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Abstract

In this paper, a novel architecture for a deep recurrent neural
network, residual LSTM is introduced. A plain LSTM has an
internal memory cell that can learn long term dependencies of
sequential data. It also provides a temporal shortcut path to
avoid vanishing or exploding gradients in the temporal domain.
The residual LSTM provides an additional spatial shortcut path
from lower layers for efficient training of deep networks with
multiple LSTM layers. Compared with the previous work, high-
way LSTM, residual LSTM separates a spatial shortcut path
with temporal one by using output layers, which can help to
avoid a conflict between spatial and temporal-domain gradient
flows. Furthermore, residual LSTM reuses the output projec-
tion matrix and the output gate of LSTM to control the spatial
information flow instead of additional gate networks, which ef-
fectively reduces more than 10% of network parameters. An
experiment for distant speech recognition on the AMI SDM cor-
pus shows that 10-layer plain and highway LSTM networks pre-
sented 13.7% and 6.2% increase in WER over 3-layer baselines,
respectively. On the contrary, 10-layer residual LSTM networks
provided the lowest WER 41.0%, which corresponds to 3.3%
and 2.8% WER reduction over plain and highway LSTM net-
works, respectively.

Index Terms: ASR, LSTM, GMM, RNN, CNN

1. Introduction
Over the past years, the emergence of deep neural networks has
fundamentally changed the design of automatic speech recog-
nition (ASR). Neural network-based acoustic models presented
significant performance improvement over the prior state-of-
the-art Gaussian mixture model (GMM) [1, 2, 3, 4, 5]. Ad-
vanced neural network-based architectures further improved
ASR performance. For example, convolutional neural networks
(CNN) which has been huge success in image classification and
detection were effective to reduce environmental and speaker
variability in acoustic features [6, 7, 8, 9, 10]. Recurrent neural
networks (RNN) were successfully applied to learn long term
dependencies of sequential data [11, 12, 13, 14].

The recent success of a neural network based architecture
mainly comes from its deep architecture [15, 16]. However,
training a deep neural network is a difficult problem due to van-
ishing or exploding gradients. Furthermore, increasing depth in
recurrent architectures such as gated recurrent unit (GRU) and
long short-term memory (LSTM) is significantly more difficult
because they already have a deep architecture in the temporal
domain.

There have been two successful architectures for a deep
feed-forward neural network: residual network and highway
network. Residual network [17] was successfully applied to

train more than 100 convolutional layers for image classifica-
tion and detection. The key insight in the residual network is to
provide a shortcut path between layers that can be used for an
additional gradient path. Highway network [18] is an another
way of implementing a shortcut path in a feed-forward neural
network. [18] presented successful MNIST training results with
100 layers.

Shortcut paths have also been investigated for RNN and
LSTM networks. The maximum entropy RNN (ME-RNN)
model [19] has direct connections between the input and out-
put layers of an RNN layer. Although limited to RNN net-
works with a single hidden layer, the perplexity improved by
training the direct connections as part of the whole network.
Highway LSTM [20, 21] presented a multi-layer extension of
an advanced RNN architecture, LSTM [22]. LSTM has internal
memory cells that provide shortcut gradient paths in the tem-
poral direction. Highway LSTM reused them for a highway
shortcut in the spatial domain. It also introduced new gate net-
works to control highway paths from the prior layer memory
cells. [20] presented highway LSTM for far-field speech recog-
nition and showed improvement over plain LSTM. However,
[20] also showed that highway LSTM degraded with increasing
depth.

In this paper, a novel highway architecture, residual LSTM
is introduced. The key insights of residual LSTM are summa-
rized as below.

• Highway connection between output layers instead of in-
ternal memory cells: LSTM internal memory cells are
used to deal with gradient issues in the temporal domain.
Reusing it again for the spatial domain could make it
more difficult to train a network in both temporal and
spatial domains. The proposed residual LSTM network
uses an output layer for the spatial shortcut connection
instead of an internal memory cell, which can less inter-
fere with a temporal gradient flow.

