Speaker Verification Under Additive Noise Conditions With Non-stationary SNR Using PMC

Michael L P Wong

&

Martin J Russell
References

• M.J. Gales and S.J. Young, “Robust Continuous Speech Recognition Using Parallel Model Combination,” IEE Transactions on Speech and Audio Processing, Vol. 4, No. 5, pp. 352-359, September 1996.

Task Definition

- Clean verification speech: Good
- Noise-contaminated verification speech with non-stationary SNR: Bad
Preview of Results

• Clean speech models tested on non-stationary SNR phrases
 – Speech noise : 38.55% EER
 – Operations room noise : 34.78% EER

• Performance of compensated models
 – Speech noise : 19.92% EER
 – Operations room noise : 18.84% EER
Structure of Presentation

• Stage One
 – Evaluation of PMC on speaker verification tasks: stationary SNR conditions

• Stage Two
 – Recognition of unknown SNR conditions

• Stage Three
 – Modelling the dynamics of SNR in noise-contaminated verification phrases
Problem Formulation

• Text-dependent speaker verification

• Deployment in dynamic real world environments

• Model based approach

• Ultimately multi noise multi SNR scenario
Evaluation Using PMC

• Successful in improving the performance of ASR systems

• Based on work by Mark Gales

• Evaluate use of PMC in text-dependent speaker verification tasks
Performance of PMC in ASR Experiments

Reference: Gales
Design Criteria

- Additive noises considered
- Scaling to be performed on noises

\[
\begin{align*}
\mu^l_{S \otimes N} &= \log(\exp(\mu^l_S) + g \exp(\mu^l_N)) \\
\Sigma^l_{S \otimes N} &= \log(\exp(\Sigma^l_S) + g \exp(\Sigma^l_N))
\end{align*}
\]

- Compensate only for static parameters
Implementation

- Selection of databases
- Preparation of data
- System Structure
- Scoring Procedures
Selection of Databases

• **Yoho speaker verification database**
 – Standard database used, performance comparison available

• **Timit database**
 – Used for the initialisation of isolated phone models prior to Yoho training

• **Noisex-92 noise database**
 – Selection of repetitive noise sources. Two noise sources reported in this paper. *Speech noise and operations room noise*
Preparation of Data

- Scaling of both enrolment and verification data
- Measurement of verification speech power
 - Silence periods ignored [ref 7, ITU-T Rec.]
- Mixing of speech and noise from -18dB to $+18$dB at 6dB intervals. Retain multiplication factor, g, and take an average
System Structure

• Front-end
 – 25ms, Hamming windowed, MEL scale warped
 – 12 cepstral coefficients with 0th energy appended, 1st and 2nd order derivatives included

• HTK Software for both training and recognition

• 3 state 4 component tied-triphone speaker dependent models, 1 state 4 component noise models
System Structure

- **Training**
 - 96 phrases per speaker
 - 118 authorised
 - 20 for General Speaker model

- **Recognition**
 - 40 phrases used for both FR and FA experiments
Scoring Procedures

- Likelihood ratio test employed

\[
\frac{P(X \mid S)}{P(X \mid GSM)} \geq t
\]

- Performance quoted in % EER
Experiment Methodology

- Establish baseline performance using clean speaker models and clean verification data
- Evaluate performance of clean speaker models under multi SNR verification data
- Evaluate performance of PMC compensated speaker models under multi SNR verification data
Un-compensated Models

Clean speech and models performance = 0.57%
Compensated Models

![Graph showing signal to noise ratio vs equal error rate for different noise conditions. The graph includes lines for Operations Room Noise, Speech Noise, Operations Room Noise (Std), and Speech Noise (Std).]
Stage One Summary

- Text-dependent SV task
- HTK Software used with modifications for PMC
- Yoho, Timit and Noisex-92 databases used
- 7 SNR scenarios considered (-18dB to +18dB)
Stage One Summary

• PMC improves SV performance

• 2 additive noises considered

• Static parameters compensated

• Baseline used: clean models, clean/contaminated speech
Experimental Extension

- We now have 7 SNR specific PMC models

- Can SNR specific PMC models be used for other SNRs? How sensitive are they?

- If yes, how well do they perform?
Evaluation of Non-ideal PMC Models

• For each SNR specific PMC model, perform SV task on noise contaminated verification phrases from −18dB to +18dB at 2dB intervals

• Observe any degradation in performance from using non-ideal models
Speech Noise Result

![Graph showing speech noise result with signal to noise ratio (dB) on the x-axis and equal error rate (%) on the y-axis. The graph includes data points for various signal to noise ratios: 18dB (0.06645), 12dB (0.132584), 6dB (0.264541), 0dB (0.527828), -6dB (1.053155), -12dB (2.101321), -18dB (4.192687).]
Operations Room Noise Result

![Graph showing the relationship between Signal to Noise Ratio (dB) and Equal Error Rate (%).]

- 18dB (0.074531)
- 12dB (0.14871)
- 6dB (0.296715)
- 0dB (0.592023)
- -6dB (1.181242)
- -12dB (2.356887)
- -18dB (4.702608)
Discussion

• Allow the selection of SNR specific PMC models based on which has the highest probability for a given observation
Automatic Model Selection

![Graph showing signal to noise ratio vs. equal error rate for Operations Room Noise and Speech Noise.](image)

- Operations Room Noise
- Speech Noise
Stage Two Summary

- Limiting the number of SNR specific PMC models to 7 does not affect SV performance on unknown SNR

- Better performance is achieved by automatic selection of models
Varying SNR Task
Modelling SNR Dynamics

• Operating models in parallel assumes that SNR changes occur at model boundaries

• Create one model from multiple models, with the SNR dynamics embedded within the transition probabilities
Implementation of a Composite HMM

- Rows and columns correspond to different SNR, 1st row = entry probability

<table>
<thead>
<tr>
<th>Entry</th>
<th>0.3</th>
<th>0.1</th>
<th>0.1</th>
<th>0.1</th>
<th>0.1</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 18dB</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>+ 12dB</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>+ 6dB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0dB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>- 6dB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>- 12dB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>- 18dB</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Implementation of a Composite HMM

- 3 dimensional model
- 1 state noise model
- 3 state speech model
- 7 state SNR model
Expectations

• Extracting true SNR dynamics and embedding it into the transition probabilities will further improve performance

[to be evaluated]
Varying SNR Task
Evaluation Using Non-stationary SNR Utterances

- Clean speech models tested on non-stationary SNR phrases
 - Speech noise: 38.55% EER
 - Operations room noise: 34.78% EER

- Performance of compensated models
 - Speech noise: 19.92% EER
 - Operations room noise: 18.84% EER
Stage Three Summary

- Composite 3-D HMM created
- SNR dynamics embedded into transition probabilities
- Improvement in performance observed
Conclusion

• PMC improves SV performance under both stationary and varying speech SNR

• SNR dynamics can be embedded into the HMM structure, providing additional information
Work In Progress

- Currently: known noise, unknown SNR
- Ideally: unknown noise, unknown SNR
- Tracking SNR transitions
- Comparison with other robust methods
- Establishing another baseline using matched recognition