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Abstract
The paper provides an analysis of BUT automatic speech recog-
nition systems (ASR) built for the 2016 IARPA Babel eval-
uation. The IARPA Babel program concentrates on building
ASR system for many low resource languages, where only a
limited amount of transcribed speech is available for each lan-
guage. In such scenario, we found essential to train the ASR
systems in a multilingual fashion. In this work, we report su-
perior results obtained with pre-trained multilingual BLSTM
acoustic models, where we used multi-task training with sepa-
rate classification layer for each language. The results reported
on three Babel Year 4 languages show over 3% absolute WER
reductions obtained from such multilingual pre-training. Exper-
iments with different input features show that the multilingual
BLSTM performs the best with simple log-Mel-filter-bank out-
puts, which makes our previously successful multilingual stack
bottleneck features with CMLLR adaptation obsolete. Finally,
we experiment with different configurations of i-vector based
speaker adaptation in the mono- and multi-lingual BLSTM ar-
chitectures. This results in additional WER reductions over 1%
absolute.
Index Terms: Automatic speech recognition, Multilingual neu-
ral networks, Bidirectional Long Short Term Memory, i-vector,

1. Introduction and prior work
Quick delivery of an automatic speech recognition (ASR) sys-
tem for a new language is one of the challenges in the commu-
nity. Such scenarios call not only for automated construction
of systems, that have been carefully designed and crafted “by
hand”, but also for effective use of available resources. Without
any question, the data collection and annotation are the most
time- and money-consuming processes.

The recently finished IARPA Babel program focused on
fast development of ASR systems, while the amount of per-
language data was decreasing from year to year. The data from
24 low-resource languages were collected, which led to numer-
ous multilingual experiments.
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For humans, borrowing the information from other sources
when learning a new language is very natural. We all share the
same vocal tract architecture and phonetic systems of languages
overlap, therefore automatic systems should be able to have the
universal and language-independent low-level components (fea-
ture extraction and partially also acoustic models), that would
be built with various sources of data. In the past, we have ver-
ified that the multilingual pre-training for feature extraction [1]
is an important technique, especially if limited amount of train-
ing data is available. We have also performed an analysis of
combining semi-supervised and multi-lingual training of NN-
based bottleneck feature extractors [2]. Also the hybrid DNN-
HMM systems benefit from the multi-lingual training [3]. Re-
cently in [4], we extended this idea to Bi-directional Long-Short
Term Memory Recurrent Neural Networks (BLSTM-RNN).

For the adaptation of feed-forward DNN systems, we have
witnessed an increased popularity of speaker-specific vectors.
The most prominent are i-vectors, originally developed for
speaker verification [5], which provide an elegant way of en-
coding a sequential input with arbitrary length to a single vector
with fixed-dimension. The i-vector retains most of the speaker
information, so the i-vectors found its way to the ASR field: At
first as additional input features to discriminatively trained Re-
gion Dependent Linear Transform for GMMs [6], later as addi-
tional input features of a DNN [7, 8, 9], while they were also
successfully used in robust ASR [10, 11, 12]. An alternative
way of using i-vectors is to train a small adaptation network,
which converts the i-vectors into offsets of input-features of the
main DNN network [13]. However, it is not clear what is the
best way to integrate the i-vectors in the BLSTM model, be-
cause all the previous works were with feed-forward DNNs.

Yet another approach to extract a fixed length speaker rep-
resentation is to use the Sequence summarizing neural net-
work (SSNN) trained together with the main DNN acoustic
model [14].

In this paper, we focus on multi-lingual training. We ex-
periment both with the multi-lingual feature extraction and
multi-lingual acoustic modeling. Then, we also focus on the i-
vector based speaker adaptation of multilingual BLSTM acous-
tic model.

2. Data
The IARPA Babel program data simulate a situation, in which
the data for a new language are collected in a limited time.
The data consists mainly of conversational telephone speech
(CTS) but some scripted recordings and far field recordings are
present too. During the 4-year project, extensive collection of
24 languages was created: Year 1: Cantonese (CA), Pashto
(PA), Turkish (TU), Tagalog (TA), Vietnamese(VI). Year 2: As-
samese (AS), Bengali (BE), Haitian Creole (HA), Lao (LA),
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Table 1: Amounts of data used for the training.

