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Abstract
This paper presents, for the first time, unsupervised discrimina-
tive training of probabilistic linear discriminant analysis (unsu-
pervised DT-PLDA). While discriminative training avoids the
problem of generative training based on probabilistic model as-
sumptions that often do not agree with actual data, it has been
difficult to apply it to unsupervised scenarios because it can fit
data with almost any labels. This paper focuses on unsuper-
vised training of DT-PLDA in the application of domain adap-
tation in i-vector based speaker verification systems, using un-
labeled in-domain data. The proposed method makes it possible
to conduct discriminative training, i.e., estimation of model pa-
rameters and unknown labels, by employing data statistics as a
regularization term in addition to the original objective function
in DT-PLDA. An experiment on a NIST Speaker Recognition
Evaluation task shows that the proposed method outperforms
a conventional method using speaker clustering and performs
almost as well as supervised DT-PLDA.

Index Terms: unsupervised, discriminative training, PLDA,
domain adaptation, speaker verification

1. Introduction
Over the last decade, Probabilistic Linear Discriminant Anal-
ysis (PLDA) [1][2] has become state-of-the-art modeling used
in speaker verification to separate speaker factors in i-vectors
[3][4] from such irrelevant factors as transmission channels and
emotion. It assumes additive speaker and channel components
modeled by Gaussian distributions, and the parameters are usu-
ally optimized by generative training (GT) under the maximum
likelihood (ML) criterion, using a speaker ID for each speech
utterance as class information. Here, such PLDA is referred to
as GT-PLDA.

Such prior Gaussian assumptions, however, have been
proved inaccurate. In [5], heavy-tailed PLDA (HT-PLDA)
based on the t-distribution performed much better than GT-
PLDA, showing that the elements of the i-vector are, in real-
ity, more heavy-tailed than the Gaussian distribution. Unfortu-
nately, the extraordinarily high computational cost of HT-PLDA
is a serious roadblock to application. Additionally, score cali-
bration is often applied in GT-PLDA to adjust scores to better
serve as log-likelihood ratios (LLRs) regarding whether two i-
vectors are from the same speaker or not. Substantial improve-
ments using the discriminatively trained (DT) affine transfor-
mations of the scores [6][7] have indicated that scores originally
from GT-PLDA are not accurate, which is the result of inaccu-
rate assumptions made for models, and additional mismatches
between models and i-vectors have been pointed out by [8].

Whenever there is a mismatch between a model and data,
DT may improve performance. Rather than application to
scores alone, DT has been proposed for use on the PLDA model
itself (DT-PLDA) [9][10]. The discriminative classifier used
is trained to estimate the parameters of a symmetric quadratic
function approximating a LLR score, from which an equivalent
expression for GT-PLDA can be derived. This indicates strong
connections with generative models [11]. Rather than explic-
itly training the PLDA model, it directly optimizes the LLR
score function of the PLDA model. Thus, DT is able to avoid
the Gaussian assumptions of the model [11], which allows the
score function to be more general than that of a standard GT-
PLDA model. Many studies have proven the effectiveness of
DT-PLDA with i-vectors used for feature representation. On
the other hand, due to its discriminative property, DT easily be-
comes over-trained [12] and thus requires training data to be
matched with the target domain more so than does GT-PLDA.
Considering the prohibitively high expense of collecting such a
large amount of in-domain (IND) data with labels for a new do-
main of interest for every application, the utility of DT-PLDA
can be seen to be limited despite its high capability.

Alternatively, a certain amount of matched data exists and is
also easy to collect without labels. To the best of our knowledge
in this regard, however, no such research studies have yet dealt
with unsupervised DT-PLDA. There is, though, an approach
of combining speaker clustering with supervised training, as
done in GT-PLDA [13], which is easy to reach and apply to un-
supervised DT-PLDA. Many clustering methods are available,
including mean shift [14][15][16] and hierarchical bottom-up
clustering [17]. However, with this approach, the performance
of a DT-PLDA model is likely to suffer from inaccurate speaker
clustering. In addition, double criteria in speaker clustering and
DT-PLDA training, can achieve only sub-optimums, not global
optimums.

This paper presents an unsupervised training method for
DT-PLDA that estimates its parameters, as well as unknown
speaker labels, on the basis of a single criterion. In order to
avoid being over-trained, it uses a regularization term consist-
ing of simple training data statistics. Experiments on NIST
2008 Speaker Recognition Evaluation (SRE08) show that the
proposed method outperforms a conventional method and per-
forms almost as well as the supervised DT-PLDA.

