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Abstract
This paper presents a novel modeling called stacked time-
asynchronous sequential networks (STASNs) for online end-
of-turn detection. An online end-of-turn detection that deter-
mines turn-taking points in a real-time manner is an essential
component for human-computer interaction systems. In this
study, we use long-range sequential information of multiple
time-asynchronous sequential features, such as prosodic, pho-
netic, and lexical sequential features, to enhance online end-of-
turn detection performance. Our key idea is to embed individ-
ual sequential features in a fixed-length continuous representa-
tion by using sequential networks. This enables us to simulta-
neously handle multiple time-asynchronous sequential features
for end-of-turn detection. STASNs can embed all of the sequen-
tial information between a start-of-conversation and the cur-
rent end-of-utterance in a fixed-length continuous representa-
tion that can be directly used for classification by stacking mul-
tiple sequential networks. Experiments show that STASNs out-
performs conventional modeling with limited sequential infor-
mation. Furthermore, STASNs with senone bottleneck features
extracted using senone-based deep neural networks have supe-
rior performance without requiring lexical features decoded by
an automatic speech recognition process.
Index Terms: online end-of-turn detection, sequential net-
works, time-asynchronous sequential features, senone bottle-
neck features.

1. Introduction
In human-computer interaction, systems that can perform
human-like behavior have been needed [1]. For the human-like
behavior, end-of-turn detection that decides whether a user’s
utterance is ended or not is an important technology because
turn-taking behavior strongly affects to user’s impressions [2,3].
This paper focuses on speech-based end-of-turn detection that
can be used for interactive voice response (IVR) systems.

A simple end-of-turn detection is based on non-speech du-
ration that is determined by speech activity detection (SAD) [4].
However, rhythm gets worse if the duration is increased; incor-
rect turn-takings occur frequently if the duration is decreased.
In fact, SAD-based end-of-turn detection is reported to signif-
icantly stress users [5]. Therefore, more sophisticated end-of-
turn model that can accurately determine a turn-taking point in
a real time manner is desired.

A lot of work has been examined in order to model end-of-
turn detection [6–16]. In speech-based end-of-turn detection,
past speech context, such as prosodic, phonetic, and lexical fea-
tures had been often utilized. More specifically, fixed-range se-
quential features just before the target end-of-utterance [6–14]
or simplified utterance-level features such as maximum, mini-
mum, or average values [12–16] were employed. On the other

hand, previous work could not handle both long-range sequen-
tial features of the target utterance and features extracted from
past utterances. This is because conventional discriminative
modeling such as decision trees or support vector machines
could not support variable-length features.

This paper establishes a modeling that can manage such
rich speech context information. Our key idea is to intro-
duce multiple sequential networks with a recurrent neural net-
work (RNN) structure. The sequential networks can embed a
variable-length sequential feature into a fixed length continuous
vector that can be directly used for classification. We can expect
to simultaneously handle multiple time-asynchronous sequen-
tial features and features in past utterances by using multiple
sequential networks thoughtfully.

In this paper, stacked time-asynchronous sequential net-
works (STASNs) are proposed. The STASNs can manage the
whole of multiple sequential features behind individual end-of-
utterance points in two stages. In the first stage, each sequential
feature within an utterance is individually embedded to a fixed
length continuous vector using multiple feature-level sequential
networks. This enables us to convert utterance-level sequential
information into a fixed length vector at each end-of-utterance
point. Additionally, in the second stage, the utterance-level vec-
tors individually extracted at each end-of-utterance are also em-
bedded to a fixed length continuous vector that is directly used
for classification using an utterance-level sequential network.
In the STASN, individual sequential networks can perform in
an asynchronous manner, making it suitable for online end-of-
utterance detection.

