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Abstract
Recently, deep neural networks (DNNs) trained to predict
senones have been incorporated into the conventional i-vector
based speaker verification systems to provide soft frame align-
ments and show promising results. However, the data mismatch
problem may degrade the performance since the DNN requires
transcribed data (out-domain data) while the data sets (in-
domain data) used for i-vector training and extraction are mostly
untranscribed. In this paper, we try to address this problem by
exploiting the unlabeled in-domain data during the training of
the DNN, hoping the DNN can provide a more robust basis for
the in-domain data. In this work, we first explore the impact of
using in-domain data during the unsupervised DNN pre-training
process. In addition, we decode the in-domain data using a
hybrid DNN-HMM system to get its transcription, and then
we retrain the DNN model with the “labeled” in-domain data.
Experimental results on the NIST SRE 2008 and the NIST SRE
2010 databases demonstrate the effectiveness of the proposed
methods.
Index Terms: deep neural networks, speaker verification,
unlabeled data

1. Introduction
Over recent years, the Gaussian Mixture Model (GMM) has laid
the foundation of many speaker verification systems [1, 2, 3],
among which i-vector has become a dominant approach for
speaker verification and has brought significant performance
improvement. In i-vector paradigm, each utterance is repre-
sented as a low-dimensional vector called i-vector and then
probabilistic linear discriminant analysis (PLDA) could be
performed to get the final verification scores [4, 5, 6].

More recently, deep neural networks (DNNs) have become
the state-of-the-art in automatic speech recognition (ASR) sys-
tems, bringing an about 30% relative improvement in word error
rate (WER) [7, 8]. DNN approaches have also been evaluated
in speaker verification area in the last few years and many of
them try to use the DNN as a direct replacement for the classical
GMM approach [9, 10, 11]. Recently, however, a hybrid
framework proposed in [12] and [13] has shown promising
results in speaker verification tasks where the DNN trained to
discriminant between senones is used as a replacement of the
GMM to provide frame posterior probabilities during the ex-
traction of sufficient statistics. Their work actually demonstrate
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that more accurate content (senones) frame alignments could
benefit speaker verification tasks. This framework has also been
successfully applied in spoken language recognition [14].

Generally, speech recognition and speaker verification are
two individual tasks and it is usually very difficult to have
sufficient transcribed in-domain data that matches speaker ver-
ification task. The DNN model trained with the out-domain
data only might not fully reflect the phonetic characteristics of
the target acoustic space. Finding a way to effectively narrow
the gap caused by data mismatch is thus a meaningful issue.
In our previous work [15], we try to address this problem by
using a GMM trained with bottleneck features of in-domain
data as a replacement of the DNN trained with out-domain data
to provide frame posterior probabilities. In this paper, however,
we try to adapt the DNN model to the target acoustic space
directly using the unlabeled (untranscribed) in-domain data.
In our work, we firstly explore the effects of using in-domain
data for DNN initialization during the unsupervised DNN pre-
training process. In this way, we hope the region of space
covered by the solution associated with this initialization could
shrink to an area that is suitable both for out-domain data and in-
domain data. In addition, we try to obtain the transcription of in-
domain data automatically using a hybrid DNN-HMM system,
and then retrain the DNN model with the “transcribed” in-
domain data. Even though these machine-labeled transcriptions
are not accurate enough, it can be inferred that the frames of
in-domain data that have been grouped to the same senone are
more phonetically correlated to each other and the DNN model
trained with these data can provide more accurate content frame
alignments to some extent during test stage. We also evaluate
the performance of using bottleneck features extracted from
our adapted DNNs for sufficient statistics extraction to see if
additional improvement could be obtained. Experiments on
the NIST SRE 2008 female short2-short3 English telephone
task and the NIST SRE 2010 female core-extended English
telephone task verify the effectiveness of the proposed methods.

The remainder of this paper is organized as follows. Section
2 presents the DNN based i-vector framework. Section 3
introduces our proposed strategies of using unlabeled in-domain
data during the training of DNNs. Experimental setup and
results are given in Section 4. Finally, conclusions are presented
in Section 5.

