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Abstract
In this paper a classification-based method for the automatic
detection of glottal closure instants (GCIs) from the speech sig-
nal is proposed. Peaks in the speech waveforms are taken as
candidates for GCI placements. A classification framework is
used to train a classification model and to classify whether or
not a peak corresponds to the GCI. We show that the detection
accuracy in terms of F1 score is 97.27%. In addition, despite
using the speech signal only, the proposed method behaves com-
parably to a method utilizing the glottal signal. The method is
also compared with three existing GCI detection algorithms on
publicly available databases.
Index Terms: glottal closure instant (GCI), pitch mark, classifi-
cation

1. Introduction
Pitch-synchronous methods of speech processing rely on the
knowledge of moments of glottal closures. These moments are
called glottal closure instants (GCIs), pitch marks or epochs.
They can be defined as locations of a speech signal amplitude
extreme that corresponds to the moment of glottal closure, a
significant excitation of a vocal tract. The distance between two
succeeding GCIs then corresponds to one vocal fold vibration
cycle and can be represented in the time domain by a local
pitch period value (T0) or in the frequency domain by a local
fundamental frequency value (F0). Note that GCIs are present
only in voiced segments of speech as there is no vocal fold
vibration in unvoiced speech segments.

Precise detection of GCIs was reported to be important in
many speech-technology applications [1, 2, 3] such as pitch
tracking, prosodic speech modification [4, 5], various areas of
speech synthesis [4, 6, 7], phonetic segmentation [8], voice
conversion and transformation [9, 10], speech enhancement and
dereverberation [11], glottal flow estimation [12] and speaker
recognition [13], closed-phase linear prediction analysis [14],
data-drive voice source modeling [15], and causal-anticausal
deconvolution of speech signals [16].

Although GCIs can be reliably detected from a simultane-
ously recorded electroglottograph (EGG) signal (which measures
glottal activity directly; thus, it is not burdened by modifications
that happen to a flow of speech in the vocal tract—see Figure 1c),
it is not always possible (e.g. in the case of using existing speech
recordings) or comfortable to use an EGG device during record-
ing. Hence, there is a great interest to detect GCIs directly from
the speech signal.

Various algorithms have been proposed to detect GCIs di-
rectly in speech signals. They principally identify GCI can-
didates from local maxima of various speech representations
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Figure 1: Example of a speech signal (a), the corresponding low-
pass filtered signal (b), EGG signal (c) and its difference (dEGG)
signal (d). GCIs are marked by red dashed and green dotted lines
in speech-based and glottal-based signals respectively. Note the
delay between speech and EGG signals.

and/or from discontinuities or changes in signal energy. The for-
mer include linear predictive coding (e.g. DYPSA [17], YAGA
[2], or [18]), wavelet components [19], or multiscale formalism
(MMF) [20]. The latter include Hilbert envelope, Frobenius
norm, zero-frequency resonator, or SEDREAMS [21]. Dynamic
programming is often used to refine the GCI candidates [17, 2].
A universal postprocessing scheme to correct GCI detection er-
rors was also proposed [22]. A nice overview of the algorithms
can be found in [1].

In this paper we present a classification-based method for
the automatic detection of GCIs from speech signals. It is based
on a classification framework in which a classifier is trained on
relevant features extracted around potential locations of GCIs
(peaks in speech waveforms) and used to classify whether or
not a peak corresponds to a true GCI [23]. Unlike the above
mentioned methods which require some manual tuning of their
parameters, the proposed method is purely data-based in that the
parameters of the classifier are set up automatically based on a
training dataset.

2. Classification-based GCI detection
The problem of GCI detection could be viewed as a two-class
classification problem: whether or not a peak in a speech wave-
form represents a GCI. We experimented with many classifiers,
and the following ones showed the best performance: support
vector machines (SVM) with a Gaussian radial basis function
(RBF) kernel, extremely randomized trees (ERT), k-nearest
neighbors (KNN), and multilayer perceptron (MLP).
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Figure 2: Illustration of peak-based features extraction: ampli-
tude of a negative peak (A), amplitude of a positive peak (B),
difference between two negative peaks (C), width of a negative
peak (D), correlation between waveforms of two negative peaks
(E). GCI candidates are marked by ◦, true GCIs by •.