Y1 Langs. CA PA TU TA VI
Hours 65 65 57 44 53
Y2 Langs. AS BE HA LA ZU Tam
Hours 47 54 55 57 58 56
Y3 Langs. KU CE KA TE LI TP SW
Hours 37 38 40 38 41 26 34
Y4 Langs. PA2 JA IG MO DH GU AM
Hours 32 40 39 39 38 39 39
Non-Babel LEV FSH MAN SPA
Hours 136 239 153 199

Zulu (ZU), Tamil (Tam). Year 3: Kurdish (KU), Cebuano
(CE), Kazakh (KA), Telugu (TE), Lithuanian (LI), TokPisin
(TP), Swahili (SW). Year 4: Pashto progress set (about 40h
subset of Year 1) (PA2), Javanese (JA), Igbo (IG), Mongolian
(MO), Dholuo (DH), Guarani (GU), Amharic (AM), Georgian
(not used in this work) (GE). In addition, the Non-Babel data
were allowed for multilingual pre-training in the 4th year of
the program: Levantine Arabic QT training data set 5 (LEV),
Fisher English training speech parts 1,2 (limited to 250 hours)
(FSH), Mandarin HKUST + Mandarin CallHome/CallFriend
(MAN), Spanish Fisher + Spanish CallHome/CallFriend (SPA).
The amounts of data can be found in table 1. Note, that the data
sizes are summarized after trimming the silence to 150 ms on
the edges of speech segments, according to a forced alignment.
More details about Year 1–3 languages can be found in [1].

We limited the language model training corpus to the tran-
scriptions of the training audio we received from the Babel pro-
gram. Pronunciation dictionaries were not provided, so we re-
lied on graphemic lexicons. Several data-sets based on packs
from table 1 were generated, for the multi-lingual acoustic
model and feature extractor training. We simulated a real sit-
uation with the data “growing” over time (see section 5). All
the experiments were evaluated with Javanese (JA), Pashto (PA)
and Amharic (AM), the languages are from the 4th year of the
program.

3. System description
Our systems were built with a myriad of tool-kits: We used
STK/HTK [15] toolkit1for feature extraction and CMLLR adap-
tation [16], Kaldi [17] was used for maximum likelihood (ML)
Gaussian mixture model (GMM) training and baseline DNN
acoustic model training. Finally, with CNTK [18] we trained
our Stacked Bottle-Neck (SBN) networks [19] and BLSTM net-
works.

3.1. DNN system

The baseline DNN system is described in detail in [20]. The
features are generated from Bottle-Neck (BN) feature extractor
described later in section 3.3 and fed into DNN acoustic model,
as shown in figure 1. For such architecture, we have shown
in [21] that CMLLR adaptation of the bottleneck features im-
proves the system performance. These CMLLR features will be
further called as “BN-CMLLR”

The BN-CMLLR features are spliced in with the partially
consecutive frame offsets (-10,-5:5,10) and mean normalized.
For the experiments, we used DNNs with 6 hidden layers each
containing 2048 sigmoidal neurons. The DNN system is pre-
trained using restricted Boltzmann machine (RBM) [22]. This

1STK is BUT’s variant of HTK: http://speech.fit.
vutbr.cz/software/hmm-toolkit-stk

Figure 1: DNN model with speaker adaptation.
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is followed by frame classification training (cross-entropy) with
mini-batch stochastic gradient descent algorithm. The learning
rate scheduling is based on relative improvement of the training
objective (frame cross-entropy) on 10% held-out set. The input
frames are randomized and grouped into mini-batches of 256
frames.

3.2. BLSTM systems

The latency-controlled BLSTM architecture [23] contains 3
bi-directional layers, for each direction there are 512 mem-
ory units and 300 dimensional projection layer as suggested
in [24]. The training is done with truncated back-propagation
through time (BPTT) algorithm [25]. Each update is based on
Tbptt = 20 time-steps of recurrent forward-propagations and
back-propagations.