2. The DNN based i-vector framework
The conventional i-vector model is based on the GMM-UBM
and each utterance is represented by its sufficient statistics
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Figure 1: The flow diagrams of (a) DNN based (b) bottleneck
features based i-vector framework.

(Baum-Welch statistics) extracted with the UBM as follows

Nc =
∑

t

γc,t (1)

Fc =
∑

t

γc,tot (2)

Sc =
∑

t

γc,totot
T

(3)

where Nc, Fc and Sc are the zero-order, first-order and second
statistics of an utterance corresponding to the c-th Gaussian
component of UBM. γc,t is the posterior probability of feature
vector ot generated by the c-th Gaussian component.

In [12] and [13], the DNN trained to predict senones is used
as a replacement of the GMM-UBM in extracting sufficient
statistics. Specifically, by treating each senone outputs of the
DNN as a single-Gaussian like units in the UBM, the sufficient
statistics could be extracted by replacing the Gaussian posterior
with senone posterior. This could be regarded as phonetically-
dependent (senone-dependent) frame alignments where content
based comparison is able to be made between different speakers
afterwards.

3. The bottleneck features based i-vector
framework

The DNN based bottleneck (BN) features are being widely used
in various speech related applications to improve system’s per-
formance [16, 17, 18]. In our previous work, we propose using
a GMM trained with BN features to provide frame alignments
to address the data mismatch problem [15]. Specifically, the
senone-based DNN trained with out-domain data is used as a
BN feature extractor. Then a GMM is trained in the traditional
unsupervised way with BN features of in-domain data and is
used to calculate frame posterior probabilities while collecting
sufficient statistics. The BN feature contains rich phonetic
information since the DNN is trained to discriminant between
senones. As a result, each component of the GMM is more

connected to phonetic content. In addition, the GMM alignment
model can be more accurate than the DNN alignment model in
modeling the target acoustic space to some extent by utilizing
the in-domain data. The flow diagrams of DNN based and BN
features based i-vector framework are presented in Figure 1.

4. Utilizing unlabeled in-domain data
The BN features based approach can be viewed as an indirect
model adaptation of the higher layers of the DNN. In this paper,
we try to adapt the whole DNN model to the target acoustic
space directly by exploiting unlabeled in-domain data.

4.1. unsupervised pre-training with in-domain data

The training of DNN is a two stage process: unsupervised pre-
training and supervised fine-tuning [19]. The pre-training can
make a very important difference because of the non-convexity
of the training criterion. The idea of pre-training the DNN is to
regard it as a generative Deep Belief Network (DBN) which is
a stack of Restricted Boltzman Machines (RBMs) [20]. Since
the pre-training plays an important role and is implemented
in an unsupervised way, it is interesting to investigate the
effects of reinforcing pre-training by utilizing unlabeled in-
domain data. The pre-training actually can be viewed as an
unsupervised learning process of feature representation. More
abstract feature representation could be learned as the neural
network becomes deeper. By utilizing the unlabeled in-domain
data together with out-domain data is expected to make the
neural network a more robust feature detector. On the other
hand, back-propagation algorithm used during fine-tuning step
is actually more effective for the higher layer parameters and
less effective for the lower layer parameters. The fine-tuning
may be more effective for both in-domain and out-domain data
if the parameters of lower layer are robustly learned. In other
words, the DNN may therefore provide more accurate frame
alignments for in-domain data.

4.2. supervised re-training with in-domain data

The current state-of-the-art DNN based ASR systems usually
require a relatively large transcribed training data to be trained
on to make full use of DNN’s discriminative ability. However,
the data preparation costs too much time and human efforts,
which can be prohibitive especially for languages with few
speakers. A practical way in ASR to address this problem is
using self re-training methods [21, 22, 23]. In these methods,
the transcribed data are firstly used to build a seed model. Then
this model is used to decode the untranscribed data to generate
transcriptions, which are regarded as ground-truth transcripts in
further training.

