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Abstract
Emphasis is an important piece of paralinguistic information
that is used to express different intentions, attitudes, or con-
vey emotion. Recent works have tried to translate emphasis
by developing additional emphasis estimation and translation
components apart from an existing speech-to-speech transla-
tion (S2ST) system. Although these approaches can preserve
emphasis, they introduce more complexity to the translation
pipeline. The emphasis translation component has to wait for
the target language sentence and word alignments derived from
a machine translation system, resulting in a significant transla-
tion delay. In this paper, we proposed an approach that jointly
trains and predicts words and emphasis in a unified architecture
based on sequence-to-sequence models. The proposed model
not only speeds up the translation pipeline but also allows us to
perform joint training. Our experiments on the emphasis and
word translation tasks showed that we could achieve compa-
rable performance for both tasks compared with previous ap-
proaches while eliminating complex dependencies.
Index Terms: speech-to-speech translation, paralinguistic
translation, machine translation.

1. Introduction

Humans communicate with various degrees of expressions to
provide strong clues about their intentions, attitudes, and emo-
tions. Emphasis is one factor of expressiveness deliberately
used by speakers to modify linguistic information [1]. A
common example of emphasis is in misheard situations where
speakers put more focus on particular parts (words or phrases)
of utterances to help other interlocutors capture the important
information of the utterance. Tsiartas et al. [2] identified im-
portance of emphasis in cross-language communication and ar-
gued that it should be considered in S2ST systems to preserve
the quality of speech translation.

To leverage conventional S2ST systems to handle empha-
sis, previous works on emphasis translation [3, 4, 5] proposed
additional components to estimate and translate it. The general
idea is to first estimate a representation of the source language
emphasis. Anumanchipalli et al. [3] used F0 patterns to repre-

sent emphasis and Do et al. [4] used emphasis weights instead1.
Then an emphasis translation component takes the estimated
emphasis and predicts the target emphasis representations. Al-
though these approaches can handle emphasis in S2ST systems,
they make the translation pipeline more complex. In particular,
Do et al. [4] requires a separate word alignment models be-
fore the emphasis translation to map the emphasis weights, and
Anumanchipalli et al. [3] also needs phrase alignments to map
F0 patterns. However, the word alignment can only be obtained
after word translation, meaning that to translate emphasis, we
need to wait for the machine translation system to predict all of
the target language sentences, creating a large delay to get the
target output speech.

1Emphasis weights are real-numbered values representing how
greatly a word is emphasized.
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Figure 1: Illustration of proposed approach that jointly trains

and predicts words and emphasis. Machine translation (MT)

and emphasis translation (ET) are combined into a unified

model. Word alignments are also automatically inferred by at-

tention mechanism of seq2seq approaches.

On the other hand, sequence-to-sequence (seq2seq) (also
known as neural network machine translation-NMT) ap-
proaches [6] have recently claimed the state-of-the-art perfor-
mance in machine translation and are appealing in end-to-end
tasks where the minimal domain knowledge is required. This
approach can internally infer word alignments using attentional
mechanism [7]. A recent work [8] proposed hard-attention
sequence-to-sequence models to translate emphasis. This ap-
proach, however, still relies on a separate word alignment model
to achieve the best performance. If emphasis can be integrated
into NMT, the emphasis translation pipeline will become not
only simpler, but we can also perform joint optimization of
words and emphasis translation.

In this paper, we propose an approach based on seq2seq
models that jointly trains and predicts words and emphasis
together based on sequence-to-sequence models. The pro-
posed approach eliminates complex dependencies while pre-
serves good translation performance of words and emphasis. It
makes the whole translation pipeline much simpler and more
compact than previous approaches (Fig. 1). Separated word
alignment models are no longer required, and the model can
predict emphasis with one-word delay instead of full-sentence
delay.

2. Emphasis Representation

Emphasis is manifested by changing many acoustic features in-
cluding F0, power, and duration [9, 10]. Therefore, to effec-
tively convey emphasis in S2ST systems, all these acoustic fea-
tures must be taken into account. In this paper, we follow the
representation of emphasis as emphasis weights [4] based on
linear-regression hidden-semi Markov models (LR-HSMMs).
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The emphasis weight is a scalar number that intuitively repre-
sents how much a word is emphasized (Fig. 1). The advantage
of this representation is that the emphasis weight is estimated
using all of the acoustic features that are used to manifest em-
phasis. With this representation, the emphasis translation task
resembles the translation of a sequence of emphasis weights that
is similar to machine translation, which translates a sequence of
words.

