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Abstract

Audio tagging aims to perform multi-label classification on au-
dio chunks and it is a newly proposed task in the Detection and
Classification of Acoustic Scenes and Events 2016 (DCASE
2016) challenge. This task encourages research efforts to better
analyze and understand the content of the huge amounts of
audio data on the web. The difficulty in audio tagging is that
it only has a chunk-level label without a frame-level label. This
paper presents a weakly supervised method to not only predict
the tags but also indicate the temporal locations of the occurred
acoustic events. The attention scheme is found to be effective
in identifying the important frames while ignoring the unrelated
frames. The proposed framework is a deep convolutional recur-
rent model with two auxiliary modules: an attention module
and a localization module. The proposed algorithm was evalu-
ated on the Task 4 of DCASE 2016 challenge. State-of-the-art
performance was achieved on the evaluation set with equal er-
ror rate (EER) reduced from 0.13 to 0.11, compared with the
convolutional recurrent baseline system.

Index Terms: audio tagging, attention model, DCASE 2016
challenge, convolutional recurrent model

1. Introduction

Environmental audio processing is gaining increasing research
interest following the large amount of work on speech and mu-
sic processing. The 1st DCASE challenge (DCASE 2013) fo-
cused on audio scene and event recognition [1, 2]. The 2nd
DCASE (DCASE 2016) challenge [3] introduced a new task,
namely audio tagging [4, 5]. Audio tagging mainly aims at de-
termining the presence of events in the acoustic scene. Mean-
while, localizing the acoustic events that have occurred would
also be interesting but difficult considering that the label is in
chunk-level rather than frame-level. The chunk-level labeled
data was regarded as weakly labeled data [6].

The traditional method for audio tagging is based on Gaus-
sian mixture model (GMM) trained on Mel frequency cepstrum
coefficients (MFCCs) [7, 8]. Since the introduction of the
DCASE 2016 challenge, many deep learning based methods
have been developed for audio tagging. Deep neural network
(DNN) has been used to predict the audio tags [9, 10]. Differ-
ent from the GMM method, the DNN-based method can model
all of the tags in shared weights simultaneously. However, con-
volutional neural network (CNN) was shown to perform better
than the DNN [11, 12]. Currently, the best performing system
was introduced in [13] where convolutional gated recurrent neu-
ral network incorporating spatial features was adopted. How-
ever all of these methods can not locate the occurred acoustic
events in the audio chunk. Acoustic event localization based on
weakly labeled data will be one focus of this paper. Multiple
Instance Learning based event detection [6] is a related method
which was adopted for weakly labeled data. On the other hand,
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most of the training of above neural network models were ac-
tually ill-posed due to a context window input (e.g., 32 frames
or 640 miliseconds in [11]) which only represents the partial
segment of the whole chunk. Nonetheless, the given label is
in chunk-level. This assumes that the chunk-level label is also
matched on the partial segment which is not always reasonable.

Recently, attention-based neural networks have been ap-
plied to a wide variety of tasks, such as speech recognition
[14, 15], visual object classification [16], machine translation
[17] and image caption [18]. We use the term attention to mean
to focus on specific parts of the input. For the audio tagging
task, the proposed attention method can automatically select
and attend on the important frames for the targets while ignor-
ing the unrelated parts (e.g., the background noise segments).
It can also be regarded as learning a weighting factor on each
frame. The suppression capability against background noise can
make the system more robust with the whole chunk as the in-
put. The attention scheme in this work is conducted based on
the convolutional gated recurrent neural network [13].

We also define another localization module to find the
temporal locations when the specific event happens. Localiz-
ing the acoustic events occurring in the audio recording would
be meaningful given that the labels are in chunk-level rather
than frame-level. The training process would be weakly super-
vised due to the unobserved latent variables, namely the acous-
tic event locations. This is similar to the process of weakly-
supervised image segmentation with only per-image labels [19].
In our previous work [20], a joint detection-classification model
was proposed to detect the locations of acoustic events. How-
ever, we have improved the system by introducing an attention
model. Furthermore, the feed-forward neural network used in
[20] was inferior to the convolutional gated recurrent neural net-
work (CGRNN) [13] which will be introduced in the following
sections. In summary, in our framework, attention is used for
global event-independent frame-level feature selection, while
the event-dependent localization is used to find the locations
of each event.

The rest work is organized as follows: in Section 2, the
convolutional gated recurrent neural network (CGRNN) is pre-
sented as the basic framework for audio tagging. In section 3,
the proposed attention and localization methods will be illus-
trated. The experimental setup and results are shown in Section
4. Section 5 summarizes the work and foresees the future work.

