Text-independent Speaker Verification Using Support Vector Machines (SVM)

Jamal Kharroubi
Dijana Petrovska-Delacrétaz
Gérard Chollet
(kharroub, petrovsk, chollet)@tsi.enst.fr

ENST/CNRS-LTCI, 46 rue Barrault
75634 PARIS cedex 13

Odyssey 2001 Workshop, 18-22 June 2001
Overview

1 Introduction and motivations
2 SVM principles
3 SVM and speaker recognition
 Identification
 Verification
4 SVM Theory
5 Combining GMM and SVM for speaker verification
6 Database
7 Experimental protocol
8 Results
9 Conclusions and perspectives
1 Introduction and Motivations

- Gaussian Mixture Models (GMM)
 - State of the art for speaker verification

- Support Vector Machines (SVM)
 - New and promising technique in statistical learning theory
 - Discriminative method
 - Good performance in image processing and multi-modal authentication

- Combine GMM and SVM for Speaker Verification
2 SVM Principles

- Pattern classification problem:
 given a set of labelled training data, learn to classify unlabelled test data

- Solution: find decision boundaries that separate the classes, minimising the number of classification errors

- SVM are:
 - Binary classifiers
 - Capable of determining automatically the complexity of the decision boundary
2.2 SVM principles

Input space $\Psi(\mathcal{X})$

Feature space $\text{Class}(\mathcal{X})$

Separating hyperplane H, with the optimal hyperplane H_0.
2.3 Example

\[\Phi: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[(x_1, x_2) \rightarrow (x_1^2, \sqrt{2} x_1 x_2, x_2^2) \]
3 SVM and Speaker Recognition

Speaker Identification with SVM: Schmidt and Gish, 1996

- **Goal**: identify one among a given closed set of speakers

- **Methods used**: one vs. other speakers or pairwize classifier (\(N(N-1)/2 = 325 \) for \(N = 26 \))

- **The input vectors of the SVM’s are spectral parameters**

- **Database**: Switchboard, 26 mixed sex speakers, 15 s for train, 5 s for tests

- **Baseline comparison with Bayesian (GMM) modeling**
Results => slightly better performance with SVM’s, with the pairwise classifier

Why these disappointing results?
=> Too short train/test durations
=> GMM’s perhaps better suited to model the data
=> GMM’s perhaps more robust to channel variation
3.2 SVM and Speaker Verification

- Not done before

- Difficulty: mismatch of the quantity of labelled data, more data available for impostor access than true target

- Our preliminary test, with speech frames as input to SVM => no satisfactory results

- Present approach: model globally the client-client against client-impostor access
4. SVM Theory

Input Space

\[D = \{(x_i, y_i) | x_i \in E; y_i \in \{1, -1\}; i = 1,..m\} \]

Feature Space

\[D = \{\Psi(x_i, y_i) | x_i \in E; y_i \in \{1, -1\}; i = 1,..m\} \]

Classification Function

\[\text{class}(x) = \text{sign} \left[\sum_{SV} a_0 y_i \left(\Psi(x_i) \times \Psi(x) \right) + b_0 \right] \]

\[K(x_i, x) \]
4.2 SVM – usual kernels used

- Linear
 \[K(x, y) = x \times y \]

- Polynomial
 \[K(x, y) = [(x \times y) + 1]^d \]

- Radial Basis Function (RBF)
 \[K(x, y) = \exp(-\gamma|x - y|^2) \]
5 Combining GMM and SVM for Speaker Verification

- Reminder: GMM speaker modeling and Log Likelihood Ratio Scoring, referred as LLR

- SVM classifier
 - construction of the SVM input vector
 - SVM train/test procedure
5.1 GMM speaker modeling

WORLD DATA \rightarrow \text{Front-end} \rightarrow \text{GMM MODELING} \rightarrow \text{WORLD GMM MODEL}

TARGET SPEAKER \rightarrow \text{Front-end} \rightarrow \text{GMM ADAPTATION} \rightarrow \text{TARGET GMM MODEL}
5.2 LLR Scoring

\[
\Lambda = \log \left[\frac{P(x/\lambda)}{P(x/\bar{\lambda})} \right]
\]
5.3 Construction of the SVM input vectors

Additional labelled development data, with \(T \) frames

\[
T = t_1 ... t_j ... t_T
\]

For each frame \(t_j \), the score \(S_{t_j} \) is computed as follows:

\[
S_{t_j} = \max_{g_i \in \lambda, \bar{\lambda}} \left[\log[P(t_j / g_i)] \right]
\]

Two vectors \(V^X(\lambda), V^X(\bar{\lambda}) \) are constructed as follows:

- First, all the components of the vectors are initialized to zero
If S_{tj} is given by g_i belonging to λ, the i^{th} component of the vector $V_{\lambda^X}(\lambda)$ is incremented by the frame score. If S_{tj} is given by g_j belonging to $\overline{\lambda}$, the j^{th} component of the vector $V_{\lambda^X}(\overline{\lambda})$ is incremented by the frame score.