In this paper, we investigate using the self re-training
strategy to address the data mismatch problem. In our work,
we first train a hybrid DNN-HMM system using the transcribed
out-domain data to decode the untranscribed in-domain data.
Then we retrain the DNN model with the “transcribed” in-
domain data to provide frame posteriors. Even though the
senone transcripts of the in-domain data generated by ASR
system may not be accurate enough, it can be inferred that the
frames of in-domain data that have been grouped to the same
senone are more phonetically correlated to each other. As a
result, it can be expected that the DNN model trained with
these data might be more effective in reflecting the phonetic
characteristics of the target acoustic space, thus providing more
accurate content frame alignments to some extent.
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5. Experiments
5.1. Experimental setup

5.1.1. Dataset

Experiments are carried out on the NIST SRE2008 female
short2-short3 telephone-telephone English task (Condition
7) and the NIST SRE2010 female core-extended telephone-
telephone English task (Condition 5) [24, 25]. The training
data for senone-based DNNs are 300 hours English telephone
speeches from Switchboard-I (out-domain data). The training
data for DNN unsupervised pre-training, DNN supervised
re-training, UBM, T matrix and PLDA are selected from NIST
SRE 04, 05, 06 telephone data (in-domain data).

5.1.2. Models

• GMM-HMM: A GMM-HMM system is firstly trained to
generate transcriptions for senones. It uses 52-dimensional
PLP features (13 basic + first-order + second-order + third-
order) with speaker-based mean-covariance normalization.
Then the features are further reduced to 39 dimension by
HLDA. The GMM-HMM uses 2227 senones tied by a
phonetic decision tree.

• DNN: The DNN used to provide the posterior probability
is pre-trained as Deep Belief Network (DBN) and then is
fine-tuned with cross-entropy criterion. 11 frames where
each frame consists of 120 log Mel-filterbank coefficients (40
basic + first-order + second order) are concatenated as the
input of the network. The DNN has five hidden layers and
each hidden layer has 1200 nodes. The output of the DNN
with respect to senones has 2227 nodes. The configurations
of the DNN with BN layer are the same except that the
number of the fifth hidden layer is changed to 39.

• DNN-HMM: The DNN-HMM system with 2227 senones is
used for the decoding of the unlabeled in-domain data. A
trigram language model is trained using the transcriptions of
the 2000-hour English Fisher corpus with modified Knerser-
Ney smoothing and is interpolated with a more general
trigram.

• UBM-i-vector model: 39-dimensional (13 basic + first order
+ second order) PLP is extracted as the raw acoustic feature.
Then a gender-dependent diagonal covariance UBM with
2048 mixtures is trained. The dimensionality of i-vectors is
400. Simplified Gaussian PLDA is used to generate verifi-
cation scores and the dimensionality of speaker subspace in
PLDA model is 200.

• DNN-ivector model: The DNN with senone outputs are used
to provide frame posteriors. Then these frame posteriors are
combined with 39-dimensional PLP features for sufficient
statistics extraction. The number of mixtures is confined by
the number of senones. Other model configurations are the
same with the UBM-ivector model.

• BN-ivector model: the DNN with senone outputs are used
to extract 39-dimensional BN features. Then a UBM is
trained with these BN features and is used to provide frame
posteriors. These frame posteriors are combined with 39-
dimensional PLP features for sufficient statistics extraction.
The number of mixtures is set to 2048 for all systems. Other
model configurations are the same with the UBM-ivector
model.

Equal error rate (EER) and minimum decision cost function
(minDCF) are adopted for evaluation [24].

5.2. Experimental results

Table 1: Results of UBM-i-vector and DNN-i-vector with dif-
ferent DNN pre-training data on the NIST SRE08 short2-short3
condition7 and the NIST SRE10 core-extended condition5, in
terms of EER(%)/minDCFtimes10. The last column gives
the word error rate (WER(%)) of corresponding DNN-HMM
systems on Hub5’00-SWB.

system SRE08 SRE10 ASR

UBM-i-vector 2.02/0.106 3.12/0.156

DNNSWB-i-vector 1.81/0.089 2.84/0.141 18.8

DNNSRE-i-vector 1.90/0.088 3.05/0.147 19.0
DNNSRE+SWB-i-vector 1.72/0.084 2.71/0.138 18.8