2.1. Experimental data

The training and testing of the examined classifiers were per-
formed on clean speech data available at our workplace (hereafter
referred to as UWB). The speech recordings were primarily in-
tended for speech synthesis. We used 63 utterances (≈9 minutes
of speech) for training and 19 utterances (≈3 minutes of speech)
for testing. The set of utterances was the same as in [24]; it
comprised various Czech (male and female), Slovak (female),
German (male), US English (male), and French (female) speak-
ers. All speakers were part of both the training and test datasets.
All speech waveforms were sampled at 16 kHz. Reference GCIs
produced by a human expert (using both speech an EGG signals)
were available for each utterance (51,629 in total).

2.2. Features

Before the features were extracted, speech waveforms were low-
pass filtered by a zero-phase Equiripple-designed filter with
0.5 dB ripple in the pass band, 60 dB attenuation in the stop
band, and with cutoff frequency of 700 Hz [23] to reduce the
high-frequency structure in the speech signal (see Figure 1b or 2).
The signals were then zero-crossed to identify peaks (both of the
negative and positive polarity) that are used for feature extraction
in further processing. Since the polarity of speech signals was
shown to have an important impact on the performance of a
GCI detector [25, 26], all speech signals were switched to have
the negative polarity, and only the negative peaks were taken
as the candidates for the GCI placement. For the purposes of
training and testing, the location of each reference GCI was
assigned to a corresponding negative peak in the filtered signal
(see Figure 1b). There were 66,130 and 18,026 candidate peaks
in the training and test datasets respectively, 40,938 and 10,691
of them corresponded to true GCIs.

We used two kinds of features. Perhaps the most intuitive
way of describing characteristics of a given peak is to simply
use (hanning-windowed) waveform samples in a window sur-
rounding the peak. For the window length of 30 ms (S = 30),
481 samples (one sample representing the current peak plus
240 samples to the left and 240 samples to the right) were taken
as features.

Alternatively, features inspired by [23] describing the given
peak by a set of local descriptors reflecting the position and shape
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Figure 3: Feature optimization: the optimal number of waveform
samples (top) and neighboring peaks (bottom).

of other 2P neighboring peaks were used. For P = 3, such peak-
based features comprise the amplitudes of the given negative
peak and 6 neighboring (3 prior and 3 subsequent) negative
peaks (7 features, denoted as A in Figure 2), amplitudes of
6 neighboring positive peaks (6, B), the time difference between
the given negative peak and each of the neighboring negative
peaks (6, C), the width of the given negative peak and each of
the neighboring negative peaks (7, D), the correlation of the
waveform around the given negative peak and the waveforms
around each of the neighboring negative peaks (6, E). Hence, for
P = 3, only 32 features were used in total.

2.3. Classifier design

To design the proposed classifiers, the Scikit-learn toolkit [27]
was employed. The design consisted of the following steps:

1. Feature optimization. For each classifier with the default
parameter setting (according to the Scikit-learn toolkit),
optimal number of features (the number of samples and
the number of peaks surrounding the given peak) were
found on the training dataset using 10-fold cross valida-
tion. The optimal numbers are shown in Figure 3.

2. Parameter tuning & model selection. For each classifier
and the features selected in the previous step, an extensive
parameter tuning using grid search over relevant values
of classifier parameters with 10-fold cross validation was
conducted on the training dataset. The results of this step
are shown in Figure 4.

3. The best classifier selection. Based on the results from the
previous step, the best classifier for each kind of features
was selected—KNN-S30 for sample-based and ERT-P3
for peak-based features.

2.4. Final evaluation on UWB test dataset

The final evaluation of the proposed classifiers was carried out
on the UWB test dataset. In addition to the best classifiers
using waveform samples (KNN-S30) and peak-based features
(ERT-P3) respectively, we also used these classifiers with a com-
bination of both kinds of features (KNN-P3S30 and ERT-P3S30)
for the comparison. The results of the comparison and their
statistical significance are shown in Table 1 and 2, respectively.
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Figure 4: Comparison of classifiers’ performance on the cross-
validation dataset for sample-based (top) and peak-based fea-
tures (bottom) in terms of F1 and 95% confidence intervals.
CLF-Sn and CLF-Pm denote the classifier type (CLF), the num-
ber of samples corresponding to a window of length n ms (Sn),
and the number of peaks prior and subsequent to a given peak
(Pm).
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Figure 5: Learning curves of the ERT-P3 classifier.

As can be seen, despite relatively similar performances of
all classifiers, given the large number of testing examples the
ERT-P3 classifier performs significantly better than the others.
Considering this finding and the low number of 32 features,
ERT-P3 was chosen as the best classifier for our task of GCI
detection and its performance was compared with other existing
GCI detection algorithms further in Section 3. The learning
curve of the ERT-P3 classifier in Figure 5 suggests that there is
still some room for improvement if more training data and/or
other features would be available.