• Each output layer at the residual LSTM network learns
residual mapping not learnable from highway path.
Therefore, each new layer does not need to waste time
or resource to generate similar outputs from prior layers.

• Residual LSTM reuses an LSTM projection matrix as a
gate network. For an usual LSTM network size, more
than 10% learnable parameters can be saved from resid-
ual LSTM over highway LSTM.

The experimental result on the AMI SDM corpus [23] showed
10-layer plain and highway LSTMs had severe degradation
from increased depth: 13.7% and 6.2% increase in WER over 3-
layer baselines, respectively. On the contrary, a 10-layer resid-
ual LSTM presented the lowest WER 41.0%, which outper-
formed the best models of plain and highway LSTMs.
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2. Revisiting Highway Networks
In this section, we give a brief review of LSTM and three exist-
ing highway architectures.

2.1. Residual Network

A residual network [17] provides an identity mapping by short-
cut paths. Since the identity mapping is always on, function
output only needs to learn residual mapping. Formulation of
this relation can be expressed as:

y = F (x;W ) + x (1)

y is an output layer, x is an input layer and F (x;W ) is a func-
tion with an internal parameter W . Without a shortcut path,
F (x;W ) should represent y from input x, but with an iden-
tity mapping x, F (x;W ) only needs to learn residual mapping,
y − x. As layers are stacked up, if no new residual mapping is
needed, a network can bypass identity mappings without train-
ing, which could greatly simplify training of a deep network.

2.2. Highway Network

A highway network [18] provides another way of implement-
ing a shortcut path for a deep neural-network. Layer output
H(x;Wh) is multiplied by a transform gate T (x;WT ) and be-
fore going into the next layer, a highway path x·(1−T (x;WT ))
is added. Formulation of a highway network can be summarized
as:

y = H(x;Wh) · T (x;WT ) + x · (1− T (x;WT )) (2)

A transform gate is defined as:

T (x;WT ) = σ(WTx+ bT ) (3)

Unlike a residual network, a highway path of a highway net-
work is not always turned on. For example, a highway network
can ignore a highway path if T (x;WT ) = 1 , or bypass a output
layer when T (x;WT ) = 0.

2.3. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) [22] was proposed to resolve
vanishing or exploding gradients for a recurrent neural network.
LSTM has an internal memory cell that is controlled by forget
and input gate networks. A forget gate in an LSTM layer deter-
mines how much of prior memory value should be passed into
the next time step. Similarly, an input gate scales new input to
memory cells. Depending on the states of both gates, LSTM
can represent long-term or short-term dependency of sequential
data. The LSTM formulation is as follows:

ilt = σ(W l
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t +W l
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l represents layer index and ilt, f
l
t and olt are input, forget and

output gates respectively. They are component-wise multiplied
by input, memory cell and hidden output to gradually open or
close their connections. xl

t is an input from (l − 1)th layer (or
an input to a network when l is 1), hl

t−1 is a lth output layer at
time t − 1 and clt−1 is an internal cell state at t − 1. W l

p is a

projection matrix to reduce dimension of rlt.

2.4. Highway LSTM

Highway LSTM [20, 22] reused LSTM internal memory
cells for spatial domain highway connections between stacked
LSTM layers. Equations (4), (5), (7), (8), and (9) do not change
for highway LSTM. Equation (6) is updated to add a highway
connection:

clt = dlt · cl−1
t + f l

t · clt−1 +

ilt · tanh(W l
xcx

l
t +W l
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l
t−1 + blc) (10)
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Where dlt is a depth gate that connects cl−1
t in the (l − 1)th

layer to clt in the lth layer. [20] showed that an acoustic model
based on the highway LSTM network improved far-field speech
recognition compared with a plain LSTM network. However,
[20] also showed that word error rate (WER) degraded when
the number of layers in the highway LSTM network increases
from 3 to 8.

