2}c_{j-2}w_{j-1}c_{j-1}c_j) \]
This One Is Just Right!

![Bar chart showing predicted LL test for S, M, and L sizes.](chart.png)

- **S**: Overfit = 0, LL_{train} = 5
- **M**: Overfit = 1, LL_{train} = 4
- **L**: Overfit = 2, LL_{train} = 3
Model M

- Best class-based model results for speech recognition . . .
 - Over a wide range of data sets; training set sizes.
 - Gains up to 3% absolute in error rate over word n-gram.
Outline

1. Introduction
2. Finding an Empirical Law for Overfitting
3. Regularization
4. Why Does the Law Hold?
5. Things You Can Do With It
6. Discussion
(test error) ≡ (training error) + (overfit)

(overfit) ≈ \frac{0.938}{(\# \text{train evs})} \sum_{i=1}^{F} |\lambda_i|

- Despite theory, models with lots of parameters perform well!
- Adding the right parameters can lower overfitting!
 - Heuristic 1.
Applicability to Other Domains

- Log likelihood vs. error rate.
- Log-linear models

\[
LL_{\text{test}} - LL_{\text{train}} = \frac{1}{(# \text{ train evs})} \sum_{i=1}^{F'} \lambda_i \times (\text{discount of } f_i(\cdot))
\]

- It’s not the number of parameters . . .
- It’s the size of the parameters!
- Explain and/or enhance existing practice?
 - e.g., backoff features; class-based features.
 - Sometimes the space of feature types is large.
Stanley F. Chen.
2008.
Performance prediction for exponential language models.

Stanley F. Chen, Lidia Mangu, Bhuvana Ramabhadran, Ruhi Sarikaya, Abhinav Sethy.
2009.
Scaling shrinkage-based language models.
In *Proceedings of ASRU*.

Stanley F. Chen, Stephen M. Chu.
2010.
Enhanced Word Classing for Model M.
Submitted to *Proceedings of Interspeech*.