3. Comparison with other methods
In the previous section, the proposed method was evaluated in
a standard classification-manner, i.e., how good the classifier is
both in classifying peaks that correspond to true GCIs and, at the
same time, in classifying peaks that do not represent GCIs. Now,
however, we will look at the comparison of the GCI detection
with some other available detection algorithms.

3.1. Performance measures

The most common way to assess the performance of GCI de-
tection techniques is to compare locations of the detected and
reference GCIs. The widely used measures, proposed in [17],
concern the reliability:

• Identification Rate (IDR): the percentage of glottal clo-
sures for which exactly one GCI is detected;

Table 1: Final evaluation of the classifiers on the UWB test
dataset in terms of recall (R), precision (P ), and F1 score.

Classifier R (%) P (%) F1 (%)

ERT-P3 96.46 98.09 97.27
KNN-S30 96.45 97.75 97.10
ERT-P3S30 96.74 97.65 97.20
KNN-P3S30 96.68 97.80 97.23

Table 2: Statistical significance according to McNemar’s test
[28]. The symbols “�” and “>” mean that the row classifier
is significantly better at the significance level α = 0.01 and
α = 0.05 respectively than the column classifier. The symbol

“=” means that the respective classifiers perform the same.

Classifier ERT-P3 KNN-S30 ERT-P3S30 KNN-P3S30

ERT-P3 = � � �
KNN-S30 � = < <
ERT-P3S30 � > = =
KNN-P3S30 � > = =

• Miss Rate (MR): the percentage of glottal closures for
which no GCI is detected;

• False Alarm Rate (FAR): the percentage of glottal clo-
sures for which more than one GCI is detected;

and the accuracy of the algorithms:

• Accuracy to ±0.25 ms (A25): the percentage of detec-
tions for which the identification error ζ ≤ 0.25 ms (the
timing error between the detected and the corresponding
reference GCI);

• Identification Accuracy (IDA): standard deviation of the
identification error ζ.

A more dynamic evaluation measure

E10 =
NR −Nζ>0.1T0 −NM −NFA

NR
(1)

that combines the reliability and accuracy in a single score and
reflects the local T0 pattern (determined from the reference GCIs)
was also defined [29]. NR stands for the number of reference
GCIs, NM is the number of missing GCIs (corresponding to
MR), NFA is the number of false GCIs (corresponding to FAR),
and Nζ>0.1T0 is the number of GCIs with the identification
error ζ greater than 10% of the local pitch period T0. For the
alignment between the detected and reference GCIs, dynamic
programming was employed [29].

3.2. Compared methods

We compared the proposed classification-based GCI detection
method with three existing state-of-the-art methods:

• Speech Event Detection using the Residual Excitation
And a Mean-based Signal (SEDREAMS) [21] (available
in the COVAREP repository [30, 31], v1.4.1), shown in
[1] to provide the best of performances compared to other
methods;

• fast GCI detection based on Microcanonical Multiscale
Formalism (MMF) [20] (available in [32]);

• Dynamic Programming Phase Slope Algorithm (DYPSA)
[17] available in the VOICEBOX toolbox [33].
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Table 3: Summary of the performance of the GCI detection algorithms for the four datasets.

Dataset Method IDR (%) MR (%) FAR (%) IDA (ms) A25 (%) E10 (%)

UWB

MPA 97.06 0.66 2.28 0.21 84.65 97.03
ERT-P3 95.87 1.99 2.14 0.29 81.06 95.93
SEDREAMS 91.80 3.54 4.66 0.24 81.51 91.87
MMF 83.47 11.42 5.11 0.42 80.72 84.80
DYPSA 87.40 4.86 7.74 0.40 80.60 87.27

BDL

ERT-P3 91.96 2.98 5.06 0.41 88.41 91.78
SEDREAMS 90.98 2.35 6.67 0.54 91.23 90.57
MMF 87.82 5.84 6.34 0.61 90.36 87.77
DYPSA 86.98 7.59 5.43 0.65 91.16 86.69

SLT

ERT-P3 95.18 1.35 3.47 0.15 95.08 95.07
SEDREAMS 92.96 1.15 5.89 0.19 89.09 92.61
MMF 91.16 5.33 3.51 0.37 77.53 91.32
DYPSA 91.50 2.80 5.70 0.30 81.23 91.24