We first evaluate the effects of using different data for DNN
pre-training. Table 1 presents the results of UBM-i-vector and
DNN-ivector with different pre-training data. The SRE data
used for pre-training are 300 hours randomly selected speeches
from NIST SRE 04, 05, 06 and all DNN models are fine-tuned
with SWB data. It can be seen that all the DNN based systems
outperform the UBM approach. However, the DNNSRE system
is slightly worse compared with the other two DNN systems
since the data for pre-training and fine-tuning are completely
different and the fine-tuning of the DNN might be less effective.
In addition, the DNNSWB+SRE based system can provide further
performance improvements over the DNNSWB system, and the
relative improvements are 4.97% in EER, 5.62% in minDCF on
SRE08 trial, 4.58% in EER, 2.13% in minDCF on SRE10 trial.
We also evaluate the performance of different DNN based ASR
systems on Hub5’00-SWB speech recognition data set. The
results are presented in Table 1 as well. The performance of
DNNSWB+SRE and DNNSWB based ASR systems are the same
while the DNNSRE is slightly worse. From the above speech
recognition and speaker verification results, it can be concluded
that DNN pre-trained with both in-domain data and out-domain
data is robust and effective for both tasks.

Table 2: Results of UBM-i-vector, DNN-i-vector and BN-
ivector with different DNN pre-training data on the NIST SRE08
short2-short3 condition7 and the NIST SRE10 core-extended
condition5, in terms of EER(%)/minDCF08×10.

system SRE08 SRE10

UBM-i-vector 2.02/0.106 3.12/0.156

DNNSWB-i-vector 1.81/0.089 2.84/0.141
BNSWB-i-vector 1.69/0.083 2.70/0.136

DNNSRE+SWB-i-vector 1.72/0.084 2.71/0.138
BNSRE+SWB-i-vector 1.58/0.079 2.62/0.132

Table 2 presents the results of UBM-i-vector, DNN-ivector
and BN-i-vector with different pre-training data. From the
results we can see the DNNSRE+SWB-i-vector is competitive to
BNSWB-i-vector. Additional performance improvements could
be obtained with BN features extracted from DNNSRE+SWB,
and the relative improvements are 8.14% in EER, 5.95% in
minDCF on SRE08 trial, 3.32% in EER, 4.35% in minDCF on
SRE10 trial. Since the bottleneck layer in our DNN is the last
hidden layer, the pre-training can be viewed as an adaptation
of parameters below the bottleneck layer and the BN based
approach can be viewed as an adaptation of parameters above
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the bottleneck layer. Thus combining these two complementary
methods will lead to more accurate frame alignments for the
in-domain data, which explains the additional performance im-
provement of BNSRE+SWB-i-vector over DNNSRE+SWB-i-vector.

Table 3: Results of UBM-i-vector and DNN-i-vector with dif-
ferent DNN fine-tuning data on the NIST SRE08 short2-short3
condition7 and the NIST SRE10 core-extended condition5,
in terms of EER(%)/minDCF08×10. The last column gives
the Word Error Rate (WER(%)) of corresponding DNN-HMM
systems on Hub5’00-SWB.

system SRE08 SRE10 ASR

UBM-i-vector 2.02/0.106 3.12/0.156

DNNSWB-i-vector 1.72/0.084 2.71/0.138 18.8

DNNSRE-i-vector 1.47/0.076 2.43/0.125 29.3
DNNSRE+SWB-i-vector 1.64/0.079 2.50/0.129 22.1

Next, we evaluate the effects of using “transcribed” in-
domain data for DNN fine-tuning. Table 3 presents the results of
DNN-ivector with different fine-tuning data. The SRE data that
have been decoded for fine-tuning are the same as the data used
in unsupervised pre-training experiments. The DNN-HMM
system used for decoding the SRE data is trained with SWB
data. The DNNs in Table 3 are all pre-trained with both SWB
and SRE data. From the results we can see that DNNSRE based
system performs much better than DNNSWB based approach, the
relative improvements are 14.5% in EER, 9.52% in minDCF
on SRE08 trial, 10.3% in EER, 9.42% in minDCF on SRE10
trial. However, the performance of DNNSRE+SWB-i-vector is not
as good as DNNSRE-i-vector though it outperforms DNNSWB-
i-vector. From the results it can be concluded that DNN fine-
tuned with SRE data do reflect the phonetic characteristics
of the target acoustic space better than DNN fine-tuned with
SWB data. In addition, the results of different DNN based
ASR systems on Hub5’00-SWB speech recognition data set
are presented in Table 3. From the results we can see that for
ASR task, the DNN based systems perform much worse when
the SRE data are included for fine-tuning. Actually, it can be
inferred that the frames of SRE data that have been grouped
to the same senone are more phonetically correlated to each
other, but they may not strictly match the senone labels that
have been assigned to them. As a result, the DNN trained with
these “transcribed” SRE data are more relevant and reliable for
speaker verification task while the inclusion of them will be
harmful to speech recognition task.