3.3. Bottle-Neck feature extraction

We also used the Stacked Bottle-Neck (SBN) feature extrac-
tion [20]. It consists of two NN stages: The first one is reading
short temporal context, then the bottleneck frames are spliced
with offsets (-10,-5,0,5,10) and fed into the second NN reading
the longer temporal information.

The first-stage bottle-neck NN input are 24 log-Mel-filter-
bank features concatenated with different pitch features: “BUT
F0” has 2 coefficients (F0 and probability of voicing), “snack
F0” is a single F0 estimate and “Kaldi F0” which has 3 co-
efficients (F0 normalized with a sliding window, probability of
voicing and delta). Fundamental frequency variation (FFV) pro-
duces a 7 dimensional vector. The whole feature vector has
24+2+1+3+7=37 coefficients (see [20] for details on pitch fea-
tures).

After a conversation-side mean subtraction, we apply a
Hamming window and Discrete cosine transform to the fea-
ture trajectories spanning 11 frames. We retain 0th to 5th

DCT coefficients for each of the original 37 features resulting in
37×6=222 coefficients at the first-stage NN input. These fea-
tures are later also used independently for DNN systems, and
will be called “11FBank F0”.

In this work, the first-stage NN has 4 hidden layers, each of
1500 sigmoid neurons except the 80-dimensional linear bottle-
neck [26] (3rd hidden layer). Then, after splicing of bottleneck
features we have a second-stage NN with an architecture similar
to the first-stage NN, except of BN layer with only 30 linear
neurons. Both neural networks were trained jointly as suggested
in [26] with the CNTK toolkit [18].

We extract the features from the 80 dimensional bottle-
neck of the first-stage network. These features are used in the
DNN systems. In case of their mono-lingual training, they
will be later called “BN1 Mono”, if multilingually trained -
“BN1 Multi” (see section 5.1.1). The features already contain
CMLLR speaker adaptation.

4. Analysis of feature extraction
First, we were interested in optimal feature extraction for our
DNN and BLSTM architectures. No speaker adaptation was
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Table 2: Comparison of %WER of monolingual feed-forward
DNN and recurrent BLSTM system on top of monolingual non-
adapted features.

Language Features DNN BLSTM
Javanese 11FBANK F0 60.1 54.0
Javanese BN1 Mono 57.4 55.4
Amharic 11FBANK F0 48.4 44.0
Amharic BN1 Mono 46.5 45.2
Pashto 11FBANK F0 53.7 48.7
Pashto BN1 Mono 52.0 51.3

used and the feature extractor was trained monolingually on the
target language only. According to table 2, the BN feature ex-
tractor is beneficial for the feed-forward DNN based acoustic
models. On contrary, for the recurrent BLSTM models, the BN
features are malicious and the basic 11FBANK F0 are giving
better performance.

5. Multi-lingual experiments
5.1. Multilingual architectures

All multilingual architectures in this work were trained with a
‘block-softmax’ output layer, which consists of per-language
softmaxes [27]. The training targets are the ‘context-
independent phoneme states’, otherwise the size of the final
layer would be excessively large.

We were interested in comparison of multilingual
feature extraction with monolingual acoustic model
(Fea:BN1 Multi,AM:MonoL) and training of whole sys-
tem (joint training of feature extraction + acoustic model)
in multilingual way followed by porting to target language
(AM:MultiL). Such procedure can be described in the following
steps: (1) the final multilingual layer (context-independent
phoneme states for all languages) was stripped and replaced
with a layer specific to target-language (tied-state triphones)
with random initialization. (2) This new layer was trained for 8
epochs with a standard learning rate, while the rest of the NN
was fixed. (3) Finally, the whole NN was fine-tuned with 10
epochs, the initial value of learning-rate schedule was set to 0.1
of the original value (resp. 0.5 for BLSTM).

The following architectures were built and tested:
• Fea:BN1 Multi,AM:MonoL: multi-lingually trained

SBN architecture defined in section 3.3, where output
from 1st-stage NN was used as a feature extraction for
monolingual DNN system.

• Fea:11FBank F0,AM:MultiL,DNN: joint architecture of
feature extractor and DNN acoustic model (section 3.1).
The first NN has 3 layers with 1500 neurons followed
by a bottle-neck layer with 80 neurons. The BN features
are spliced with offsets (-10, -5:5, 10) and followed by 6
layers with 2048 neurons each. The first NN (BN part)
was initialized from Y1-Y3 feature extraction, the rest
was RBM initialized.