The remainder of this paper is organized as follows: Sec-
tion 2 describes a typical speaker verification system based on
i-vectors and PLDA, as well as the extension to DT-PLDA. Sec-
tion 3 introduces both the proposed method of using regulariza-
tion in unsupervised training of DT-PLDA and also a special
case: 4-parameter DT-PLDA. Section 4 describes our experi-
mental setup, results, and analyses of unsupervised DT-PLDA
in an application of domain adaptation. Finally, Section 5 sum-
marizes our work.
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2. GT-PLDA and DT- PLDA
2.1. PLDA-based Speaker Verification

In an i-vector based speaker verification system [3], it is as-
sumed that a GMM-supervector ξ corresponding to a speech
utterance can be modeled as

ξ = ξ + Tφ,

where φ is a random vector known as the i-vector, T is a basis
for the total variability space for speaker and channel variability
of ξ, and ξ is the mean of ξ. It is assumed that φ follows a
standard normal distribution and that its dimension d, i.e., the
rank of T , is lower than that of ξ .

PLDA [1][2][5] decomposes total variability into between-
class (speaker) and within-class (channel) variability. A popular
configuration in speaker verification is [5][18]

φ = m+ V y +Dz, (1)

where y and z are random vectors depending, respectively, on
the speaker and the channel . Speaker variability is given by V
and channel variability is given by D. The elements of y and z
are assumed to be independent and normally distributed. PLDA
is a generative model, and its parameters are typically estimated
using the ML criterion. In this paper, we call this kind of PLDA
generatively trained PLDA (GT-PLDA).

For scoring two i-vectors, φi and φj , PLDA calculates a
log-likelihood ratio (LLR) sij between two hypotheses: Hs –
they are from the same speaker or Hd – they are from different
speakers,

sij (φi, φj) =
P (φi, φj |Hs)
P (φi, φj |Hd)

. (2)

According to Eq. (1), it is clear that pairs of i-vectors [φi φj ]
follow a multivariate normal distribution. Calculating the mean
and covariance of an i-vector pair in a target (Hs is true) and
a non-target trial (Hd is true) and plugging the resulting multi-
variate normal distributions into Eq. (2) results in a closed-form
expression of the LLR [19] given by

sij = φTi Pφj+φTj Pφi+φ
T
i Qφi+φ

T
j Qφj+(φi+φj)

T c+k,
(3)

where

P =
1

2
Σ−1
totΣb(Σtot − ΣbΣ

−1
b Σb)

−1,

Q =
1

2
Σ−1
tot − (Σtot − ΣbΣ

−1
b Σb)

−1,

c = −2(P +Q)m,

k =
1

2
(log|Σtot| − log|Σtot − ΣbΣ

−1
totΣb|)

+mT 2(P +Q)m,

where Σb = V V T , Σw = DDT are between- and within-class
covariance matrices, respectively. Σtot = Σb + Σw .

2.2. Discriminative PLDA Training

Instead of using the ML criterion for training the PLDA model
(m,V and D) [2][5], we can use discriminative training (DT),
which directly optimizes the parameters, (P,Q, c and k) for
discriminating between the same-speaker trial and a different-
speaker trial. This was first proposed in [9] and [10]. Let
θ = vec([P,Q, c, k]), where vec(•) stacks the columns of a

matrix into a column vector. In this study, we have modified the
objective function into weighted loss of all the training trials:

E(θ) = N(
∑
tij=1

Peff
N+

lij +
∑
tij=1

1− Peff
N−

lij), (4)

where lij = l(tij , sij(θ)) is the loss function for a trial (φi, φj)
when it is mis-recognized; N is the total number of trials in the
training set, N = N+ + N−; N+ and N− are the numbers
of target and non-target trials, respectively; Peff is known as
the effective prior. Such weight settings Peff/N+ and (1 −
Peff)/N− are to follow the definition of the actual Detection
Cost Function (actDCF) defined in NIST Speaker Recognition
Evaluation (SRE),

actDCF = PeffPFR + (1− Peff)PFA.

Use of the weighted loss function in Eq. (4), then, aims to im-
prove the performance of speaker verification in terms of act-
DCF.

