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Abstract
Multi-channel non-negative matrix factorization (MNMF) is a
multi-channel extension of NMF and often outperforms NMF
because it can deal with spatial and spectral information simul-
taneously. On the other hand, MNMF has a larger number of pa-
rameters and its performance heavily depends on the initial val-
ues. MNMF factorizes an observation matrix into four matrices:
spatial correlation, basis, cluster-indicator latent variables, and
activation matrices. This paper proposes effective initialization
methods for these matrices. First, the spatial correlation matrix,
which shows the largest initial value dependencies, is initial-
ized using the cross-spectrum method from enhanced speech by
binary masking. Second, when the target is speech, construct-
ing bases from phonemes existing in an utterance can improve
the performance: this paper proposes a speech bases selection
by using automatic speech recognition (ASR). Third, we also
propose an initialization method for the cluster-indicator latent
variables that couple the spatial and spectral information, which
can achieve the simultaneous optimization of above two matri-
ces. Experiments on a noisy ASR task show that the proposed
initialization significantly improves the performance of MNMF
by reducing the initial value dependencies.
Index Terms: non-negative matrix factorization, noisy speech,
speech basis, spatial correlation, automatic speech recognition

1. Introduction
Source separation and noise reduction are essential techniques
when processing real-world audio signals, whether the en-
hanced signals are to be listened by humans or further processed
by machines. A prominent example is that of automatic speech
recognition (ASR) in many hands-free applications. To increase
the practicality of ASR systems, distant-talking input is much
more desirable than close-talking input; however, noises or in-
terferences significantly degrade the ASR performance.

One of the most effective methods is non-negative matrix
factorization (NMF) [1, 2], which factorizes an observation ma-
trix into two matrices: basis and activation matrices. To recon-
struct the target signals from the mixed signals, it is important
to properly construct the bases. Several methods have been pro-
posed to construct proper initial bases for NMF: the k-means
method [3], singular value decomposition [4, 5], and the LBG
algorithm [6]. These methods only use training data for basis
selection and it is possible that unnecessary bases are included
because of a mismatch between training and test data. The small
number of bases cannot represent speech well due to the large
variety, because spectral properties of speech are dependent on
speakers and utterances. The representation capability is im-

proved by increasing the number of bases but it is then difficult
to optimize them. Practically, it is necessary to restrict the num-
ber of bases and ideally to select bases that fit the phonemes
appearing in the utterances in cooperation with ASR. One ap-
proach in this direction is ASR-assisted speech enhancement
[7, 8, 9, 10], which seems to improve the performance. We ex-
tend the approach in [7] to a histogram-based one and validate
the effectiveness on an ASR task.

Multi-channel NMF (MNMF) is a multi-channel extension
of NMF, which is effective for source separation and noise re-
duction [11, 12], and factorizes an observation matrix into four
matrices. It can consider both spatial and spectral information,
simultaneously, by introducing Hermitian semi-positive definite
matrices to handle phase information. The separation perfor-
mance of MNMF is more dependent on initial values than NMF
because the number of free parameters is larger.

The introduction of other methods or constraints helps to
improve the performance of MNMF. The authors showed that
the initial value dependencies are more dominant in the spatial
correlation matrix than the other matrices and that its estimation
using the cross-spectrum method is effective from enhanced
speech by binary masking [13], whereas [14] showed the ef-
fectiveness of a rank-1 relaxation. Previous methods initialize
bases and spatial correlation matrices, respectively, according to
each criterion. However, these are coupled by cluster-indicator
latent variables, thus, these spatial and spectral informations
should be simultaneously exploited.

We propose effective initialization methods for MNMF pa-
rameters: ASR-based bases selection (Sec. 3.1), spatial corre-
lation matrix initialization by using the cross-spectrum method
and binary masking (Sec. 3.2), and combination of spatial and
spectral information by cluster-indicator latent variables initial-
ization (Sec. 3.3). This paper validates the effectiveness of the
proposed method on the fourth CHiME challenge, a popular
noisy ASR task [15], and analyzes the influence of each com-
ponent in terms of the word error rate (WER).