Emphasis weights are used as interpolation parameters be-
tween normal HSMMs and emphasized HSMMs to construct
LR-HSMMs. Normal HSMMs are constructed from all nor-
mal Gaussians, which are trained from normal speech data. The
same concept is applied to emphasize HSMMs.

In the emphasis weight estimation process, the weight is
estimated using a modified version of cluster adaptive training
(CAT) [11]. During the speech synthesis process, given an em-
phasis sequence, we first construct a sequence of LR-HSMM
states and infer the emphasized speech parameters. If the em-
phasis weights are set to 0, the LR-HSMMs are equivalent to
normal HSMMs that synthesize normal speech and vice versa.

3. Sequence-to-Sequence-based for
Machine Translation

NMT models translate a source language word sequence that

consists of n words W (s) = {w
(s)
1 , . . . , w

(s)
n } to a target lan-

guage word sequence W
(t) = {w

(t)
1 , . . . , w

(t)
m } by directly

modeling conditional probability P (W (t)|W (s)). A basic
form of NMT models consists of two components: an encoder
that encodes source word representation s and a decoder that
predicts the target words.

A variant of NMT called attentional NMT (Fig. 2) [12, 13]
effectively translates long sentences by introducing an attention
layer that works as an alignment model. This layer gives the
decoder more information about which words of the source sen-
tence are more important to predict the current target word.

The probability of predicting word w
(t)
i

can be calculated
as follows,

P (w
(t)
i

|w
(t)
<i

, s) = softmax(g(h̃
(t)

i )), (1)

where g is a function that maps hidden activation vector h̃
(t)

i

to a vocabulary-sized vector, which is computed by applying
linear layer W c over a concatenation vector of context vector
ci and current hidden vector hi,

h̃
(t)

i = tanh(W c[ci;hi]) (2)

Context vector ci is, in fact, a weighted average of source hid-

den vectors H
(s) = [h

(s)
1 , . . . ,h

(s)
n ], where weighted vector

ai is computed by,

ai = softmax(dot(H(s)
,h

(t)
i

)) (3)

Weighted vector ai acts as a word alignment score, where the
highest value indicates the source language word that is aligned
with the current target language word.

4. Unified Framework for Translating
Words and Emphasis

In this section, we propose a unified framework based on atten-
tional NMT that can translate words and emphasis. We chose
NMT-based approaches for two main reasons. First, they can
capture long-distance dependencies and handle continuous val-
ues. This is particularly important for emphasis translation be-
cause emphasis weights are continuous. Second, a recent work
[8] applied a hard-attention NMT for emphasis translation and
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Figure 2: Neural network machine translation with attention

layer.

showed a significant improvement. We expect that integrating
emphasis directly into NMT will eliminate complex dependen-
cies while preserving the high performance of emphasis trans-
lation.

The major difficulty when integrating emphasis with word
translation is that the amount of text data usually dominates the
amount of emphasis data. This is because emphasis data are
derived from parallel emphasized speech that is much harder to
collect than parallel text data, which can be massively collected
by crawling websites [14].

The unified translation model can be defined as follows.
Given a source language word and an emphasis sequence de-

noted as W
(s) and e

(s), respectively. The model predicts one

target word w(t) at a time followed by a prediction of its em-

phasis weight e(t). Next we detail how the encoder and decoder
handle both words and emphasis weights.

4.1. Encoder with emphasis weights

One way to embed emphasis weights into the encoder is to con-
catenate them with the word representation to form an input

vector [w
(s)
i

, e
(s)
i

] of the encoder (Emp-Enc) and compute the
hidden unit by,

h
(s)
i

= enc([w
(s)
i

, e
(s)
i

]). (4)

By doing this, we ensure that emphasis weights are also
encoded with words. However, since the effect of emphasis on
MT remain unknown, we need to explore more possible ways to
incorporate emphasis into the encoder to analyze such an effect.
Therefore, we propose adding emphasis after encoding words
(SkipEnc) as follows:

h
(s)
i

= [enc(w
(s)
i

), e
(s)
i

] (5)

The idea of SkipEnc is that if emphasis weights negatively
affect the machine translation, adding them after the encoder
might weaken the effect.