3. Residual LSTM
In this section, a novel architecture for a deep recurrent neural
network, residual LSTM is introduced. Residual LSTM starts
with an intuition that the separation of a spatial-domain short-
cut path with a temporal-domain cell update may give better
flexibility to deal with vanishing or exploding gradients. Unlike
highway LSTM, residual LSTM does not accumulate a high-
way path on an internal memory cell clt. Instead, a shortcut
path is added to an LSTM output layer hl

t. For example, clt can
keep a temporal gradient flow without attenuation by maintain-
ing forget gate f l

t to be close to one. However, this gradient flow
can directly leak into the next layer cl+1

t for highway LSTM in
spite of their irrelevance. On the contrary, residual LSTM has
less impact from clt update due to separation of gradient paths.

Figure 1 describes a cell diagram of a residual LSTM layer.
hl−1
t is a shortcut path from (l− 1)th output layer that is added

to a projection output ml
t. Although a shortcut path can be

any lower output layer, in this paper, we used a previous output
layer. Equations (4), (5), (6) and (7) do not change for residual
LSTM. The updated equations are as follows:

rlt = tanh(clt) (12)

ml
t = W l

p · rlt (13)

hl
t = olt · (ml

t +W l
hx

l
t) (14)

Where W l
h can be replaced by an identity matrix if the di-

mension of xl
t matches that of hl

t. For a matched dimension,
Equation (14) can be changed into:

hl
t = olt · (ml

t + xl
t) (15)

Since a highway path is always turned on for residual LSTM,
there should be a scaling parameter on the main path output.
For example, linear filters in the last CNN layer of a residual
network are reused to scale the main path output. For resid-
ual LSTM, a projection matrix W l

p is reused in order to scale
the LSTM output. Consequently, the number of parameters for
residual LSTM does not increase compared with plain LSTM.
Simple complexity comparison between residual LSTM and
highway LSTM is as follows. If the size of the internal mem-
ory cells is N and the output layer dimension after projection

1592



D

tanhtanh

sigm

Memory Cell 
Dimension: N

Output Dimension: M
Input Dimension: K

D

Component-Wise Product

sigm

Identity matrix if K=M

��
�  

��−1
�  

�ℎ�
�  �	�

�  �
�
�  

�ℎ�
�  �	�

�  �
�
�  

�	

�  

�ℎ

�  

�ℎ�
�  �	�

�  �
�
�  

�
�  ��

�  ��−1
�  

��−1
�  

��
�  

��−1
�  ��

�  �−1
�  

�
�  

�−1
�  

��
�  

��
�  

��
�  

��
�  

�ℎ
�  

Shortcut Path

Projection

�ℎ
� ��

� = �ℎ
� ��

�−1 

sigm

��
�  

��−1
�  ��

�  �−1
�  

Figure 1: Residual LSTM: A shortcut from a prior output layer
hl−1
t is added to a projection output ml

t. W l
h is a dimension

matching matrix between input and output. If K is equal to M ,
it is replaced with an identity matrix.

is N/2, the total number of reduced parameters for a resid-
ual LSTM network becomes N2/2 + 4N . For example, if N
is 1024 and the number of layers is more than 5, the residual
LSTM network has approximately 10% less network parame-
ters compared with the highway LSTM network with same N
and a projection matrix.

One thing to note is that a highway path should be scaled
by an output gate as in Equation (14). The initial design of
residual LSTM was to simply add an input path to an LSTM
output without scaling, which is similar to a ResLSTM block
in [24]. However, it showed significant performance loss be-
cause highway paths keep accumulated as the number of layers
increase. For example, the first layer output without scaling
would be o1t ·m1

t + x1
t , which consists of two components. For

the second layer output, however, the number of components in-
creases as three: o2t ·m2

t +o1t ·m1
t +x1

t . Without proper scaling,
the variance of an residual LSTM output will keep increasing.