2. Multi-channel non-negative matrix
factorization (MNMF)

NMF factorizes an observation matrix X into two matrices: ba-
sis matrix T and activation matrix V . In addition, MNMF fac-
torizes an observation matrix X into four matrices H , Z, T ,
and V . The two additional matrices H and Z are the spatial
correlation matrix and cluster-indicator latent variables, respec-
tively. MNMF clusters K spectral bases into L sources by using
the spatial information to achieve high source separation perfor-
mance without any prior supervised training.
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Figure 1: An example of factorizing an observation matrix X
into four matricesH , Z, T , and V by the multi-channel NMF
algorithm. (I = J = 7 andK = L = M = 2)

2.1. Matrix factorization in MNMF

An observation vector x is [x1, . . . , xm, . . . , xM ]� where �
denotes the transpose and xm is the complex spectrum of the
short-time Fourier transform (STFT), which is observed at the
m-th microphone (1 ≤ m ≤ M). At the frequency bin i (1 ≤
i ≤ I) and the time frame j (1 ≤ j ≤ J), the element of an
observation matrix X ∈ (CM×M )I×J is represented as

Xij = xij(x
∗
ij)
� =

⎡
⎢⎣
|x1|2 · · · x1x

∗
M

...
. . .

...
xMx∗1 · · · |xM |2

⎤
⎥⎦

ij

, (1)

where ∗ denotes the complex conjugate. Matrix X is a hierar-
chical matrix whose elements Xij are M ×M complex Her-
mitian positive semi-definite matrices. MNMF factorizes this
matrix X into four matrices H , Z, T , and V :

X ∼= X̂ = [(HZ) ◦ T ]V , (2)

where ◦ denotes the Hadamard product. Fig. 1 illustrates
Eq. (2); H ∈ (CM×M )I×L is a spatial correlation matrix that
indicates the spatial information of L sources and Z ∈ R

L×K

is a cluster-indicator latent variables matrix that relates spatial
information with each basis. Basis matrix T ∈ R

I×K is com-
posed of K bases, and V ∈ R

K×J comprises the activations of
each basis. The right-hand side of Eq. (2) can be represented as

X̂ij =
∑
k

[∑
l

Hilzlk

]
tikvkj . (3)

For ideal cases, the reconstructed matrix X̂ whose elements are
X̂ij matches with the original matrix X . However, in general,
these matrices differ due to errors. In NMF, an arbitrary dis-
tance D∗(X, X̂) between X and X̂ is defined and the above
four matrices in the right-hand side of Eq. (2) are updated to
minimize this distance. Here, the Itakura-Saito (IS) divergence1

dIS(Xij , X̂ij) = tr(XijX̂
−1
ij )−log detXijX̂

−1
ij −M, (4)

is used, where tr(·) is a trace of a matrix.

2.2. Multiplicative update rule

An iterative optimization algorithm, multiplicative update rule
[17], is applied to the randomly initialized non-negative matri-
ces T , V , and Z, and the matrix H whose elements are initial-
ized as unit matrices. These matrices are updated to minimize

1IS divergence is suitable for the separation of music and speech,
whose dynamic ranges are large [16].

DIS(X, X̂) as follows:

tik ←tik

√√√√∑
l zlk

∑
j vkj tr(X̂

−1
ij XijX̂

−1
ij Hil)∑

l zlk
∑

j vkj tr(X̂
−1
ij Hil)

,

vkj ←vkj

√√√√∑
l zlk

∑
i tik tr(X̂

−1
ij XijX̂

−1
ij Hil)∑

l zlk
∑

i tik tr(X̂
−1
ij Hil)

,

zlk ←zlk

√√√√∑
i

∑
j tikvkj tr(X̂

−1
ij XijX̂

−1
ij Hil)∑

i

∑
j tikvkj tr(X̂

−1
ij Hil)

.