In addition, this paper attempts to build an accurate online
end-of-turn detection system without introducing lexical fea-
tures. Although the lexical features were the most informative
features for end-of-turn detection [14], time latency and mis-
recognition problems must be caused by an automatic speech
recognition (ASR) process. Instead of them, this paper utilizes
senone bottleneck features as phonetic information, which can
be extracted from a bottleneck layer of senone-based deep neu-
ral networks (DNNs) [17]. The senone bottleneck features had
been applied for speaker recognition and language identifica-
tion [17–21]. It can be expected that the STASN with the senone
bottleneck features is a great solution for building non-lexical
online end-of-turn detection because the bottleneck features in-
volve similar information to the lexical features.

Main contributions are summarized as follows.

• This paper proposes the STASN. We introduce words,
mel-frequency cepstrum coefficients (MFCCs), funda-
mental frequencies (F0s), and senone bottleneck features
as time-asynchronous sequential features.

• This paper reveals that long-range sequential features of
the target utterance and features extracted from past ut-
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terances can improve end-of-turn detection performance
compared with only using limited context information
behind the end-of-utterance point.

• This paper presents the results of both non-lexical sys-
tems and lexical systems. We show that non-lexical sys-
tems with senone bottleneck features can yield compara-
ble performance to lexical systems with an ASR process.

2. Related Work
In end-of-turn detection, multimodal features have been exam-
ined, whereas this paper only deals with features extracted from
speech. The multimodal features include gaze behavior, head
gesture, and respiration [22–25]. These features can be used as
one of the sequential features for STASNs.

In addition to time-asynchronous sequential features, fixed-
length features including utterance duration or speaking rate
have been utilized for end-of-turn detection from speech [15,
16]. Although these features are available to STASNs, this pa-
per only focuses on sequential features. Moreover, this paper
does not focus on complicated lexical features such as dialogue
acts because non-lexical systems are our ideal form [11, 26].

A related problem of end-of-turn detection is backchannels
[6, 27]. It is known that similar modeling and features were
utilized for backchannel point estimation. We expect that this
work can be applied to backchannel point estimation.

Human-computer conversational data sets have also been
used for evaluation, while this paper uses human-human con-
versational data sets [9, 10]. Human-computer interactions are
reported to show different attributes from human-human inter-
actions [28]. Our goal is that computers can perform human-
like behavior by acquiring skills from human-human interac-
tions.

3. Online End-of-Turn Detection
End-of-turn detection is a problem that detects whether each
end-of-utterance point is a turn-taking point or not. Figure 1
details the end-of-turn detection problem. The utterance is de-
fined as an internal pause unit (IPU) that is a unit surrounded
by non-speech unit in which duration q is more than σ [6]. The
speech/non-speech unit is estimated by speech activity detec-
tion (SAD).

In online end-of-turn detection, all past information behind
the target end-of-utterance can be used for context information.
Thus, a non-speech duration immediately after the target end-
of-utterance cannot be used. An estimated label is one of two
behaviors: end-of-turn or not. The label of the t-th end-of-
utterance in a conversation can be decided by:

l̂t = argmax
l

P (l|X1, · · · ,Xt,Θ), (1)

where Θ denotes a model parameter. l̂t is an estimated label of
the t-th end-of-utterance. Xt represents multiple asynchronous
sequential features within t-th utterance and involves N kinds
of sequential features:

Xt = {xt
1, · · · ,xt

N}, (2)

where xt
n represents the n-th sequential feature in the t-th ut-

terance. xt
n involves frame-level features:

xt
n = {vt

n,1, · · · ,vt
n,In}, (3)

Figure 1: Details of an end-of-turn detection problem.

where vt
n,i is the i-th frame’s feature of the n-th sequence in

the t-th utterance. In this paper, a word embedding, MFCC, F0,
and a senone bottleneck feature correspond to the frame-level
feature. Note that the length of each sequence In has an index
n; i.e., each sequence has a different length.