By minimizing E(θ), θ can be trained discrimina-
tively. Using the Optimized Cutting Plane Algorithm for
SVMs (OCAS) proposed in [20][21], or the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [22],
the DT-PLDA parameters are optimized by evaluating the loss
function and the gradient of its error function. The gradient is
given by [10]:

∇E(θ) =


∇PE(θ)

∇QE(θ)

∇cE(θ)
∇kE(θ)

 =


2vec(ΩGΩT )

2vec([Ω ◦ (1AG)]ΩT )

2vec([Ω ◦ (1AG)Ω]1B)
1TBG1B

 ,
where 1A is a d×nmatrix of ones, and 1B is a n×1 matrix of
ones, Ω = [φ1...φn], ◦ denotes the element-wise multiplication
of two matrices, and

Gij =


NPeff
N+

∂l(tij ,sij)

∂sij
: tij = 1

N(1−Peff)
N−

∂l(tij ,sij)

∂sij
: tij = −1

.

Commonly used l(t, s) are the logistic loss and the hinge loss.
Hinge loss optimizes the margin separation between the classes,
while logistic loss minimizes the crossentropy error function. In
this study we follow [9] and use the logistic loss function given
by

l(tij , sij) = log(1 + exp(−tijsij)).

3. Unsupervised Training of DT-PLDA
In practice, matched data with accurate labels required for DT-
PLDA training is often difficult to collect. With estimated la-
bels, unlabeled data can barely train a good discriminatively
trained PLDA (DT-PLDA) model because it easily over-fits
mislabeled samples. We propose a method of unsupervised dis-
criminative training of PLDA that uses data statistics as a regu-
larizer, to constrain the iterative training. It estimates the labels
and PLDA parameters simultaneously. We also derive a solu-
tion to a special case of DT-PLDA: 4-parameter DT-PLDA [23],
on the basis of which we carry out experiments.
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3.1. Regularized Objective Function

In unsupervised training, more sophisticated modeling meth-
ods tend to converge more easily toward a local minimum of
the objective function and are very sensitive to the initializa-
tion of parameters. Thus, adding a regularizer is a natural idea
to constrain the unsupervised training and improve robustness.
Cosine similarity, SVM scores, GT-PLDA scores, etc., which
represent similarity of data, might be suitable as regularizers.
In this study, we would like to explore the more fundamental
data statistics, so in this paper cosine similarity is studied. We
initialize PLDA parameters with generative training and then
use the mean of cosine similarity of i-vectors C(φi, φj) as a
regularizer in the discriminative training. Here, we operate un-
der the assumption that the scoring of cosine similarity and that
of PLDA are weakly correlated. Thus, the addition of a reg-
ularizer such as D(θ) to the objective function Eq. (4) is able
to constrain the iterative training of PLDA. The new objective
function becomes

E′(θ) = E(θ) + bD(θ), (5)

where b is the weight for the regularization term of data statistics

D = − 1

N+

∑
i,j;sij(θ)>τ

C(φi, φj)+
1

N−

∑
i,j;sij(θ)<τ

C(φi, φj).

(6)
Note that the difference of the error function (5) from Eq. (4)
is that labels are no longer available, so tij in E(θ) in Eq. (5)
is replaced with the labels estimated in the previous iteration
of training, using the inequalities sij(θ) ≶ τ . As the current
PLDA parameters are already optimal for the labels, if we only
have E(θ) as the objective function, the iterative training will
not proceed. The regularization term helps unsupervised train-
ing avoid such settings.

In the regularization (6), although cosine similarities are
constant, the addition and subtraction operations are controlled
by the sgn functions w.r.t (sij(θ) − τij). We can approximate
the sgn function with the sigmoid function, in order to help the
overall objective function become differentiable, and obtain

D ≈ (− 1

N−
− 1

N+
)
∑
i,j

C(φi, φj)sig(sij − τ)

+
1

N−

∑
i,j

C(φi, φj).

We can then derive the gradient of the regularization D with
respect to θ, and the total gradient is

∇E′(θ) = ∇E(θ) +∇D(θ)

=


2vec(Ω(G+K)ΩT )

2vec([Ω ◦ (1A(G+K))]ΩT )

2vec([Ω ◦ (1A(G+K))Ω]1B)
1TB(G+K)1B

 , (7)

where

Kij =
∂Dij
∂sij

= (− 1

N−
− 1

N+
)C(φi, φj)

exp[−(sij − τ)]

(1 + exp[−(sij − τ)])2
.

In the iterative training, we assume N+ and N− are fixed in the
calculation in each iteration, but are updated after getting new
labels for the next iteration. This is done to reduce computa-
tional complexity.