2. Chunk-level convolutional gated
recurrent neural network (CGRNN)

Convolutional gated recurrent neural network was adopted in
our previous work [13] for audio tagging. However, it only pre-
dicted the tags without localizing the acoustic events. Mean-
while it was not trained on the chunk-level but on the 33-frame
context window. The chunk-level CGRNN will be briefly pre-
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Figure 1: The framework of the chunk-level convolutional gated
recurrent neural network (CGRNN) for audio tagging. Note
that the input frames are overlapped by half.

sented in this section.

The framework of the chunk-level convolutional gated re-
current neural network for audio tagging is shown in Fig. 1.
The whole audio chunk is chopped into frames with half over-
lap. Each frame is fed into a convolutional neural network
(CNN) with a large receptive field considering that only one
CNN layer is used. The CNN can help to extract more robust
features through the max-pooling operations. Rectified Linear
Unit (ReLU) is the activation function of CNNs. More details of
the CNN configuration could be found in [13]. The output ac-
tivations of each frame from the CNNs are fed into the follow-
ing gated recurrent unit (GRU) based recurrent neural network
(RNN). GRU [21] is an alternative structure to the long-short
term memory (LSTM) and the GRU was demonstrated to be
better than LSTM in some tasks [22]. The bidirectional GRU-
RNN can well model the long-term pattern along the whole
chunk [13]. The details of GRU-RNN can also be found in
[13]. Then three-layer GRU-RNNs are followed by one-layer
feed-forward neural network (FNN) and the activation function
is Sigmoid. The audio tagging is a multi-label task which means
several acoustic events could happen simultaneously. Hence
the output activation function should be sigmoid. Finally each
frame can generate one prediction for the audio tags. Their re-
sults should be averaged together to obtain the final predictions.
The errors by comparing the predictions with the reference tags
can be back-propagated (BP) [23] to update the weights.

Binary cross-entropy is used as the loss function in our
work, since it was demonstrated to be better than the mean
squared error in [28] for labels with zero or one values. The
loss can be defined as:

N
E=-Y"(PulogO, + (1 — Py)log(1 - 0,)) (1)
n=1
1 T-1
0= T 1+ exp(fS,g)Y1 )
t=0

where F is the binary cross-entropy, O,, and P,, denote the esti-
mated and reference tag vector at sample index n, respectively.
The bunch size is represented by N. The FNN linear output is
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Figure 2: The diagram of the attention and localization schemes
based on CGRNN for audio tagging. ATT denotes the attention
module. LOC represents the localization module.

defined as S; at ¢-th frame before the sigmoid activation func-
tion is applied. 7" denotes the total number of frames in the
whole audio chunk. Adam [24] is used as the stochastic opti-
mization method.

3. Proposed attention and localization
(ATT-LOC) methods based on CGRNN

The attention and localization (ATT-LOC) schemes in the
CGRNN framework will be introduced in this section.

3.1. Attention for audio tagging

The attention scheme is an additional sigmoid layer with one
node output which is shown in Fig. 2. The predicted attention
factor Z,(t) at the ¢-th frame indicates the importance of the
current frame for the final labels. It is learned as,

Zau(t) = U(Wan * X(t) + ban) 3)

where X(¢) is the input feature at the ¢-th frame. o is the Sig-
moid function. Wy and b, denote the weights and bias of the
attention module. As Z,«(t) is the latent variable which should
be inferred according to the observed chunk-level tags, only one
layer without any hidden layer was designed. Then the predi-
cated attention factor is multiplied with the CNN output to sup-
press the background noise as following,

Yeon(t) = Zaa(t) Yen (t) “

where Yenn(t) represents the activations from CNN. The
attention-weighted feature against the background noise is de-
noted by Yi,,(t). This attention-weighting process can select
the important frames while suppressing the unrelated frames.
Finally, the predicated attention factor is also applied to the fi-
nal acoustic tag outputs at each frame. It is defined as,

O'(t) = Zu(t)O(t) Q)

where O(t) denotes the tag prediction output at the ¢-th frame.
The attention factor Z,(t) can help to decide its contribution
degree at the ¢-th frame for the final chunk-level answer. Hence



the weighted output is denoted as O’ (). The background noise
in the audio recordings leads potentially to the over-fitting prob-
lem. While the introduced attention method can alleviate the
over-fitting problem especially when the input is chunk-level
features. Longer input means more noise was fed into the
model. That is reason for a context window input (e.g., 32
frames in [11]) used in [11, 10, 9, 13] without any attention-
based feature selection schemes.