4. Proposed Method
4.1. Modeling

A novel modeling of P (lt|X1, · · · ,Xt,Θ) is proposed. Fig-
ure 2 shows the model structure of the proposed method with
three time-asynchronous sequential features. The proposed
method introduces multiple sequential networks with an RNN
structure for embedding entire sequential information into a
continuous representation. This paper uses LSTM-RNNs for
the sequential networks. The proposed method manages multi-
ple time asynchronous-sequential features in two stages. In the
first stage, feature-level sequential networks are applied for in-
dividual sequential features within an utterance. We call this
modeling time-asynchronous sequential network (TASN). In
the second stage, an utterance-level sequential network is also
applied to utterance-level continuous representations. We call
this modeling stacked TASN (STASN).

4.1.1. Time-Asynchronous Sequential Networks

In TASN, each feature within an utterance is individually em-
bedded into a continuous representation in an asynchronous
manner. Sequential networks are prepared for individual se-
quential features. Each sequential network embeds sequential
information as:

ht
n,i = LSTM(vt

n,1, · · · ,vt
n,i;θ

F
n), (4)

= LSTM(vt
n,i,h

t
n,i−1;θ

F
n), (5)

where ht
n,i denotes a continuous representation that embeds the

n-th sequential feature within the t-th utterance from a start-of-
utterance to the i-th frame. LSTM() represents a function of the
unidirectional LSTM-RNN layer. θF

n is a model parameter for
the n-th sequence. For each sequential feature, this procedure
is repeated until a end-of-utterance point.

At the end-of-utterance point, continuous representations
individually composed from each sequential feature are merged
as an utterance-level continuous representation:

Ht = [ht
1,I1

⊤
, · · · ,ht

N,IN

⊤
]⊤, (6)

where Ht means the utterance-level continuous representation
for the t-th utterance.

In an output layer of TASN, the utterance-level continuous
representation Ht is directly used for end-of-turn detection of
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Figure 2: Detailed structure of STASN.

the t-th utterance:

Ot = SOFTMAX(Ht;θO), (7)

where SOFTMAX() is a softmax function, and θO is a model pa-
rameter for the softmax function. The k-th dimension in Ot

corresponds to P (lt|X1, · · · ,Xt,Θ).

4.1.2. Stacked Time-Asynchronous Sequential Networks

In STASN, an utterance-level sequential network is additionally
introduced for end-of-turn detection. The network can embed
sequences of utterance-level continuous representations that are
composed by the TASN into a continuous representation:

U t = LSTM(H1, · · · ,Ht;θI), (8)
= LSTM(Ht,U t−1;θI), (9)

where U t denotes a continuous representation that embeds se-
quential information of all information behind the t-th end-of-
utterance. θI is a model parameter for the utterance-level se-
quential network.

In an output layer of STASN, end-of-turn detection in the
t-th end-of-utterance is defined as:

Ot = SOFTMAX(U t;θO). (10)

This modeling can consider not only a target utterance but also
past utterances for end-of-turn detection.

4.1.3. Optimization

Trainable parameters of both TASN and STASN are represented
as:

ΘTASN = {θF
1, · · · ,θF

N ,θO}, (11)
ΘSTASN = {θF

1, · · · ,θF
N ,θI,θO}. (12)

In training, the parameter can be optimized by minimizing cross
entropy between a reference probability and an estimated prob-
ability:

Θ̂ = argmin
Θ

−
∑
d∈D

∑
t

∑
l

Ôt,d
l logOt,d

l , (13)

where Ôt,d
l and Ot,d

l are a reference probability and an esti-
mated probability of label l for the t-th end-of-utterance in d-th
conversation, respectively. D represents a training data set.

Table 1: Experimental data sets.
Topics #calls #utterances #turns
Finance 50 3,459 2,214
Internet provider 64 3,411 1,843
Local government unit 58 3,232 1,639
Mail-order 52 3,277 1,878
PC repair 45 2,838 1,934
Mobile phone 61 3,701 2,062
Total 330 19,918 11,570

4.2. Features

In TASN and STASN, various sequential features can be used.
This paper uses MFCCs, F0s, words, and senone bottleneck fea-
tures as the sequential features. Each feature corresponds to vt

i

shown in Eq. (3). Here, we add some explanations to features
that require some transformational functions with a trainable
parameter.