3.2. Special Case: 4-Parameter DT-PLDA

We also derive a solution to unsupervised discriminative train-
ing on the basis of a special case of DT-PLDA. It has been
pointed out that the large number ( d2) of DT-PLDA parame-
ters easily caused over-fitting in training. [23] introduced sev-
eral ways of constrained DT-PLDA. We chose the 4-parameter
constraint to carry out our experiments.

In 4-parameter DT-PLDA, each part of the PLDA LLR
score function (3) is scaled as

sij = aP (φTi Pφj + φTj Pφi) + aQ(φTi Qφi + φTj Qφj)

+ ac(φi + φj)
T c+ akk,

where aP , aQ, ac and ak are trained discriminatively; P,Q, c
and k are obtained by generative training beforehand.

In unsupervised 4-parameter DT-PLDA, the loss function
is the same as Eq. (5), but the gradient Eq. (7) changes to the
following formulations, since the parameters to estimate in the
discriminative training are only aP , aQ, ac and ak,

∇E′(θ) =


∂aPE

′(θ)

∂aQE
′(θ)

∂acE
′(θ)

∂akE
′(θ)



=


1TB [(G+K) ◦ (2ΩTPΩ)]1B

1TB [(G+K) ◦ 2diag(ΩTQΩ)1TB ]1B

1TB [(G+K) ◦ (2Ω)T c]1B

1TB(G+K)k1B

 .

4. Experiments
In this section we experimentally compare our proposed unsu-
pervised DT-PLDA to traditional supervised DT-PLDA, and a
conventional method which estimates speaker labels by speaker
clustering and applies supervised training.

4.1. Experimental Setup

The proposed method uses unlabeled data in training, data
which is supposed to be matched with the evaluation data, and
we conducted experiments on the NIST 2008 Speaker Recog-
nition Evaluation (SRE08) Common Condition 7 (English tele-
phone speech), with NIST SRE 2004 and 2005 (also English
telephone speech) for training data. We used actual DCF (act-
DCF) and minimum DCF (minDCF) with the effective prior
Peff = 0.0917, given by SRE08, as well as equal error rate
(EER) as evaluation metrics. See [13]-[15] for details. Thus the
weights in the loss functions (4) and (5) used the same Peff.

In our speaker verification system, an input speech segment
was first converted to a sequence of acoustic feature vectors,
each of which consisted of 60 features (20 dimensional features
consisting of 0th dimension as an energy feature and 1-19th as
PLP features, followed by their ∆ and ∆∆) extracted from a
frame of 20 ms width for every 10 ms. An i-vector of 400 di-
mensions was then extracted from the acoustic feature vectors,
a 2048-mixture universal background model (UBM), and a total
variability matrix (TVM). We utilized the Kaldi speech recog-
nition toolkit [16] to run these steps. Mean subtraction, whiten-
ing, and length normalization [17] were applied to the i-vector,
as a pre-processing step.

For training the UBM and the T matrix, we used NIST SRE
2004 (SRE04) and 2005 (SRE05), Switchboard (SWB) II Phase
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1 (SB2P1), 2 (SB2P2), and 3 (SB2P3), Switchboard Cellular
Part 1 (SBCP1) and 2 (SBCP2), and Fisher. For SRE04, we
used speech files included in the training lists of 1, 3, 8 and
16 single-channel conversation sides, and in the test list of 1
single-channel conversation side. For SRE05, we used speech
files included in the training lists of 1, 3 and 8 two-channel con-
versation sides and in the test list of 1 single-channel conversa-
tion side. For the SWB datasets, we used all non-empty speech
files. For training baseline GT-PLDA models, we used the same
SWB data except SB2P, but excluded speech distorted by echo,
crosstalk or background noise in accord with the meta-data in
the databases. This gave 782 speakers with a total of 4531 utter-
ances. For training DT-PLDA models, we used the same SRE04
and 05 data. MIXER PIN were used as unique speaker IDs
for NIST SRE datasets. For the files whose MIXER PIN were
missing, we used model IDs as speaker IDs. This included 371
speakers with 4563 utterances.

Given the lack of research in unsupervised discriminative
training, we have chosen to use the method described below as
a conventional approach with which to compare our proposed
method, as it can be easily employed in the same way as GT-
PLDA [13]. It contains 2 steps. Step 1: estimate speaker labels
by speaker clustering; Step 2: apply supervised DT-PLDA train-
ing using the estimated labels. In our experiments, we applied
mean-shift clustering, using cosine similarity, for the similar-
ity metric in Step 1. We implemented it on the basis of the
sklearn.cluster [24] module in scikit-learn [25], and determined
a bandwidth (quantile = 0.003) which gives the closest number
of speakers (376) to the true number (371).