4.2. Decoder with emphasis weights

As illustrated in Fig. 3, the decoder has two components. A
word prediction layer follows the standard NMT Eq. 1, and em-
phasis prediction layer W e that takes input is the combined
vector of the predicted word and the decoder hidden activation
as follows:

e
(t)
i

= W e([h̃
(t)

i , w
(t)
i

]). (6)

However, as stated above, the lack of emphasis data com-
pared with the text data might lead to the problem where the
effect of the source emphasis might be saturated when going
through many hidden layers. To overcome this problem, we
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Figure 3: Unified word-emphasis translation framework with

word dependencies and residual connection.

utilize residual connection in the way that the source empha-
sis weight is also used when predicting target emphasis weights
(Fig. 3),

e
(t)
i

= W e([h̃
(t)

i , w
(t)
i

]) + e
(s)

id(ai)
, (7)

where function id(ai) returns the index of the largest value of
weighted vector ai indicating the source aligned word.

4.3. Training procedure

To train the model, we utilize two objective functions, cross en-
tropy (CE) for word prediction and mean square error (MSE) for
emphasis prediction, because the CE function performs much
better than MSE with discrete labels, which is the case of word
prediction. Since emphasis weights are continuous, CE func-
tion cannot be utilized as the objective function for emphasis
prediction.

The training algorithm is the standard back propagation
through time (BPTT) in which the errors from the machine and
emphasis translations are sequencially back–propagated. Note
that the errors are not joint because their scales are different.

5. Experiments

5.1. Experimental setup

5.1.1. Corpus

The corpus consists of two parts, parallel texts for the machine
translation task and parallel emphasized speech for the empha-
sis translation task. The parallel text were derived from the
BTEC corpus [15] that consists of ~466,000 parallel sentences.
The parallel emphasized speech data are bilingual English-
Japanese emphasized speech that consists of 966 parallel em-
phasized speech utterances spoken by three native English and
five native Japanese speakers [10].

To create training and testing data for the experiment, we
utilize previously described emphasis estimation process based
on CAT [16], resulting in 966 emphasis weight sequences for
each speaker. Then we divide the 966 utterances of each speaker
into two sets of 866 and 100 samples. After that, we pair the
866 utterances of each English speaker with those of all five
Japanese speakers, resulting in 4330 training and 100 testing
samples for emphasis translation experiments. As for the BTEC
data, we first divide them into 460,000 training, 1000 develop-
ing, and 5000 testing sentences. Then, because the parallel text
data are very large and it is impractical to collect parallel em-
phasized speech for it, we create fake emphasis data for all of
the sentences so that content words have emphasis weights of

0.99 and other words have emphasis weights of 0.012.

2The fake emphasis levels do not have significant effect on empha-
sis translation because the emphasis decoder does not take them into
account.

5.1.2. Training details

Our encoder and decoder models have 1 layer (unless stated oth-
erwise), with 512 cells, and 512-dimensional word embeddings.
We train for a maximum of 20 epochs using the RMSprop al-
gorithm [17]. Emphasis prediction layer W e is frozen when
training with fake emphasis data to avoid learning from unreal-
istic emphasis weights.

When training with text data, the learning rate is set to 1e-4
and is set to 5e-5 when training with emphasis data. We employ
an early stop learning rate schedule and reduce the learning by a
factor of 2 whenever the loss on the development set increased.
The training is stopped when the learning rate falls below 1e-5.
Our mini-batches for the word translation task and the emphasis
translation are 128 and 10, respectively. The batches are shuf-
fled before every training epoch.

5.1.3. Measurement metric

In this paper, we separately evaluate the performances of the
machine and emphasis translations by BLEU and F -scores, re-
spectively. We chose F -score for emphasis evaluation due to
the fact that it objectively models human performance on em-
phasis detection task on the target language side. While other
measurement metrics taken into account continuous numbers
such as RMSE could be used, it is not easy for human to detect
the continuous emphasis level for words.

To calculate the F -score for the emphasis evaluation, the
target emphasis values are classified as “emphasized” or “not

emphasized” using a threshold of 0.53 and compared with the
true values. Because the system is speaker dependent, we train
individual models for each speaker and average the scores over
all models.

5.2. Effect of using emphasis as additional features on ma-
chine translation

Even though previous works translated emphasis weights sepa-
rately from NMT, no analysis has addressed whether emphasis
weights in NMT will have a positive or negative effect. This
is, however, important before integrating emphasis translation
to NMT. To address that oversight, we explore the effect of em-
phasis as an input feature on machine translation performance.
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Figure 4: Effect of emphasis on machine translation. The solid

and dash lines denote the MT performance on the development

set and the training set, respectively.

