Enhancing Noise Robustness in Automatic Speech Recognition Using Stabilized Weighted Linear Prediction

Jouni Pohjalainen, Carlo Magi, Paavo Alku
Helsinki University of Technology
Dept. of Signal Processing and Acoustics, Espoo, Finland
Contents

1. Background
2. The SWLP method
3. Recognition experiments
4. Conclusions
1. Background

Conventional linear prediction (LP):

- The most widely used auto-regressive (AR) modeling technique of speech.
- Vulnerable to background noise.

=>

Several robust LP methods have been developed during the past decades.
Some examples of previous works on robust LP methods:

Statistical approach based on maximum a posteriori estimation

Effects of uncorrelated white noise are removed by modifying the autocorrelation term $R(0)$

Selection of samples with a two-stage analysis to decrease the effects of glottal excitation

Optimization of the predictor by minimizing the sum of weighted residuals: cost functions are used to give more weight to smaller residuals and down-weight large residuals

Weighting of the square of the residual with the short time energy function

The use of higher order statistics: LP parameters are computed from cumulants
Present study:

The concept of weighted linear prediction (WLP), based on Ma et al. (1993), is revisited by:

- Introducing Stabilized Weighted Linear Prediction (SWLP), a WLP method which guarantees the stability of the all-pole filter

- SWLP is used in recognition of noisy speech as a feature extraction technique
2. The Stabilized Weighted Linear Prediction (SWLP) Method

- Both in the conventional LP and WLP, speech sample x_n is estimated as a linear combination of the p past samples:

$$\hat{x}_n = -\sum_{i=1}^{p} a_i x_{n-i}$$ \hspace{1cm} (1)

- Prediction error, the residual, is defined as:

$$\varepsilon_n(a) = x_n + \sum_{i=1}^{p} a_i x_{n-i} = a^T x_n$$ \hspace{1cm} (2)
- Minimization problem:

\[
\minimize \ E(a) \ \text{subject to} \ \mathbf{a}^T \mathbf{u} = 1
\]

where \(\mathbf{u} \) is the unit vector

- In weighted LP, the prediction error is defined:

\[
E(a) = \sum_{n=1}^{N+p} (\varepsilon_n(a))^2 w_n
\]

(3)

\[
= \mathbf{a}^T \left(\sum_{n=1}^{N+p} w_n \mathbf{x}_n \mathbf{x}_n^T \right) \mathbf{a} = \mathbf{a}^T \mathbf{R} \mathbf{a}
\]

where \(\mathbf{R} \) is a weighted autocorrelation matrix is:

\[
\mathbf{R} = \sum_{n=1}^{N+p} w_n \mathbf{x}_n \mathbf{x}_n^T
\]
- Minimization results in normal equations:

\[R_a = \sigma^2 u \] \hspace{1cm} (4)

- Weighting is computed by the short-time energy (STE) function:

\[w_n = \sum_{i=0}^{M-1} x_{n-i-1}^2 \] \hspace{1cm} (5)

where \(M \) denotes the length of the STE window.
Example of STE-weighting:

STE emphasizes the closed phase of the glottal cycle, that is, the time span during which formants are prominent.
- Problem with WLP: stability of the all-pole filter not guaranteed!

- Solution:

Weighted autocorrelation matrix can be expressed:

$$ R = Y^T Y $$ \hspace{1cm} (6)

where:

$$ Y = [y_0 \, y_1 \, \ldots \, y_p] \quad y_0 = [\sqrt{w_1} x_1 \ldots \sqrt{w_N} x_N \, 0 \ldots 0]^T $$

Columns y_k of matrix Y can be generated:

$$ y_{k+1} = B y_k \quad , \ k=0, \ 1, \ldots, \ p-1 $$ \hspace{1cm} (7)
where matrix B is defined:

$$B = \begin{bmatrix}
0 & 0 & \ldots & 0 & 0 \\
\sqrt{w_2 / w_1} & 0 & 0 & \ldots & 0 \\
0 & \sqrt{w_3 / w_2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \sqrt{w_{N+p} / w_{N+p-1}} & 0
\end{bmatrix}$$
It can be shown (see Magi et al., Proc. Interspeech 2007) that the all-pole filter given by the weighted LP is stable if the elements of matrix B are defined:

$$B_{i+1,i} = \begin{cases} \sqrt{w_{i+1} / w_i} & \text{, if } w_i \leq w_{i+1} \\ 1 & \text{, if } w_i > w_{i+1} \end{cases}$$
Examples of SWLP spectra (vowel /a/, p=10):

M=8 => smooth envelope

M=24 => “LP-type of envelope”
3. Recognition experiments: feature extraction

○ Computation of the mel frequency cepstral coefficients (MFCC):
 1. magnitude spectrum estimation
 2. logarithmic energies from triangular bandpass filters
 3. discrete cosine transform