(5)

Hil is a solution of an algebraic Riccati equation (6)

HilAHil = B, (6)

whose coefficients A and B are{
A =

∑
k zlktik

∑
j vkjX̂

−1
ij ,

B = H ′
il

[∑
k zlktik

∑
j vkjX̂

−1
ij XijX

−1
ij

]
H ′

il,
(7)

where H ′
il is the value of matrix Hil before the update. The

solution of Eq. (6) is found in the appendix of [12]. It is nec-
essary to normalize matrices H and Z, in order to preserve the
uniqueness of Eq. (2) (Hil = Hil/ tr(Hil)) and the definition
of probability (zlk = zlk/

∑
l zlk).

Finally, the l-th separated source ỹijl (1 ≤ l ≤ L) can be
obtained by the multi-channel Wiener filter as

ỹijl =

[∑
k

zlktikvkj

]
HilX̂

−1
ij xij . (8)

3. Coupled initialization for MNMF
3.1. ASR-based initialization of speech bases T

Fig. 2 shows the procedure of speech bases selection based on
the ASR results. A total of K bases are composed of Ks speech
bases and Kn noise bases. The noise bases are randomly ini-
tialized in the same manner as the conventional method.

Initial speech bases are sampled from the excerpt of the pre-
pared clean speech. First, a basis dictionary is created from the
clean speech data, where multiple frames are associated with
each monophone. Monophone alignments are obtained by us-
ing ASR after converting the triphone alignments into mono-
phone ones. The counts of each monophone are gathered in
a histogram and the most frequent Ks monophones in an ut-
terance are picked up from the dictionary. For each phoneme,
each basis is selected randomly from the multiple frames in the
dictionary.

In addition, some utterances that include more various
phonemes need more bases than the other utterances. Then, it
is possible to pick up the bases of frequently appearing mono-
phones utterance-by-utterance by checking the appearance per-
centage, instead of selecting the fixed top Ks monophones.
These two types of initializations are validated in the experi-
mental section.

3.2. Initialization of spatial correlation matrices H using
the cross-spectrum method

The separation performance can be improved by initializing H
from impulse responses [13], but it is difficult to obtain these
types of information a priori. The initial H can however be ob-
tained from roughly separated sounds by using binary masking.

2462



hello

sil HH AH L OW sil

1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 12 12

sil sil-HH-AH HH-AH-L AH-L-OW L-OW-sil sil

1 2 3 4 5 6 7 8 9 10 11 12

Monophone:

Triphone:

HMM state:

Alignment:

Histogram:

C
ou

nt

HH:3 AH:5 L:4 OW:5

0
1
2
3
4
5

: Top Ks monophones

Ks Kn 

Speech bases

HH AH L OW

supervised alignments

Basis dictionary

Clean speech

HH AH OW

T

} Noise bases
(Random)

}

Randomly picked up

Figure 2: Procedure of the ASR-based speech bases initializa-
tion (Ks = 2 andKn = 3).

3.2.1. Source signal enhancement by using binary masking

Binary masking is a source separation technique that masks
spectra in the time-frequency domain based on the phase dif-
ference θij(= arg(x2/x1)). For each source l, when a noise
comes from another direction than that of the source, the phase
difference will be different from that of the source, θsjl. Each
source can thus be enhanced by masking power spectra in the
time-frequency bins that have different phases from θsjl. The
mask Wijl can be set as

Wijl =

{
ε (min(|θij − θsjl|, 2π − |θij − θsjl|) > θc),
1 (otherwise),

(9)

where ε(> 0) is a very small constant and θc is a threshold that
can be set a priori. If the source direction is unknown, it can be
estimated by various algorithms [18, 19].

3.2.2. Initialization by using the cross-spectrum method

The cross-spectrum method estimates the spatial correlation
matrix at each frame, Hijl, as a multiplication of the l-th
masked data and its Hermitian transpose [14]. After calculat-
ing Hijl, the initial Hil for MNMF is set as the expectation Ej

of Hijl in order for the estimations to be stable as shown in

Hil = Ej [Hijl] =
1∑

j W
2
ijl

∑
j

W 2
ijlxij

(
x∗ij

)�
. (10)