The convolutional LSTM network proposed in [24] added
batch normalization layers, which can normalize increased out-
put variance from a highway path. For residual LSTM, output
gate is re-used to act similarly without any additional layer or
parameter. Output gate is a trainable network which can learn
a proper range of an LSTM output. For example, if an output
gate is set as 1√

2
, an lth output layer becomes

hl
t =

l∑

k=1

(
1√
2
)(l−k+1)mk

t + (
1√
2
)lxt (16)

Where, xt is an input to LSTM at time t. If ml
t and xt are

independent each other for all l and have fixed variance of 1,
regardless of layer index l, the variance of layer lth output be-
comes 1. Since variance of a output layer is variable in the real
scenario, a trainable output gate will better deal with exploding
variance than a fixed scaling factor.

4. Experiments
4.1. Experimental Setup

AMI meeting corpus [23] is used to train and evaluate resid-
ual LSTMs. AMI corpus consists of 100 hours of meeting
recordings. For each meeting, three to four people have free

conversation in English. Frequently, overlapped speaking from
multiple speakers happens and for that case, the training tran-
script always follows a main speaker. Multiple microphones
are used to synchronously record conversations in different en-
vironments. Individual headset microphone (IHM) recorded
clean close-talking conversation and single distant microphone
(SDM) recorded far-field noisy conversation. In this paper,
SDM is used to train residual LSTMs at Section 4.2 and 4.3
and combined SDM and IHM corpora are used at Section 4.4.

Kaldi [25] is a toolkit for speech recognition that is used
to train a context-dependent LDA-MLLT-GMM-HMM system.
The trained GMM-HMM generates forced aligned labels which
are later used to train a neural network-based acoustic model.
Three neural network-based acoustic models are trained: plain
LSTM network without any shortcut path, highway LSTM net-
work and residual LSTM network. All three LSTM networks
have 1024 memory cells and 512 output nodes for experiments
at Section 4.2, 4.3 and 4.4.

The computational network toolkit (CNTK) [26] is used
to train and decode three acoustic models. Truncated back-
propagation through time (BPTT) is used to train LSTM net-
works with 20 frames for each truncation. Cross-entropy loss
function is used with L2 regularization.

For decoding, reduced 50k-word Fisher dictionary is used
for lexicon and based on this lexicon, tri-gram language model
is interpolated from AMI training transcript. As a decoding
option, word error rate (WER) can be calculated based on
non-overlapped speaking or overlapped speaking. Recognizing
overlapped speaking is to decode up to 4 concurrent speeches.
Decoding overlapped speaking is a big challenge considering a
network is trained to only recognize a main speaker. Following
sections will provide WERs for both options.

4.2. Training Performance with increasing Depth

Figure 2 compares training and cross-validation (CV) cross-
entropies for highway and residual LSTMs. The cross-
validation set is only used to evaluate cross-entropies of trained
networks.

In Figure 2a, training and CV cross-entropies for a 10-layer
highway LSTM increased 15% and 3.6% over 3-layer one, re-
spectively. 3.6% CV loss for a 10-layer highway LSTM does
not come from overfitting because the training cross-entropy
was increased as well. The training loss from increased network
depth was observed in many cases such as Figure 1 of [17]. A
10-layer highway LSTM revealed the similar training loss pat-
tern, which implies highway LSTM does not completely resolve
this issue.

In Figure 2b, a 10-layer residual LSTM showed that its CV
cross-entropy does not degrade with increasing depth. On the
contrary, the CV cross-entropy improved. Therefore, residual
LSTMs did not show any training loss observed in [17]. One
thing to note is that the 10-layer residual LSTM also showed
6.7% training cross-entropy loss. However, the increased train-
ing loss for the residual LSTM network resulted in better gener-
alization performance like regularization or early-stopping tech-
niques. It might be due to better representation of input features
from the deep architecture enabled by residual LSTM.