• Fea:11FBank F0,AM:MultiL,BLSTM: here the compos-
ite architecture of bottleneck network and DNN is re-
placed by 3 BLSTM layers (section 3.2) with 512 mem-
ory units trained directly on 11FBank F0 features. The
BN features were not found to be a suitable BLSTM in-
put (see table 2).

5.1.1. Multilingual feature extractor - MultFE

Figure 2 presents the results2 with multilingual feature extrac-
tor trained on data from various languages. The sets are de-

2Already published in [4] but added here for sake of completeness

Figure 2: DNN systems based on various multilingual NN fea-
tures.
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noted as “Mono” (target language only), “Y1” (all languages
from Year 1), “Y1-2” (languages from Years 1 and 2) and so
one. Note, that we excluded Pashto from Y1, Y1-2 and Y1-3
in order to simulate a scenario where no target language data
is available for training of the feature extraction. On the con-
trary, Y1-4 contains all Pashto, Amharic and Javanese. In ad-
dition, Y1-4+nonBabel set contains also large non-Babel re-
sources (Levantine Arabic, US English, Mandarin and Spanish).
The acoustic-model DNNs were trained in the standard mono-
lingual fashion and its last layer produced posterior probabilities
of tied-states for HMM models.

Figure 2 shows the important effect of number of languages
for multilingual feature extraction. Here, the feature extrac-
tion was not tuned towards a particular target language and all
Pashto, Javanese and Amharic systems use exactly the same
feature extraction network, while the features were rotated by
per-speaker CMLLR (see Fig. 1). The gains after adding more
than 11 languages are minimal; probably the language diversity
is already sufficient. Adding the non-Babel data does not help
much although the amount of data is almost doubled compared
to Y1-4. We have made a similar observation in our previous
work [28], where we found that the language diversity was more
important than the amount of data.

Figure 2 also presents the results of porting+fine-tuning of
feature-extraction NN towards the specific target language. It
brings only a small gain for DNN systems although with GMM
systems, we found it crucial [1, 28]. It seems that the DNN
acoustic model can better compensate this language mismatch,
as the feature extraction is also done by NN. CMLLR was also
employed here. The final features were obtained from all 28
languages, they were performing the best, and we will denote
them as “BN1 Multi”.

5.1.2. Multilingual acoustic model - AM:MultiL

In table 3 we compare feature extractions and multi-lingual pre-
training of acoustic models ‘MultiL’. The outcome is interest-
ing and in our opinion, this shows that BLSTMs are better when
pre-trained with large amounts of data. Recall that for the target
language we have only 50 hours of training data. Another ad-
vantage is the simplicity of such systems and the speed of train-
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Table 3: Comparison of %WER of multilingual features (mono-
lingual DNN) and multilingual acoustic models.

Lang. Feats. CMLLR AM DNN BLSTM
JA BN1 Multi no MonoL 53.6 51.4
JA BN1 Multi yes MonoL 52.2 50.5
JA 11FBank F0 no MultiL 53.6 49.2
AM BN1 Multi no MonoL 43.4 41.8
AM BN1 Multi yes MonoL 41.8 40.4
AM 11FBank F0 no MultiL 43.4 39.8
PA BN1 Multi no MonoL 49.0 47.5
PA BN1 Multi yes MonoL 47.6 46.5
PA 11FBank F0 no MultiL 49.3 46.0

ing; only fine-tuning needs to be done for the target language,
and the feature extraction is without bottleneck network.

6. BLSTM adaptation experiments
At this point, our best system is based on Multilingual BLSTM
without any speaker-adaptation. The classical speaker adapta-
tion approaches such as CMLLR are not suitable for FBANK
features, therefore we are interested in “injecting” the i-vectors
into BLSTM models.