3.3. Coupled initialization via cluster-indicator latent vari-
ables Z

Cluster-indicator latent variables Z can explicitly relate the spa-
tial information with the spectral information. Fig. 3 shows the
system components of the proposed method. The combination
of our methods described in Sections 3.1 and 3.2 provides the
initial spatial correlation matrix H and the basis matrix T . The
left part of H is related to the target and its right part is re-
lated to the noise. In addition, the first Ks components of T
are speech bases and the remaining ones are noise bases. To
relate these matrices, the target parts of Z (the elements at the
first row and the first to the Ksth columns) and noise parts of Z
(the elements at the second row and the (Ks + 1)th to the Kth
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Figure 3: Schematic diagram of the ASR system combined with
the proposed initialization methods.

columns) should be set larger than the other parts of Z. This
initialization of Z strongly combines the target/noise spectral
information derived from T and the target/noise spatial infor-
mation derived from H to achieve their separation.

4. Noisy ASR experiments (CHiME4)
4.1. Experimental setups

This paper validated the effectiveness of our proposed method
on the 2ch track of the fourth CHiME challenge, a noisy ASR
task with a vocabulary size of 5,000. The data were recorded by
using hand-held tablets with six embedded microphones in four
environments: bus (BUS), café (CAF), pedestrian (PED), and
street (STR), with two types of data generation: data recorded
in the real world (real) and data created by mixing real noise
with clean speech recorded in a booth and convolved with mea-
sured impulse responses (simu). There are training, develop-
ment (Dev), and test (Test) sets, and all the parameters for ASR
were tuned on the Dev set.

We used the Kaldi toolkit [20]. The acoustic models were
trained using the noisy data with no speech enhancement. The
acoustic feature was the same as the challenge-provided one:
the 13-dimensional MFCC +Δ+ΔΔ with feature-space max-
imum likelihood linear regression (fMLLR) transformation.
These features were obtained by a first-pass decoding using
Gaussian mixture model systems, and the features in 11 con-
secutive frames were concatenated and used as an input to the
deep neural network (DNN). After the second-pass decoding
using DNN systems, we used a recurrent neural network lan-
guage model (RNN-LM) [21] for rescoring their hypotheses.

In the 2ch track, two channels were randomly sampled from
the five channels with frontal direction2. Thus, microphone
positions were different for every utterance. As conventional
speech enhancement methods, we employed the challenge base-
line beamformer (BeamformIt, denoted as BF) [22], as well as
the minimum variance distortionless response (MVDR) beam-
former with precise steering vector estimation [23]. The base-
line was the conventional MNMF with random initialization of
all matrices except H , which was set to as a unit matrix [12].
There were two outputs of the conventional MNMF and it was
necessary to select the appropriate one because it was unknown
which one included the target speech. Here, this selection was
oracle, i.e., the better hypotheses were selected according to the

2The total number of microphones was six but one microphone was
located at the backend of the tablet.
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Table 1: Average WER [%] on the development and test sets
of the fourth CHiME challenge for the baseline systems with
conventional speech enhancement (SE) methods.

SE RNN-LM Dev Test
real simu real simu

None no 14.67 15.67 27.69 24.15
yes 11.69 15.43 23.71 20.95

BF [22] no 10.92 12.30 20.44 19.30
yes 8.27 9.49 16.58 15.39

MVDR [23] no 10.83 11.84 19.82 19.95
yes 7.91 9.35 15.91 16.39

Table 2: Average WER [%] for the proposed systems; MNMF
denotes conventional MNMF where all initial matrices except
for H which is set to a unit matrix are random. (I) uses a bi-
nary masking basedH initialization. (II) is (I) with ASR-based
speech bases selection. (III) is (II) with speech bases kept con-
stant during the MNMF update. (IV) is (II) with Z initializa-
tion. (V) is (IV) with variable-size speech bases.