We first keep the same decoder structure like standard NMT
systems so that no emphasis prediction is performed. Then we
evaluate two encoders with emphasis weights added in different
positions as described in Section 4.1. The baseline is the stan-
dard NMT system without emphasis weights (Std. NMT). Fig. 4
shows the result of the cross entropy loss of word prediction
performance on the training and development sets. The loss is
higher in both approaches (SkipEnc and Emp-Enc) than the Std.
NMT, indicating that emphasis does not help to improve NMT

3This was reported in previous work [16] as having the best perfor-
mance to classify emphasized and normal words.
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performance. We hypothesize that such a negative effect is due
to the fact that emphasis weights are paralinguistic while NMT
translating linguistic information. Using emphasis weights only
as an additional feature without translating is insufficient for the
model to learn anything useful from emphasis.

Although the NMT performance is degraded when using
emphasis weight features, SkipEnc has a minimal effect com-
pared with Emp-Enc. This is because in SkipEnc, the encoder
avoids excessive influence from the negative effect of the faked
emphasis weights; therefore, we can preserve the performance
of the standard NMT. The rest of experiments use the SkipEnc
model.

5.3. Emphasis translation performance

In this experiment, we fully train the model for both emphasis
and word prediction. Fig. 5 shows the F -score, precision, and
recall for emphasis prediction using the SkipEnc encoder with
baseline and residual decoders.

Looking at the F -score, the residual decoder outperforms
the baseline decoder by a 2.7% F -score. The baseline decoder’s
precision is, however, higher than of the residual one, indicating
that the residual connection makes more mistakes that predict
high emphasis weights for normal words. Similarly, the high
score for residual decoder’s recall indicates that it preserves
more emphasized words than the baseline system.

The contrastive precision and recall performance of the two
systems indicates that better performance can be gained by
combining them. In the next section, we describe our combi-
nation technique and compare its result with previous works.
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Figure 5: Emphasis translation performance in unified transla-

tion framework.

5.4. Model combination for emphasis translation

The model combination works as follows. First, we perform
emphasis translation on the development set and calculate the
precision and recall scores. Then, for content words, we select
the emphasis weights predicted from the system with higher re-
call, and for non-content words, we select emphasis weights
with lower recall.

We also perform emphasis translation using previous ap-
proaches based on conditional random fields (CRFs) [16] and
LSTMs hard attention models [8]. The input features for these
approaches are words and emphasis weights that resemble the
proposed approach. The result is shown in Fig. 6. Compared
with CRFs, our proposed approaches perform better with ~5%
F -score and have a closed performance with the LSTM hard-
attention approach with a ~2% lower F -score.

The result matches our expectation because both CRFs and
LSTM hard-attention approaches use ground-truth one-to-one
word alignments and have independent words and emphasis
translation models. On the other hand, our proposed approaches
do not require word alignment models and can translate words
and emphasis twice as fast as hard-attention models.

5.5. Machine translation performance

We evaluate the machine translation performance with various
depths of hidden layers. The baseline system is the standard
NMT without emphasis weights used in both the encoder and
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Figure 6: Comparison of the emphasis translation perfor-

mance of the proposed and previous approaches. The graph

also showed the differences in terms of translation architecture

(Arch.), word alignment requirement (Align.), and the transla-

tion delay (Delay).

decoder. As shown in Table 1, with hidden layer depths of 1
and 2, the performance different of the proposed approach and
the baseline is negligible, indicating that optimizing the model
with emphasis weights can compensate for the negative effect
of emphasis found in Section 5.2.

With a hidden layer depth of 3, all of the models are over-
fitted with the training samples, resulting in the loss of per-
formance. However, interestingly, the proposed approaches
have smaller drops in performance. Specifically, the SkipEnc-
Residual approach only dropped ~1% of BLEU, while the base-
line system without emphasis weights dropped ~3% of BLEU.
We hypothesize that emphasis weights work as regulation pa-
rameters that help preventing over-fitting.

Table 1: Machine translation performance in unified translation

framework. Various depth of hidden layers denoted as d(1,2,3)

were evaluated.

System BLEU

Baseline (d1) 27.67

SkipEnc-Base (d1) 27.25

SkipEnc-Residual (d1) 27.19

Baseline (d2) 27.44

SkipEnc-Base (d2) 27.70

SkipEnc-Residual (d2) 27.72

Baseline (d3) 23.68

SkipEnc-Base (d3) 25.41

SkipEnc-Residual (d3) 26.36

6. Conclusions

This paper presents the first attempt that analyzed the effect
of emphasis on machine translation and jointly translated em-
phasis and words in a unified model. Compared to previous
works on emphasis translation, our proposed models achieved
comparable performance while eliminating complex dependen-
cies. In a machine translation task, the proposed models demon-
strated that emphasis weights reduce over-fitting issues. Future
work will integrate emphasis estimation and synthesis compo-
nents into the model, making a completely end-to-end expres-
sive speech translation system.
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