In the experiments, we used the 4-parameter DT-PLDA for-
mulation described in Section 3.2. In all the experiments with
the supervised and unsupervised DT-PLDA, the DT-PLDA pa-
rameters were initialized by means of the GT-PLDA frame-
work described in Section 2.1, which was trained with SWB
data. The weight of the regularization was set in the range of
100 ∼ 104. In all DT-PLDA training, 5 iterations were applied,
where supervised DT-PLDA achieved the best accuracy.

4.2. Results and Analyses

Table 1 shows the performance of the following 6 systems for
three measures: actDCF, minDCF, and EER (%).
S1 supervised GT-PLDA
S2 supervised DT-PLDA using S1 as initialization
S3 conventional method described in 4.1
S4 – S6 are proposed unsupervised DT-PLDA with different
weights of regularization b in Eq (5), using S1 as initialization
S4 b = 1, 10, 102

S5 b = 103

S6 b = 104

In a comparison of systems S1 and S2, we achieved results
consistent with other studies that show DT-PLDA improves the
performance of speaker verification for all of the three mea-
sures. As expected, the reduction in actDCF is much more than
that in minDCF and EER, due to the fact that the objective func-
tion we used was the weighted loss function, which follows the
definition of actDCF. The objective function was not meant to
be responsible for improving minDCF and EER, but it did pro-
duce improvement.

In system S3, despite the good estimation in the number
of clusters (376, close to the true number 371), it produced
higher error rates for all of the three measures as compared with
the GT-PLDA system, which was the initialization of the dis-
criminative training in S3. This indicates that the conventional

Systems actDCF minDCF EER(%)
S1: supervised GT-PLDA 0.452 0.321 6.76
S2: supervised DT-PLDA 0.320 0.320 6.71
S3: conventional 0.510 0.371 7.14
S4: proposed (b=1, 10, 102) 0.339 0.309 6.76
S5: proposed (b=103) 0.336 0.309 6.77
S6: proposed (b=104) 0.351 0.308 6.73

Table 1: Performance of the 6 systems. Bold face denotes the
best performance in each column.

method failed in domain adaptation. In a comparison of systems
S2 and S3, it suggests the fact that the conventional method is
heavily affected by clustering performance. All of the three sys-
tems with the proposed method, S4, S5, and S6, were better for
all three measures as compared with S1, which indicates suc-
cessful adaptation of the system to the target domain. In con-
trast with the S2, the supervised DT-PLDA, which is supposed
to represent the upper bound in performance (the lower bounds
for the three measures), actDCF and EER in S4, S5, and S6
were higher, as expected, while minDCF even exceeded that of
S2. We are unable to explain this, but we may note again that
our objective function focuses on minimizing actDCF. In this
respect, the results in Table 1 can be considered reasonable.

A large difference in the weight of the regularization in
S4, S5, and S6, resulting in a slight difference in speaker veri-
fication performance, indicates that cosine similarity has a cer-
tain correlation with GT-PLDA initialization. Among the three
system, the lowest actDCF, was achieved in S5, which shows
that 103 is the most appropriate weight for this task. The pro-
posed method is relatively robust with respect to the weight of
the regularization, and at the same time shows improvement.

5. Summary and Future Work
We have proposed unsupervised DT-PLDA that uses a regular-
ization term derived from data statistics, to constrain the itera-
tive training. It follows the idea of traditional DT-PLDA that
uses GT-PLDA for its initialization. Working under the as-
sumption that PLDA scoring and scoring using cosine similar-
ity are weakly correlated, we adopted cosine similarity for the
regularization in formulation and then conducted experiments.
The objective function was set as the weighted loss function
specifically to optimize actDCF. We have shown experimen-
tally that the proposed method successfully adapted the system
to the target domain, and performed almost as well as super-
vised DT-PLDA for actDCF. Given that this was the first at-
tempt at unsupervised discriminative PLDA that we know of,
we also conducted experiments for a method which is easy to
employ (speaker clustering + supervised DT-PLDA). As ex-
pected, the proposed method outperformed it. Future issues
include the implementation and evaluation of general unsuper-
vised DT-PLDA. We also intend to explore the possibility of
employing other data statistics such as GT-PLDA scoring and
SVM scoring for regularization.
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