KED

ERT-P3 91.88 2.94 5.18 0.27 88.02 91.69
SEDREAMS 89.54 1.16 9.30 0.56 78.46 88.61
MMF 89.11 4.61 6.28 0.57 83.52 88.92
DYPSA 89.01 4.62 6.37 0.48 83.70 88.81

We used the implementations available online; no modifications
of the algorithms were made. Since all three algorithms estimate
GCIs also during unvoiced segments, authors recommend to filter
the detected GCIs by the output of a separate voiced/unvoiced
detector. We applied an F0 contour estimated by the RAPT
algorithm [34] as implemented in the Wavesurfer tool [35] for
this purpose (we removed GCIs with the undefined F0 value).
As each of the algorithms places GCIs slightly differently, the
locations of GCIs were shifted towards the neighboring negative
peak of the corresponding filtered speech signal. Note that the
same filtering and shifting were applied also on the output of
the proposed ERT-P3 classifier, although it is, in principle, less
prone to voiced/unvoiced detection errors.

3.3. Test datasets

Firstly, the evaluation was carried out on the UWB test dataset
(≈3 minutes of speech) described in Section 2.1. GCIs produced
by a human expert were used as reference GCIs. Since contem-
poraneous EGG recordings were also available, the Multi-Phase
Algorithm (MPA) [29] that detects GCIs by thresholding the
dEGG signal was included in the comparison as an upper bound
for GCI detection.

Secondly, two voices, a US male (BDL) and a US female
(SLT) from the CMU ARCTIC databases intended for unit se-
lection speech synthesis [36, 37] were used as a test material.
Each voice consists of 1132 phonetically balanced utterances
of a total duration ≈54 minutes per voice. Additionally, KED
TIMIT database [37] comprising 453 phonetically balanced ut-
terances (≈20 min.) of a US male speaker was also used for
testing. All these datasets comprise clean speech. Since there are
no hand-crafted GCIs available for these datasets, GCIs detected
from contemporaneous EGG recordings by the MPA algorithm
[29] were used as the reference GCIs. Original speech and EGG
signals were downsampled to 16 kHz. Note that MPA also
synchronizes GCIs with speech signal to compensate for the
delay between the speech and EGG signals (see Figure 1). No
correction of the automatically obtained reference GCIs were
made. It is important to mention that no speaker from these
datasets was part of the training dataset used to train the pro-
posed classification-based GCI detection method.

3.4. Results

The results in Table 3 show that the proposed classification-
based method (ERT-P3) consistently outperforms other methods
in terms of reliability, especially with respect to the identification
(IDR) and false alarm (FAR) rates, for all tested datasets. It also
gives the highest score that combines reliability and dynamic
detection accuracy (E10).

As for the accuracy itself, ERT-P3 performed very well with
the highest identification accuracy (IDA) for all datasets except
for the UWB dataset. Together with the SEDREAMS algorithm
it also yielded the smallest number of timing errors higher than
0.25 ms (A25). It is obvious that the proposed classification-
based approach to GCI detection from speech signals performs
very well and mostly outperforms existing state-of-the-art meth-
ods on the four test datasets. In addition, its performance is
not much worse in comparison with the MPA algorithm which
utilizes glottal (EGG) signal for the detection of GCIs.

4. Conclusions
A classification-based method was proposed to detect GCIs from
speech signals. Being a data-based method, the only requirement
is a set of reference GCIs to train the classifier. No manual
tuning of parameters is required—classifier parameters are set
up automatically during the training process. We showed that the
proposed method performed very well on several test datasets
and outperformed other state-of-the-art methods in terms of
detection reliability and mostly also in terms of accuracy. This
was also true for datasets whose speakers were not included in
the training data1.

In our future work, we would like to investigate more
closely whether more training data from more speakers could
further increase the performance of the proposed method. We
also plan to incorporate some other features (e.g. pitch-based,
voiced/unvoiced or harmonic/noise related) to the currently used
peak-based feature set. Robustness of the proposed method to
noisy signals and/or to emotional or expressive speech will also
be investigated.

1Data relevant to the described experiments are available online [38].
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or valleys?” in Text, Speech and Dialogue, ser. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2007, vol. 4629,
pp. 502–507.

[26] T. Drugman, “Residual excitation skewness for automatic speech
polarity detection,” IEEE Signal Processing Letters, vol. 20, no. 4,
pp. 387–390, 2013.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. M. B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perror,
and É. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[28] S. Salzberg, “On comparing classifiers: Pitfalls to avoid and a
recommended approach,” Data Mining and Knowledge Discovery,
vol. 328, pp. 317–328, 1997.
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