4.3. WER Evaluation with SDM corpus

Table 1 compares WER for plain LSTM, highway LSTM and
residual LSTM with increasing depth. All three networks
were trained by SDM AMI corpus. Both overlapped and non-
overlapped WERs are shown. For each layer, internal mem-
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Figure 2: Training and CV PERs on AMI SDM corpus. (a)
shows training and cross-validation (CV) cross-entropies for 3
and 10-layer highway LSTMs. (b) shows training and cross-
validation (CV) cross-entropies for 3 and 10-layer residual
LSTMs.

ory cell size is set to be 1024 and output node size is fixed
as 512. A plain LSTM performed worse with increasing lay-
ers. Especially, the 10-layer LSTM degraded up to 13.7% over
the 3-layer LSTM for non-overlapped WER. A highway LSTM
showed better performance over a plain LSTM but still could
not avoid degradation with increasing depth. The 10-layer high-
way LSTM presented 6.2% increase in WER over the 3-layer
network.

On the contrary, a residual LSTM improved with increasing
layers. 5-layer and 10-layer residual LSTMs have 1.2% and
2.2% WER reductions over the 3-layer network, respectively.
The 10-layer residual LSTM showed the lowest 41.0% WER,
which corresponds to 3.3% and 2.8% WER reduction over 3-
layer plain and highway LSTMs.

One thing to note is that WERs for 3-layer plain and high-
way LSTMs are somewhat worse than results reported in [20].
The main reason might be that forced alignment labels used to
train LSTM networks are not the same as the ones used in [20].
1-2% WER can easily be improved or degraded depending on
the quality of aligned labels. Since the purpose of our evaluation
is to measure relative performance between different LSTM ar-
chitectures, small absolute difference of WER would not be any
issue. Moreover, reproduce of highway LSTM is based on the
open source code provided by the author in [20] and therefore,

Table 1: All three LSTM networks have the same size of layer
parameters:1024 memory cells and 512 output nodes. Fixed-
size layers are stacked up when the number of layers increases.
WER(over) is overlapped WER and WER (non-over) is non-
overlapped WER.

Acoustic Model Layer WER (over) WER (non-over)

3 51.1% 42.4%
Plain LSTM 5 51.4% 42.5%

10 56.3% 48.2%

3 50.8% 42.2%
Highway LSTM 5 51.0% 42.2%

10 53.5% 44.8%

3 50.8% 41.9%
Residual LSTM 5 50.0% 41.4%

10 50.0% 41.0%

Table 2: Highway and residual LSTMs are trained with com-
bined SDM and IHM corpora.

Acoustic Model Layer WER (over) WER (non-over)

3 51.3% 42.3%
Highway LSTM 5 49.5% 40.7%

10 52.1% 43.4%

3 50.8% 41.9%
Residual LSTM 5 49.4% 40.5%

10 48.7% 39.3%

it would be less likely to have big experimental mismatch in our
evaluation.

4.4. WER Evaluation with SDM and IHM corpora

Table 2 compares WER of highway and residual LSTMs trained
with combined IHM and SDM corpora. With increased corpus
size, the best performing configuration for a highway LSTM
is changed into 5-layer with 40.7% WER. However, a 10-layer
highway LSTM still suffered from training loss from increased
depth: 6.6% increase in WER (non-over). On the contrary, a
10-layer residual LSTM showed the best WER of 39.3%, which
corresponds to 3.1% WER (non-over) reduction over the 5-layer
one, whereas the prior experiment trained only by SDM corpus
presented 1% improvement. Increasing training data provides
larger gain from a deeper network. Residual LSTM enabled to
train a deeper LSTM network without any training loss.

5. Conclusion
In this paper, we proposed a novel architecture for a deep recur-
rent neural network: residual LSTM. Residual LSTM provides
a shortcut path between adjacent layer outputs. Unlike highway
network, residual LSTM does not assign dedicated gate net-
works for a shortcut connection. Instead, projection matrix and
output gate are reused for a shortcut connection, which provides
roughly 10% reduction of network parameters compared with
highway LSTMs. Experiments on AMI corpus showed that
residual LSTMs improved significantly with increasing depth,
meanwhile 10-layer plain and highway LSTMs severely suf-
fered from training loss.
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