3.2. Temporal localization for each acoustic event

The proposed attention module is to predict the importance of
each frame. However the localization module is to localize the
occurred acoustic events in the whole audio chunk. For exam-
ple, there are seven acoustic tags defined in the audio tagging
task. It is meaningful to predict the accurate temporal locations
(at frame-level) of the occurred acoustic events. Nonetheless,
the training will be difficult due to the availability of only the
chunk-level labels rather than the frame-level labels. We called
the training process as a weakly supervised process. The local-
ization method is also shown in Fig. 2. The localization mod-
ule is one softmax layer without any hidden layer for tractable
learning. Similar to the attention factor calculation, the local-
ization vector Zio(t) is calculated as,

Zloc(t) - )\(Wloc * X(t) + bloc) (6)

where ) is the Softmax function. Zi(¢) denotes the localization
vector at the ¢-th frame. There are seven acoustic events defined
in the audio tagging task. Hence the localization vector Zioc(t)
contains the posterior of each acoustic event, and their posterior
sum is equal to one. Then the localization vector Zioc(t) is mul-
tiplied with the model classification output at each frame. Then
Eq. (5) will be updated as,

O'(t) = Zu(t)O(t) ® Zioc(t) (7
where the specific dimension of the localization vector Zioc(t)
corresponds to the specific output node (namely the certain
acoustic event) of the model. Therefore, the localization vector
Zioc(t) can predict the locations of each acoustic event along
the audio chunk. ® represents the element-wise multiplication.
To get the final acoustic event tag predictions, O’(¢) should be
averaged across the audio chunk to get the final output O”. Q"
is defined as the weighted average of O’(t) as following,

y_ e O'(1)
Sy Zie(t)

where the value of the localization vector Ziqc(¢) is ranged from
zero to one. The sum of Zioc(t) at the ¢-th frame is equal to one.
Finally the predictions Q" and the reference acoustic event tags
are compared to calculate the back-propagation error.

®

3.3. Relationships between the attention and localization
modules

The attention factor Zu(t) defined in Eq. (3) and the localiza-
tion vector Zioc(t) defined in Eq. (6) are actually latent variables
at frame-level. The proposed model shown in Fig. 2 can infer
their prediction values through the chunk-level observations (or
labels). The attention module is necessary for the localization
module. The activation function of the localization module is
Softmax which indicates that there must be at least one event
occurring at each frame. However, this assumption is not al-
ways reasonable due to the presence of the background noise
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frames without any meaningful events occurring. As defined in
Eq. (7), the attention factor would mask the values of the local-
ization vectors to zero if there was nothing happening at certain
frames. The localization vectors Zio. (¢) are actually local atten-
tion factors while the Z,(t) is a global attention factor. Z(t)
can select the important features while suppressing the unre-
lated information, e.g., the background noise frames. It will
help to smooth the mismatch or over-fitting problem between
the training chunks and the testing chunks. On the other hand,
the local attention Zo () can find the locations, or can focus on
the corresponding features for different acoustic events. Hence,
the attention factor Zy(t) is acoustic event independent while
the localization vector Zi () is event dependent.

4. Experimental setup and results
4.1. Experimental setup

The experiments are conducted on the DCASE 2016 audio tag-
ging challenge [4]. The audio recordings were made in a do-
mestic environment [25, 5]. The audio data are provided as 4-
second chunks at 16kHz sampling rate. There are seven acoustic
event tags shown in Table 1. The number of recordings is 4387
for the development set and 816 for the evaluation set. Five-fold
sets are configured in the development set.

Table 1: Seven audio events used as the reference labels.

audio event Event descriptions
‘b’ Broadband noise
‘¢’ Child speech
f Adult female speech
‘m’ Adult male speech
‘o’ Other identifiable sounds
‘P Percussive sound events,

e.g. footsteps, knock, crash

v’ TV sounds or Video games

The parameters of the networks are similar to those in our
previous work [13]. The CNN has 128 filters with the kernel
size equal to 30 [13, 26]. Mel-Filter banks (MFB) with 40
channels are adopted as the input features. The CNN layer
is followed by three bidirectional RNN layers with 128 GRU
blocks. One feed-forward layer with 500 ReLU units is finally
connected to the 7 sigmoid output units. The attention factor
is a 1-dimensional scaler at ¢-th frame. The localization vector
at ¢-th frame is 7-dimensional which is bounded to the classifi-
cation output. For performance evaluation, we use equal error
rate (EER) [27] as the main metric which is also suggested by
the DCASE 2016 audio tagging challenge. The source codes
for this paper can be downloaded from Github'. More attention
and localization demos can also be found on the web?.

We compared our methods with the state-of-the-art sys-
tems. Lidy-CNN [12] and Cakir-CNN [11] won the first and the
second prize of the DCASE2016 audio tagging challenge [4].
They both used CNN as the classifier. We also compare this
method to our previous method CGRNN [13] which demon-
strated the best performance using the convolutional gated re-
current neural network. Our another previous method, de-
noising auto-encoder (DAE) [28] based audio tagging, was also
used as a baseline.