6.1. i-vector extraction

We used 19 MFCC coefficients + energy and their their delta
and double delta coefficients which results in 60-dimensional
feature vectors. The silence frames were removed according to
VAD, after which we applied short-time (300 frame window)
cepstral mean and variance normalization. The MFCC fea-
tures were augmented with SBN features trained on Y1+Y2 lan-
guages. A gender-independent UBM was represented as GMM
with 512 diagonal-covariance components. It was trained on the
target language data. Finally, gender-independent i-vector ex-
tractor was trained (in 10 iterations of a joint Expectation Max-
imization and Minimum Divergence steps) on the same data set
as the UBM. More details on i-vector extraction can be found
in [29]. The results are reported with 100-dimensional i-vectors.

6.2. Analysis of speaker adaptation for Multilingual
BLSTM

Typically, the low-dimensional vector-based adaptation in-
volves concatenating input feature vectors with speaker-specific
vector that is constant across the whole utterance [7].This ap-
proach is however not feasible with multilingually trained NNs,
as re-training of the whole multi-lingual structure is not practi-
cal. Therefore, we experimented with two approaches to make
the speaker adaptation feasible for pre-trained BLSTM:

• Augmentation - only the output of the last hidden layer
(3th) is extended by speaker specific vector because
the following language-specific output layer is anyway
newly trained from random initialization.

• SAT-DNN - the i-vector is transformed by a small NN
(ivec-NN) and added to the input of the main DNN
acoustic model [30]. As the original architecture is
“un-touched”, the integration of ivectors with the pre-
trained BLSTM is straightforward. In addition, we ex-
perimented with adding the i-vector to the outputs of oth-
ers BLSTM layers.

According to results in table 4, the SAT-DNN approach is
the best performing one. Interestingly, adding i-vectors to the
output of the first hidden layer (1L) outperforms adding them to

Table 4: Multilingual BLSTM systems: adaptation by i-vectors
%WER.

No Augm. SAT-DNN
Language adapt. L3 Input 1L 2L 3L
JA 49.2 49.1 48.9 48.6 49.2 49.1
AM 39.8 39.8 39.8 39.4 39.4 39.7
PA 46.0 45.6 45.1 44.7 45.1 45.5

the input features - known as the best approach from DNN. It
inspired us to repeat the analysis with monolingual BLSTM.

6.3. Analysis of BLSTM+ivec on monolingual systems

A detailed comparison of i-vector augmentation and addition by
SAT-DNN on all layers could run only in monolingual systems
due to the need to train from random initialization.
i-vector augmentation: according to table 5, the output of
the first layer is the most optimal for i-vector augmentation
in BLSTM systems. The 0.9-1.6% absolute improvement was
reached on all tested languages.
SAT-DNN: both NNs (ivec-NN and BLSTM) were trained from
random initialization. We also experimented with adding ivec-
NN to already trained speaker-independent BLSTM as sug-
gested in [30] but we did not observe any improvement over
speaker independent BLSTM.

Table 6 shows that SAT-DNN outperforms the classical i-
vector augmentation (table 5), but it is not possible to clearly
determine the optimal connection layer.

Table 5: Monolingual BLSTM systems: augmentation of i-
vectors %WER.

Language No-Adapt Input 1L 2L 3L
Javanese 54.0 53.3 52.5 53.1 54.1
Amharic 44.0 44.8 42.4 43.4 44.5
Pashto 48.7 47.6 47.8 49.2 48.7

Table 6: Monolingual BLSTM systems: SAT-DNN %WER.
Language No-Adapt Input 1L 2L 3L
Javanese 54.0 52.4 53.1 53.0 53.2
Amharic 44.0 43.1 42.2 42.9 42.9
Pashto 48.7 47.6 47.4 47.1 48.4

7. Conclusion
This paper concentrates on multi-lingual training of both DNN-
based features and acoustic models as well as adaptation of
BLSTMs with i-vectors.

We have shown clear advantage of multi-lingual training of
acoustic models and features in low-resource scenarios. SBN
feature extraction trained in multi-lingual way is an elegant
way to produce high-quality features and obtain a good sys-
tem trained on target data only. However, BLSTM acoustic
models trained in multi-lingual way and fine-tuned towards
the target language provide better performance with simpler
“FBANK+pitch” features at the input.

We experimented with i-vector based BLSTM adaptation
and found that BLSTM’s middle layers are more suitable for
such adaptation than input features which are used traditionally.
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