SE RNN-LM Dev Test
real simu real simu

MNMF no 23.99 22.42 33.98 23.18
yes 20.96 19.62 23.46 19.49

(I) no 10.54 10.83 18.80 15.93
yes 7.84 8.32 14.83 12.72

(II) no 10.16 10.68 18.63 16.87
yes 7.53 8.20 14.98 13.75

(III) no 11.00 11.16 19.65 16.03
yes 8.08 8.68 15.91 12.42

(IV) no 10.00 10.77 17.88 14.48
yes 7.42 8.26 13.97 10.99

(V) no 9.74 10.72 17.78 14.15
yes 7.30 8.33 13.81 10.91

utterance-based WERs after both were decoded, which is the
upper limit performance of the conventional MNMF. Parameter
settings of MNMF were as follows: I = 513, K = 30, and
L = M = 2, which was common through all the experiments.

For our H initialization, the binary masking assumed that
the target speaker was in the frontal position and ideally, the
phase differences of the target source θs were near zero, but
some errors did occur. For our T initialization, Ks was set to
be 20. For the selection involving the top candidates up to a
given percentage, the percentage was set such that roughly 20
bases were used on average.

4.2. Results and discussions (Baseline and conventional
methods)

Table 1 shows the baseline WERs of the challenge. Baseline BF
significantly improved the performance over the unprocessed
signals. RNN-LM rescoring reduced the errors by 20%. MVDR
achieved equivalent performance with baseline BF, although in
the 6ch track, MVDR outperformed BF [23, 24]. Table 2 shows
the performance of the conventional MNMF with random ini-
tialization, which was even worse than those of the baselines
due to spectral distortions introduced by the separation.

4.3. Results and discussions (Proposed methods)

Table 2 also shows the performance of the proposed method. H
initialization ((I) in the table) significantly improved the perfor-
mance, outperforming both BF and MVDR. Association with
T initialization (II) further improved the WER by 0.2–0.4% on
the Dev set. Keeping speech bases constant (III) did not im-

Table 3: WER [%] per environment for each system with RNN-
LM rescoring.

SE Envir. Dev Test
real simu real simu

None

BUS 15.25 13.55 36.19 16.40
CAF 12.18 19.46 24.58 24.09
PED 7.51 11.11 19.77 20.53
STR 11.81 17.62 14.33 22.79

BF

BUS 10.93 8.17 25.37 10.63
CAF 8.14 12.11 15.89 18.27
PED 5.19 7.17 13.60 15.67
STR 8.82 10.58 11.45 16.83

(I)

BUS 9.59 6.92 22.81 8.20
CAF 7.52 10.68 14.76 14.64
PED 5.66 6.34 12.00 12.39
STR 8.73 9.34 10.42 14.64

(IV)

BUS 9.78 7.29 21.95 7.71
CAF 7.17 10.43 13.19 12.61
PED 5.10 6.37 10.30 11.21
STR 7.61 8.97 9.86 12.42

(V)

BUS 8.91 6.90 21.28 7.55
CAF 7.02 10.96 13.02 12.01
PED 5.35 6.50 10.91 11.23
STR 7.90 9.16 10.03 12.14
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Figure 4: Standard deviations of WERs for each method.

prove the performance because there were mismatches between
training and test data, thus, updating the bases is necessary. Z
initialization (IV) gave additional improvements. Variable-size
speech bases (V) improved the performance in some cases but
this was not significant. Table 3 shows the WER of the respec-
tive methods per environment. Our approach was effective for
all environments.

Fig. 4 shows the standard deviations of the WERs for each
speech enhancement. The conventional MNMF had signifi-
cantly larger standard deviations than the others, which shows
the large initial value dependencies. The proposed T initial-
ization (II) decreased the standard deviations and combining Z
initialization (IV) achieved the smallest standard deviation.

5. Conclusion
This paper proposed effective initialization methods for three
of the four MNMF matrices. First, the basis matrices corre-
sponding to the speech were initialized from the clean speech
based on the ASR results. Second, the spatial correlation matri-
ces were constructed from the sounds roughly separated by bi-
nary masking. Third, the cluster-indicator latent variables were
initialized to combine the two matrices above. Experimental
results on the fourth CHiME challenge show that these initial-
izations were effective for noisy ASR. Compared with the base-
line beamformer, although MNMF with random initialization
did not improve the WERs, MNMF with the proposed initial-
ization significantly improved the WER.
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