"https://github.com/yongxuUSTC/att_loc_cgrnn
2https://sites.google.com/view/xuyong/demos/
attention_model
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Figure 3: The logarithmic spectrogram denoted as (i), the pre-
dicted localization results denoted as (ii) and the attention fac-
tor denoted as (iii) for an audio chunk labeled as “child speech
(c)" and “percussive sound (p)". The X-axis of the three figures
are all in the same frame index. The corresponding audio file
can be also auditioned at the demo website.

4.2. Results and analysis

In this sub-section, the localization and attention demos will be
shown firstly, then the overall evaluations on the development
set and the evaluation set of Task 4 of the DCASE 2016 chal-
lenge will be given.

4.2.1. Predicted localization and attention results

Fig.3 presents the logarithmic spectrogram denoted as
(1), the predicted localization results denoted as (ii) and
the attention factor denoted as (iii) for an audio chunk
“CR_lounge_220110_0731.s0_chunk70” which is labeled as
“child speech (c)" and “percussive sound (p)". In fact, this au-
dio tagging task only gives the chunk-level labels rather than
the frame-level labels. However, the rough locations of the oc-
curred events can be labeled manually to compare with the pre-
dictions of the proposed methods. As shown in Fig. 3, two “per-
cussive sound (p)" sounds (represented by the dashed purple
line in the middle figure) are accurately localized. The “child
speech (c)” segments are also successfully localized. Mean-
while, the predicted posteriors of other events which are not
occurring in this chunk are almost suppressed along the whole
chunk. The predicted attention factor is shown in the (iii) fig-
ure. It can be found that the attention can capture the important
segments where related events happen while suppress the con-
tribution of other non-related segments. All of the values of the
attention factor are bigger than 0.5. It indicates that the atten-
tion scheme tends to keep some information with the adopted
Sigmoid activation function in the attention module.

The model is weakly-supervised with only chunk-level la-
bels. Why does it still have the ability to predict the detailed
locations of the occurring audio events? There are seven Soft-
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Table 2: EER results of the proposed method ATT-LOC and the
CGRNN [13] method on the development set of the Task 4 of
DCASE 2016 challenge, across the seven audio event tags.

Dev-set c m f v p b 0 ave
CGRNN [13] | 0.14 0.09 0.17 0.02 0.13 004 024 0.12
ATT-LOC 010 0.10 016 003 011 0.03 022 0.11

max output nodes in the localization module (shown in Fig. 2),
and each node of the localization module is specifically con-
nected to one of the seven classification output nodes. Each
output node is corresponding to a specific audio event or tag.
Therefore, the latent locations of the occurring audio events can
be inferred through the chunk-level training.

4.2.2. Overall evaluations

Table 3: EER comparisons on the evaluation set among several
newly proposed methods across the seven audio event tags.

Eval-set c m f v p b o ave
Cakir-CNN[11] [ 025 0.16 025 0.03 021 0.02 026 0.17
Lidy-CNN[12] | 021 0.18 0.21 004 0.17 0.03 032 0.17
DAE-DNN[28] | 0.21 0.15 021 0.2 0.18 0.01 026 0.15
CGRNN [13] 0.17 0.16 0.18 0.03 0.15 0.00 024 0.13
ATT-LOC 0.09 0.4 017 0.03 0.12 0.01 024 0.11

In Table 2, we firstly verify the effectiveness of the pro-
posed method by comparing it with the most competitive sys-
tem proposed recently in [13]. The attention and localization
method can get slightly smaller EER. Then in Table 3, full com-
parisons are conducted among several newly proposed methods
on the evaluation set of the audio tagging task. Compared with
the CGRNN method [13], the proposed attention and localiza-
tion method reduces the EER from 0.13 to 0.11 on average. It is
found that the proposed method can get significantly improve-
ment for the “child speech (c)” audio event both on the devel-
opment set and the evaluation set. The “child speech (c)” audio
event is the most frequent event occurring in the whole dataset.
The attention and localization scheme performs better in detect-
ing the long-term pattern of the “child speech”.

5. Conclusions

In this paper, we proposed a new audio tagging method based
on our previous work using CGRNN [13] by introducing the
attention and localization scheme. It not only can reduce the
overall EER on the evaluation set from 0.13 to 0.11, but also
can infer the latent temporal locations of each occurring event in
a weakly-supervised mode. This weakly-supervised method to
predict the locations of events with only the chunk-level label is
useful in the real-world application scenario. It is much easier to
get the chunk-level labels considering that the frame-level labels
are time-consuming and less accurate under the human manual
effort. Hence, in the near future, we will evaluate our proposed
method on large data sets, such as the Yahoo Flickr Creative
Commons 100 Million (YFCC100m) dataset [29], YouTube-
8M dataset [30] and Google audio set [31].
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