○ Methods for computing the short-time magnitude spectrum:
 ○ FFT
 ○ Linear prediction (LP)
 ○ Minimum variance distortionless response (MVDR)
 ○ Stabilized weighted linear prediction (SWLP)
Speaker-independent classification of isolated words

- Two word sets extracted from TIMIT:
 - T21: a vocabulary of 21 short words, plenty of training data
 - T22: a vocabulary of 22 slightly longer words, smaller training set

- Word recognition using Dynamic Time Warping (DTW)
 - Time-align sequences of 12-dimensional MFCC feature vectors
 - Δ’s and $\Delta \Delta$’s are not included in the feature vector - concentrate on the aspect of short-time magnitude spectrum estimation
 - Each vocabulary word is represented by ten MFCC sequences (selected using cluster analysis)
Correct recognition rates with white noise corruption

<table>
<thead>
<tr>
<th>T21</th>
<th>MFCC VARIANT</th>
<th>SNR 10</th>
<th>SNR 5</th>
<th>SNR 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>63.8</td>
<td>45.2</td>
<td>23.5</td>
<td>13.2</td>
</tr>
<tr>
<td>LP</td>
<td>67.9</td>
<td>52.1</td>
<td>33.0</td>
<td>15.4</td>
</tr>
<tr>
<td>MVDR-10</td>
<td>63.2</td>
<td>46.7</td>
<td>27.3</td>
<td>12.2</td>
</tr>
<tr>
<td>MVDR-80</td>
<td>62.5</td>
<td>44.5</td>
<td>27.0</td>
<td>11.2</td>
</tr>
<tr>
<td>SWLP-8</td>
<td>76.3</td>
<td>61.4</td>
<td>39.4</td>
<td>18.4</td>
</tr>
<tr>
<td>SWLP-24</td>
<td>75.5</td>
<td>56.0</td>
<td>33.5</td>
<td>13.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T22</th>
<th>MFCC VARIANT</th>
<th>SNR 10</th>
<th>SNR 5</th>
<th>SNR 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>68</td>
<td>48</td>
<td>37</td>
<td>29</td>
</tr>
<tr>
<td>LP</td>
<td>66</td>
<td>53</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>MVDR-10</td>
<td>68</td>
<td>57</td>
<td>38</td>
<td>24</td>
</tr>
<tr>
<td>MVDR-80</td>
<td>68</td>
<td>48</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>SWLP-8</td>
<td>75</td>
<td>67</td>
<td>54</td>
<td>35</td>
</tr>
<tr>
<td>SWLP-24</td>
<td>77</td>
<td>67</td>
<td>48</td>
<td>31</td>
</tr>
</tbody>
</table>
Correct recognition rates with pink noise corruption

<table>
<thead>
<tr>
<th>MFCC VARIANT</th>
<th>SNR 10</th>
<th>SNR 5</th>
<th>SNR 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>80.6</td>
<td>65.0</td>
<td>43.8</td>
</tr>
<tr>
<td>LP</td>
<td>83.5</td>
<td>69.4</td>
<td>48.5</td>
</tr>
<tr>
<td>MVDR-10</td>
<td>79.0</td>
<td>63.0</td>
<td>44.8</td>
</tr>
<tr>
<td>MVDR-80</td>
<td>82.0</td>
<td>65.0</td>
<td>43.7</td>
</tr>
<tr>
<td>SWLP-8</td>
<td>84.7</td>
<td>77.4</td>
<td>60.7</td>
</tr>
<tr>
<td>SWLP-24</td>
<td>84.3</td>
<td>74.9</td>
<td>54.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MFCC VARIANT</th>
<th>SNR 10</th>
<th>SNR 5</th>
<th>SNR 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFT</td>
<td>75</td>
<td>66</td>
<td>47</td>
</tr>
<tr>
<td>LP</td>
<td>71</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>MVDR-10</td>
<td>73</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>MVDR-80</td>
<td>74</td>
<td>65</td>
<td>51</td>
</tr>
<tr>
<td>SWLP-8</td>
<td>78</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td>SWLP-24</td>
<td>84</td>
<td>76</td>
<td>61</td>
</tr>
</tbody>
</table>

Helsinki University of Technology
4. Conclusions

Stabilized Weighted Linear Prediction (SWLP):
- An all-pole modeling method based on temporal weighting (with STE function) of the square of the residual
- Guarantees stability
- Performance (smoothness of the envelope) can be adjusted by length of the STE window (parameter M)
- Recognition setup:
 - Speaker-independent isolated word recognition using DTW
 - 12-dimensional MFCC vectors (no c(0), no deltas)
 - No feature postprocessing (such as CMS)

- With these conditions, SWLP as part of the MFCC computation outperforms other spectral estimation methods in terms of robustness against white and pink noise