4.2.1. Symbolic features

The sequential features include not only continuous vector se-
quences such as MFCCs but also symbolic sequences such as
words. In TASN and STASN, the symbolic features are used by
converting them into continuous vectors. The i-th symbol in the
t-th utterance wt

i is converted as:

vt
i = EMBEDDING(wt

i ;θ
W) (14)

where EMBEDDING() is a linear transformational function to
convert a symbol to a continuous vector. θW is a model param-
eter for the function. θW can be jointly optimized with other
trainable parameters in STASN.

4.2.2. Senone bottleneck features

Senone bottleneck features can be extracted from a senone-
based DNN with a bottleneck layer. The bottleneck feature
means the output of the bottleneck layer. For the senone-based
DNN, an input is composed by stacking a currently-being-
processed source feature and its left-right contexts. This paper
uses MFCC as the source feature. The i-th frame’s senone bot-
tleneck feature in the t-th utterance is calculated by:

r̄t
i = [rt

i−M
⊤
, · · · , rt

i
⊤
, · · · , rt

i+M
⊤
]⊤, (15)

vt
i = BOTTLE(r̄t

i ;ϕ), (16)

where rt
i is a i-th frame’s source feature in the t-th utterance.

BOTTLE() is a function for extracting a bottleneck feature using
a senone-based DNN. ϕ is a model parameter for the function,
which is preliminarily optimized before STASN training. Al-
though M frames of anticipative processes are required, caus-
ing delay time can be ignored compared with the ASR process.

5. Experiments
5.1. Setups

We used the Japanese simulated contact center dialogue data
sets for experiments, which include 330 dialogues and 6 topics.
One dialogue means one telephone call between one operator
and one customer, in which each speaker’s speech was sepa-
rately recorded. Each data set was divided into speech units
and non-speech units using DNN-based speech activity detec-
tor [29] trained from various Japanese speech. In order to de-
fine utterances, σ was set to 200 ms. We manually annotated
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Table 2: Experimental results (%).
Features Recall Precision F-value Accuracy

(1). Non-Lexical Baseline F0 79.6 60.0 68.4 57.3
(2). Baseline MFCC 86.0 65.1 74.1 65.1
(3). Baseline MFCC+F0 75.6 69.3 72.3 66.4
(4). TASN F0 81.8 68.5 74.6 67.6
(5). TASN MFCC 80.6 75.4 77.9 73.5
(6). TASN MFCC+F0 81.0 76.9 78.4 74.4
(7). STASN F0 78.9 71.4 75.4 69.8
(8). STASN MFCC 81.0 76.0 78.4 74.1
(9). STASN MFCC+F0 80.8 77.6 79.1 75.3
(10). STASN BOTTLE 85.1 78.6 81.7 77.9
(11). STASN BOTTLE+F0 84.6 79.4 82.0 78.3
(12). Lexical Baseline WORD 81.9 77.2 79.5 75.5
(13). Baseline WORD+MFCC+F0 78.9 78.8 78.8 75.4
(14). TASN WORD 84.2 77.6 80.8 76.7
(15). TASN WORD+MFCC+F0 84.3 79.3 81.7 78.1
(16). STASN WORD 84.9 78.0 81.3 77.3
(17). STASN WORD+MFCC+F0 85.2 79.7 82.4 78.8
(18). STASN WORD+BOTTLE+F0 86.4 79.5 82.8 79.1

turn-taking points and backchannel points to all dialogues. We
excluded utterances with backchannel labels and only evaluated
customer’s data sets in order to simulate IVR applications. The
evaluation was a 6-fold cross validation in which training and
validation data were 5 topics and test data were 1 topic. De-
tailed setups are shown in Table 1 where #calls, #utterances,
and #turns represent number of calls, utterances and end-of-turn
points, respectively.