Table 4: Results of DNN-i-vector and BN-ivector with different
DNN fine-tuning data on the NIST SRE08 short2-short3
condition7 and the NIST SRE10 core-extended condition5, in
terms of EER(%)/minDCF08×10.

system SRE08 SRE10

UBM-i-vector 2.02/0.106 3.12/0.156

DNNSWB-i-vector 1.72/0.084 2.71/0.138
BNSWB-i-vector 1.58/0.079 2.62/0.132

DNNSRE-i-vector 1.47/0.076 2.43/0.125
BNSRE-i-vector 1.88/0.089 2.90/0.143

DNNSRE+SWB-i-vector 1.64/0.079 2.50/0.129
BNSRE+SWB-i-vector 1.56/0.077 2.52/0.128

Table 4 presents the results of DNN-ivector and BN-i-
vector with different fine-tuning data. The BN feature based
systems outperform the DNN based approaches when SWB
data are included for DNN fine-tuning. However, the BN
features based system performs much worse when only SRE
data are used for DNN fine-tuning. A reasonable explanation
might be that BN features extracted from SRE data related
DNNs are less phonetically discriminative compared with BN
features extracted from DNN trained with SWB data since
the transcripts of SRE data are not accurate enough. As a
result, the GMM trained with these BN features might be
less effective for acoustic space modeling. Besides, since the
difference between DNNSRE and BNSRE based approaches is
that the discriminative output (trained with supervision) has
been replaced by unsupervised clustering of BN features in a
GMM, it can be inferred that the softmax layer of DNNSRE

plays important role for frame alignments and contains much
phonetic information with respect to the target acoustic space.

Table 5: Results of DNN-ivector fine-tuned with randomly
selected SRE data and sentence-level confidence based SRE
data on the NIST SRE08 short2-short3 condition7 and
the NIST SRE10 core-extended condition5, in terms of
EER(%)/minDCF08×10.

system SRE08 SRE10

UBM-i-vector 2.02/0.106 3.12/0.156

DNNSRE-random-i-vector 1.47/0.076 2.43/0.125
DNNSRE-confidence-i-vector 1.42/0.073 2.35/0.120

Generally, it is necessary to take confidence measure into
consideration when choosing in-domain data for model re-
training. We first decode all the SRE training data and then
select 300 hours speeches with highest sentence confidence for
model re-training for comparison. The sentence confidence
is calculated as the average word confidence in a sentence.
The results are presented in Table 5. It can be seen that data
selection could bring additional performance improvements.
The DNNSRE-confidence-i-vector performs best among all systems
evaluated in this paper.

6. Conclusions
In this paper we try to address the data mismatch problem
that may arise in the hybrid DNN-ivector framework by using
unlabeled in-domain data. Experiments on the NIST SRE
2008 and 2010 female English telephone tasks show that DNN
pre-trained with both in-domain and out-domain data is more
effective for speaker verification. Using BN features extracted
from this DNN to calculate frame posteriors can provide further
improvements. In addition, substantial performance improve-
ments can be obtained when the DNN fine-tuned with decoded
in-domain data is used for frame alignments. However, the BN
feature extracted from DNNs in this situation is less effective.
In the future, we’ll analyze the effects of using different
number of decoded data and evaluate systems’ performance on
multilingual speaker verification tasks.

7. Acknowledgements
This work was supported by the National Natural Science
Foundation of China under Grant No. 61273268, No. 61370034
and No. 61403224.