- The input SVM vector is the concatenation of $V_{\lambda^X}(\lambda)$ and $V_{\lambda^X}(\overline{\lambda})$.

- Summation and normalization of the SVM input vector by the number of frames of the test segment T:

$$S_T = \left[\sum_{j=1}^{T} S_{tj}\right] / T$$
5.3 SVM Input Vector Construction

\[\lambda \]

HYPOTHETICAL
TARGET
GMM MOD.

\[\text{Log}[P(t/g)] = P_{gi} \]

N Gaus. Mixtures

\[\text{dim} = 2N \]

Labeled speech
Frame \(t_i \)

Front-end

WORLD
GMM
MODEL

\[S_{tj} = \text{Max} [P_{gi}] \]

\[S_{tj} \]
5.4 SVM: Train / Test

Train

Client class

Impostor class

SVM CLASSIFIER

Test

Test speech

SVM INPUT VECTOR CONSTRUCTION

Decision score
6. Database

Complete Nist’99 evaluation data splitted in:

- Development data = 100 speakers
 - 2min GMM model
 - Corresponding test data to train the SVM classifier (519 true and 5190 impostor accesses)

- World data = 200 speakers
 - 4 sex/handset dependent world models

- Pseudo-impostors = 190 sp. used for the h-norm

- Evaluation data = 100 speakers = 449 true and 4490 impostor accesses
7. Experimental Protocol:
7.1 Feature Extraction

- LFCC parametrization (32.5 ms windows every 10 ms)
- Cepstral mean substraction for channel compensation
- Feature vector dimension is 33 (16 cep, 16 dcep, Δ log E)
 (Delta cepstral features on 5-frames windows)
- Frame removal algorithm applied on feature vectors
 to discard non significant frames (bimodal energy distributions)
7.2 GMM Modeling

- Speaker and background models
 - GMM’s with 128 mixtures
 - Diagonal covariance matrix
 - Standard EM algorithm with a max. of 20 iterations

=> Four speaker-independent, gender and handset dependent background (world) models
7.3 SVM Scoring

- SVM model was trained using a development corpus (coming from the NIST’99 database)

- Linear kernel is used

- There are 519 true-target speakers accesses and 5190 impostors accesses

- 5489 tests on the evaluation corpus (449 true-target speakers accesses and 4490 impostors accesses)
8.1 Results – preliminary results

SVM trained with feature vectors used as input vectors – condition all
8.2 SVM and LLR scoring

\[\text{dndt} = \text{different Nu, different type,} \]

\[\text{dnst} = \text{different Nu, same type} \]

no normalization
8.3 LLR - Influence of h-horm
8.3 SVM - Influence of h-horm
8.3 SVM – LLR comparison
8.4 Results table at EER

<table>
<thead>
<tr>
<th></th>
<th>DNST</th>
<th></th>
<th>DNDT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLR</td>
<td>SVM</td>
<td>LLR</td>
<td>SVM</td>
</tr>
<tr>
<td>no normalization</td>
<td>17.6 %</td>
<td>15.8 %</td>
<td>27.8 %</td>
<td>21.6 %</td>
</tr>
<tr>
<td>h-norm</td>
<td>15.2 %</td>
<td>14.0 %</td>
<td>23.3 %</td>
<td>20.5 %</td>
</tr>
</tbody>
</table>
9. Conclusions

- Better results with GMM-SVM method in all the experimental conditions tested

- Proposed method seems to be more robust to channel variations
10. Perspectives

- Different kernel types and features will be experimented.
- Other normalization techniques.
- Another feature representation will be experimented to use the SVM in SV:

\[V_{\lambda}^{X}(\lambda) = [P(X / g_{1}^{\lambda}), \ldots, P(X / g_{n}^{\lambda})] \]

\[V_{\lambda}^{X}(\bar{\lambda}) = [P(X / g_{1}^{\bar{\lambda}}), \ldots, P(X / g_{n}^{\bar{\lambda}})] \]