In our evaluation, four sequential features were introduced.
F0 is 2 dimensional sequential features of F0 and ∆F0. The
frame shift was set to 5 ms. MFCC is 36 dimensional sequen-
tial features of 12 MFCCs, 12 ∆MFCCs, and 12 ∆∆MFCCs.
The frame shift was set to 10 ms. WORD is 1 dimensional se-
quential feature of words, which was used by converting into 64
dimensional continuous vectors. In training, manual transcrip-
tions were used. In testing, hypotheses generated by ASR were
used. The average word error rate of ASR was 29.4% . BOT-
TLE is 64 dimensional sequential features extracted from the
Japanese senone-based DNN. For the source features, M in Eq.
(15) was set to 5, the frame shift was 10 ms. The senone-based
DNN had five hidden layers. The fourth hidden layer was a bot-
tleneck layer whose unit size was set to 64, and the other hidden
layers had 512 units. The DNN was trained from the corpus of
spontaneous Japanese [30].

We evaluated 3 modeling methods.
• Baseline: Utterance-level neural network with limited-

context information. The neural network had one hidden
layer with 256 units. As the limited-context information,
50 frames of F0, 10 frames of MFCC, and 2 WORD
behind the end-of-utterance were used. For training, the
mini-batch size was set to 20 utterances, and Adam opti-
mization was used.

• TASN: TASN using LSTM-RNNs. Each LSTM-RNN
has 256 units. For training, the mini-batch size was set
to 10 calls, and RMSprop optimization was used.

• STASN: STASN using LSTM-RNNs. Each LSTM-
RNN has 256 units. For training, the mini-batch size was
set to 10 calls, and RMSprop optimization was used.

In training, a part of training sets were used for data sets for
early stopping. We constructed five models by varying an ini-
tial parameter for individual conditions and evaluated averaged
performance.

5.2. Results

Our evaluation was examined in non-lexical conditions without
WORD features and lexical conditions. The evaluation met-
rics are recall, precision, macro F-value, and accuracy. Table 2
shows the experimental results.

Lines (1)-(11) show the results for the non-lexical condi-
tions. TASN and STASN outperformed Baseline when MFCC,
F0, and MFCC+F0 were used. The performance could be con-
sidered an improvement because TASN and STASN can deal
with long-range sequential information. In addition, STASN
was superior to TASN. This means that past information behind
the target utterance can improve end-of-turn detection perfor-
mance. STASN with BOTTLE achieved remarkable higher per-
formance that that with MFCC. The result confirms that explic-
itly extracted phonetic information is better than raw MFCC. In
non-lexical conditions, the best results of F-value and accuracy
were attained by STASN with BOTTLE+F0.

Lines (12)-(18) show the results for the lexical conditions.
As with non-lexical conditions, TASN and STASN outper-
formed Baseline, and STASN was superior to TASN. In terms
of features, WORD was an effective feature compared with F0
and MFCC for all modeling. A remarkable point is that STASN
with BOTTLE was comparable to that with WORD. This con-
firms that STASN can exploit similar information to WORD
from BOTTLE. The best results of F-value and accuracy were
attained by STASN with WORD+BOTTLE+F0.

6. Conclusions
This paper proposed STASNs for online end-of-turn detec-
tion. STASNs can utilize multiple asynchronous sequential fea-
tures between the start-of-conversation and the current end-of-
utterance. Our experiments revealed that the long-range se-
quential information of both the target utterance and past ut-
terances improves end-of-turn detection performance compared
with only using limited context information behind the end-
of-utterance point. Moreover, we verified that non-lexical sys-
tems based on STASN with senone bottleneck features can yield
comparable performance to lexical systems with an ASR pro-
cess. In future work, we will enhance STASN by utilizing not
only target speaker’s utterance information but also collocutor’s
utterance information.
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