1866



8. References
[1] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint

factor analysis versus eigenchannels in speaker recognition,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 15, no. 4, pp. 1435–1447, 2007.

[2] T. Kinnunen and H. Li, “An overview of text-independent
speaker recognition: From features to supervectors,” Speech
communication, vol. 52, no. 1, pp. 12–40, 2010.

[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE
Transactions on Audio, Speech, and Language Processing,
vol. 19, no. 4, pp. 788–798, 2011.

[4] S. J. Prince and J. H. Elder, “Probabilistic linear discriminant
analysis for inferences about identity,” in Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on. IEEE,
2007, pp. 1–8.

[5] P. Kenny, “Bayesian speaker verification with heavy-tailed
priors.” in Odyssey, 2010, p. 14.

[6] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-
vector length normalization in speaker recognition systems.” in
Interspeech, 2011, pp. 249–252.

[7] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[8] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition:
The shared views of four research groups,” Signal Processing
Magazine, IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[9] T. Stafylakis, P. Kenny, M. Senoussaoui, and P. Dumouchel,
“Preliminary investigation of boltzmann machine classifiers for
speaker recognition.” in Odyssey, 2012, pp. 109–116.

[10] M. Senoussaoui, N. Dehak, P. Kenny, R. Dehak, and P. Du-
mouchel, “First attempt of boltzmann machines for speaker
verification.” in Odyssey, 2012, pp. 117–121.

[11] S. Garimella and H. Hermansky, “Factor analysis of auto-
associative neural networks with application in speaker verifica-
tion,” Neural Networks and Learning Systems, IEEE Transactions
on, vol. 24, no. 4, pp. 522–528, 2013.

[12] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme
for speaker recognition using a phoneetically-aware deep neural
network,” Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEE International Conference on, 2014.

[13] P. Kenny, T. Stafylakis, P. Ouellet, V. Gupta, and J. Alam, “Deep
neural networks for extracting Baum-Welch statistics for speaker
recognition,” in Odyssey 2014, 2014, pp. 293–298.

[14] L. Ferrer, Y. Lei, M. McLaren, and N. Scheffer, “Study
of senone-based deep neural network approaches for spoken
language recognition,” Audio, Speech, and Language Processing,
IEEE/ACM Transactions on, vol. 24, no. 1, pp. 105–116, 2016.

[15] Y. Tian, M. Cai, L. He, and J. Liu, “Investigation of bottleneck
features and multilingual deep neural networks for speaker
verification.” in Interspeech, 2015, pp. 1151–1155.

[16] D. Yu and M. L. Seltzer, “Improved bottleneck features using
pretrained deep neural networks.” in Interspeech, 2011, p. 240.

[17] Y. Song, B. Jiang, Y. Bao, S. Wei, and L.-R. Dai, “I-
vector representation based on bottleneck features for language
identification,” Electronics Letters, vol. 49, no. 24, pp. 1569–
1570, 2013.

[18] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting
deep bottleneck features using stacked auto-encoders,” in
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on. IEEE, 2013, pp. 3377–3381.

[19] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[20] G. Hinton, “A practical guide to training restricted boltzmann
machines,” Momentum, vol. 9, no. 1, p. 926, 2010.

[21] S. Novotney, R. Schwartz, and J. Ma, “Unsupervised acoustic and
language model training with small amounts of labelled data,” in
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.
IEEE International Conference on. IEEE, 2009, pp. 4297–4300.

[22] Y. Huang, D. Yu, Y. Gong, and C. Liu, “Semi-supervised gmm and
dnn acoustic model training with multi-system combination and
confidence re-calibration.” in INTERSPEECH, 2013, pp. 2360–
2364.

[23] K. Vesely, M. Hannemann, and L. Burget, “Semi-supervised train-
ing of deep neural networks,” in Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on. IEEE,
2013, pp. 267–272.

[24] “The NIST year 2008 speaker recognition evaluation plan,”
http://www.itl.nist.gov/iad/mig//tests/sre/2008/, 2008.

[25] “The NIST year 2010 speaker recognition evaluation plan,”
http://www.nist.gov/speech/tests/spk/2010/index.html, 2010.

1867


