Blind DET Estimation
(or - How to cheat at the NIST evaluation)

Niko Brümmer
&
Jason Pelecanos
Introduction

• Problem: Databases for SR development & evaluation are expensive because:
 – They have to be *large*
 – They are *not portable* between environments
 – They have to be *supervised*

• The object of this study is to find out what can be done with an *unsupervised* database, where speaker ID’s are not known.
Detection-Error-Tradeoff (DET)

impostors

targets

threshold

P_{miss}

P_{fa}

score

score
DET: directly from data

sorted score

P_{miss}

P_{fa}

Pfa

Pmiss

threshold

0

1

normalized index

targets

impostors
Database Prerequisites

- contains multiple single-speaker speech segments from many speakers,
- speaker identities need not be known
- organized into test pairs
 = (training utterance, test utterance)
Database Prerequisites

- Must contain *significant proportion* of two kinds of test pairs:
 - *impostor*: training speaker ≠ test speaker
 - *target*: training speaker = test speaker

Note: It may be difficult in practice to ensure this requirement in an unsupervised way.
Database Prerequisites

• A separate set of pure impostor test pairs must be available

Note: Impostors are not so difficult to get hold of. This requirement is similar to that of SV systems that use impostor normalization schemes like H-norm and T-norm.
Prerequisites

Unsupervised Database

\{(train, test) | ID_{train} \neq ID_{test}\}

\{(train, test) | ID_{train} = ID_{test}\}

mixed impostor & target set

pure impostor set

Unsupervised Database

SV System

train

test

score

mixed score set

pure impostor score set
Problem summary:

Given:
- Pure impostor scores
- Mixed scores

Estimate:
- Impostor & target score distributions

\[\text{DET} \]
Complicating factors

- impostor distribution may change
- ratio of impostors to targets is unknown
- the problem is not a simple subtraction: we start with data sets, not distribution functions
- distributions are not Gaussian
Blind estimation approach

- Pure impostor scores
- Mixed scores
- Impostor GMM
- Combined GMM

EM

Constrained EM

Shape-constrained impostor components
Free target components
Comparison of DETs obtained directly from data vs. dual
n-component GMM’s trained separately on impostor & target scores.

System 1
- $n = 1$
- $n = 2$

System 2
- $n = 1$
- $n = 2$
- $n = 5$
- $n = 10$
Impostor score model

- One dimensional n-component GMM:

$$p(x) = \sum_{i \in I} q_i \ N(x, \mu_i, \sigma_i)$$

$N(\cdot)$ is a Gaussian distribution
Mixed score model

\[p(x) = P_{imp} \ p_{imp}(x) + P_{tar} \ p_{tar}(x) \]
Mixed score model: ratio

\[P_{imp} + P_{tar} = 1 \]
Mixed score model: impostor offset

$$p_{imp}(x) = \sum_{i \in I} q_i N(x, \alpha + \mu_i, \sigma_i)$$
Mixed score model:
impostor variance

\[p_{imp}(x) = \sum_{i \in I} q_i N(x, \alpha + \gamma \mu_i, \gamma \sigma_i) \]
Mixed score model: target distribution

\[p_{tar}(x) = \sum_{i \in T} r_i \, N(x, \beta_i, \delta_i) \]
Impostor GMM Initialization

- ✗ Via k-means VQ
- ✓ Concentric means, range of variances
Impostor model adaptation

Impostor set A

Model A adapted to data of B via α and γ

Impostor set B

real data
Combined model initialization

Impostor model

\(\alpha = 0 \)
\(\gamma = 1 \)

means: + \(\delta \)
variances: x 20

\(\delta: \) estimate by inspection

mixed score histogram
Combined model estimation

• Run several *constrained* EM iterations on mixed data:
 – impostor parameters stay fixed
 – α and γ are allowed to adapt
 – target parameters adapt freely

• See EM re-estimation formulae in main article. The formulae for α and γ are not trivial.
DET Calculation: Use $\text{erf}(\cdot)$
Blind DET Estimation Experiments

- Tested on scores of the SV systems of 9 of the NIST 2000 participants, run on the 1-speaker detection part of the NIST 2000 Evaluation
 - electret only training & testing
 - males only
 - impostors partitioned into two equal sets, to provide pure-impostor score set
Experimental results

EER < 10%

--- true --- estimated
Experimental results

EER > 10%

P_{tar} estimates close to correct
Experimental results: EER > 10%

P_{tar} underestimated
- overoptimistic DET

P_{tar} overestimated
- pessimistic DET
Fixing P_{tar}
Estimated distributions

true

estimated
Smaller target subset

- $P_{\text{tar}} = 9\%$
- $P_{\text{tar}} = 16.5\%$

Fully blind
Conclusions

• Blind DET estimation is possible when:
 – There is small overlap of distributions when:
 • Error rates are low enough
 • When target:impostor ratio is not too extreme
 – Shape of the impostor distribution stays unchanged between pure impostor and mixed score sets. (Mean and variance changes can be compensated for.)

• Correct P_{tar} estimate is crucial. It helps if this value is known.
When can we use this method?

• Subject for future research to get a confidence estimate in the result.
• Look at the data. If you can clearly distinguish impostor & target distributions it will probably work.
Other uses

- Use GMMs to generate synthetic data sets, to estimate confidence intervals for DET curves. (Blind or supervised.)

90% Confidence interval
Other uses: speaker model adaptation

- Use multidimensional α-γ adaptation of speaker GMMs when recognizing speakers in mismatched conditions.
- For speaker recognition in conversations, when a GMM exists for one of the speakers. This is very similar to the blind DET estimation problem.