Variation of glottal LF parameters across F0, vowels and phonetic environment

Michelle Tooher & John McKenna
School of Computing, Dublin City University
Context

• Machine learn characteristics of a speaker
 – Given utterance info. (prosodic, contextual and info about individual utterance)
 – Predict LF parameters of glottal flow for speaker and utterance
Data

- 2 male speakers
- 3 vowels - /a/ /i/ /u/
- 4 contexts - /s_t/ /s_d/ /z_t/ /z_d/
- “Say ___ again”
- 7 pitches: 90 – 210
- Randomly presented
- 3 sets
Analysis & Fitting

• Kalman-Filter based LP (McKenna, ‘99)
 – Chooses closed phase sections
 – Performs closed phase covariance LP
 – DGF

• LF fitting (Fant et. al., ‘85)
 – LF parameters: \(t_e, t_c, t_p, T_a \)
LF model
Questions

• Does glottal flow vary w.r.t. utterance and speaker?
• Any distinct patterns?
• What influences these variations/patterns?
• Should they be taken into consideration?
• Speaker specific?
Data Analysis

• LF parameters from beginning, middle, end of each vowel
• Statistical analysis (SPSS)
• Data plots
Data Analysis

- SPSS – correlation analysis*

<table>
<thead>
<tr>
<th></th>
<th>T_0</th>
<th>t_p</th>
<th>t_e</th>
<th>t_c</th>
<th>T_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td></td>
<td>.757</td>
<td>.902</td>
<td>.964</td>
<td>.446</td>
</tr>
<tr>
<td>t_p</td>
<td></td>
<td></td>
<td>.949</td>
<td>.859</td>
<td>-.065</td>
</tr>
<tr>
<td>t_e</td>
<td></td>
<td></td>
<td></td>
<td>.961</td>
<td>.132</td>
</tr>
<tr>
<td>t_c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.364</td>
</tr>
<tr>
<td>T_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T_0</th>
<th>t_p</th>
<th>t_e</th>
<th>t_c</th>
<th>T_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Pearson Correlation Coefficients
Results

• Variations w.r.t. T_0:

 - t_c, t_e, and t_p rise

 • t_c and t_e close to linear whereas t_p portrays nonlinearity

 - T_a - little variation
Results

/u/

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel={T_0},
 ylabel={t_p},
 xmin=4, xmax=12, xtick={4,5,6,7,8,9,10,11},
 ymin=0, ymax=6e3, ytick={0,1,2,3,4,5,6},
 xtick scale label code/.code={},
 ytick scale label code/.code={},
 xticklabel style={font=\footnotesize},
 yticklabel style={font=\footnotesize},
 width=\textwidth,
]
\addplot[red, mark=x, only marks] table [col sep=comma] {data1.csv};
\addplot[blue, mark=x, only marks] table [col sep=comma] {data2.csv};
\addplot[red, dotted] table [col sep=comma] {line1.csv};
\addplot[blue, dotted] table [col sep=comma] {line2.csv};
\end{axis}
\end{tikzpicture}
\end{center}

27/08/03
VOQUAL '03
Results (cont.)

• Variations w.r.t. vowels:
 - LF parameter values of /a/ higher than /i/, and /u/
 - Linear regression shows significant differences in both slope and y-intercept between /a/ and /i/ or /u/
• Variations w.r.t. environment:
 – Both linear regression and data plots show the following:
 • /z/ preceding – affects parameters
 • /s/ preceding – no apparent effects
 • Context following vowel has no effect on parameters
 • Voiced and voiceless pairs /s_t/, /z_d/ - no effect
Results (cont.)

• Variations in waveshape parameters
 – R_a and R_k change with T_0
 – R_g varies little
 – As T_0 rises R_d also rises

• Variations w.r.t speaker
 – Same patterns across two speakers
 – S2 values are generally higher than S1
Conclusions

• Patterns do exist
• LF parameters vary with T_0
• t_c and t_e appear to vary linearly with T_0 whereas t_p and T_a appear to vary non-linearly
• Only the voiced context appears to have an affect on the parameters and only when it preceeds the parameters
Conclusions

• Vowel influences values of parameters

• Variations with T_0 are not speaker specific, however values of the LF parameters are

• More data across speakers, contexts and vowels is needed for a more exhaustive study
Question

• How could this affect synthesis?
 – F0 manipulation – parameters need to be adjusted but possibly at different rates
 – Original and target environments
 – New speakers – can a new speaker be created by varying the levels (y-intercept) of the parameters?
• Additional data plots follow