Table of Contents

1. Exhibitors23
2. ISCA24
3. Message from ISCA President25
4. Message from General Chair and Co-Chairs27
5. Message from Technical Program Chairs29
6. Speech Research in India31
7. Theme Related Events33
8. Welcome to Hyderabad34
9. General Information38
10. Social Events42
11. INTERSPEECH 2018 Organizing Team45
12. Future INTERSPEECH Conferences55
13. Satellite Workshops and Events56
14. Tutorials59
15. ISCA Medalist73
16. Plenary Speakers75
17. Perspective Talks79
18. Special Sessions83
19. Show & Tell89
20. Special Events90
21. ISCA Meetings92
22. ISCA-SAC Events94
23. Awards97
24. Session Index100
25. Abstracts104
26. Session Chair Index261
27. Author Index262
28. Venue Maps275
29. Daily Schedule277
30. Program at a Glance282
It’s only impossible until it works

Learn more: amazon.jobs/interspeech2018
Email interspeech2018@amazon.com

Amazon is an Equal Opportunity Employer
Speech and Language is a key part of the Mobile First, Cloud First AI technology that is shaping the future of computing and user experiences. At Microsoft we have openings for Scientists and Engineers who are passionate about the opportunity to work on this next generation of productivity technologies.

We create value for customers with productivity enhancing capabilities that understand *their intent in their context*, enabling them to know more, do more and be more. We are the ears and eyes of Cortana that understands our users’ intent expressed in spoken & written natural language by engaging them in natural, and meaningful conversation.

To do this we are developing new technologies to make speech recognition, intent understanding, user personalization, dialog modeling, and task definition more scalable than ever before.

The contacts for our teams will help you explore just a few of our opportunities. We welcome inquiries from people with all levels of experience and are particularly interested in people with Machine Learning, Big Data, Language Understanding and Speech backgrounds.

<table>
<thead>
<tr>
<th>Speech & Language</th>
<th>General Inquiries</th>
<th>Xuedong Huang@microsoft.com</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ML & Speech Modeling</td>
<td>Li.jiang@microsoft.com</td>
</tr>
<tr>
<td></td>
<td>Dialogue</td>
<td>Elsie.Nallipogu@microsoft.com</td>
</tr>
<tr>
<td>Microsoft China</td>
<td>TTS / Agents</td>
<td>Michael Zeng nzeng@microsoft.com</td>
</tr>
<tr>
<td>Microsoft Research Asia</td>
<td>All Inquiries</td>
<td>Frank Soong frankkps@microsoft.com</td>
</tr>
<tr>
<td>Microsoft India</td>
<td>General Inquiries</td>
<td>Niranjan Nayak niranjan@microsoft.com</td>
</tr>
<tr>
<td></td>
<td>Speech Modeling</td>
<td>Rupesh.mehta@microsoft.com</td>
</tr>
</tbody>
</table>

Meet us in the exhibit hall at **Booth L1** and visit our Interspeech Web at aka.ms/interspeech-2018
Facebook is pleased to be a platinum sponsor of Interspeech 2018

AI is foundational to everything we do at Facebook

AI makes existing products better, creates entirely new experiences, and is fundamental to keeping people safe on our platform.

Through our family of apps and services, we’re building a different kind of company that connects billions of people around the world, gives them ways to share what matters most to them, and helps bring people closer together.

To learn more about opportunities within Speech or NLP at Facebook, please contact: interspeech2018@fb.com
Positions open for Speech recognition experts/Data Scientist/ML Experts. Please contact careers.srib@samsung.com

#2870, Phoenix Building, Bagmane Constellation Business Park, ORR, Doddanekundi Circle, Bengaluru 560037
https://research.samsung.com/sri-b
SPEECH ANALYTICS
for better business outcomes

- Enhance customer experience, reduce churn
- Increase revenue and optimize ROI
- Improve regulatory compliance
- Automate agent quality monitoring & scoring

100+ Global Languages • SaaS Based Model

Call or write to us for
A Free Customized Proof of Concept (POC)
covering 3 KPIs, 1 Language and
50 hours of Speech Data.

Write in to susheel_ext@uniphore.com

GET A POC FOR FREE!

Uniphore Software Systems

Singapore +65 65 977044
Bengaluru, India +91 80 67276400
Chennai, India +91 44 30655800
USA +1 650 617 3288
JD.COM

JD.com
China’s Largest Retailer
A Global Fortune 500 Company

JD AI Research
Focusing on cutting edge innovation in AI
Leveraging AI to enhance several facets of JD’s business
Offices in China, the US and Europe to attract leading global talent
Collaboration with world-leading academic institutions

Machine Learning Lab NLP and Speech Lab Computer Vision Lab

WE ARE HIRING!
contact us: airecruiting@jd.com
ALWAYS BELIEVE THAT SOMETHING WONDERFUL IS ABOUT TO HAPPEN

Xiaomi (1810.HK) was founded in 2010 by serial entrepreneur Lei Jun based on the vision “innovation for everyone”. We believe that high-quality products built with cutting-edge technology should be made accessible to everyone.

We create remarkable hardware, software, and Internet services for and with the help of our Mi fans. We incorporate their feedback into our product range, which currently includes Mi and Redmi smartphones, Mi TVs and Mi Ecosystem products including smart home products, wearables and other accessories. With presence in over 30 countries and regions, Xiaomi is expanding its footprint across the world to become a global brand.

Over a thousand of engineers in Xiaomi are currently working on cloud computing, distributed storage, big data, search, recommendation and AI. Based on Xiaomi’s deep learning platform, we developed advanced technologies of image, speech, natural language understanding and etc.

Speech team of Xiaomi enables the Mi phones, Mi TVs and Ecosystem products to listen and speak to the users. Every day, our users wake up the intelligent assistant “Xiaoi”, experience the voice interaction, access entertainment and acquire information services.
Sogou Zhiyin

voice-based multi-modality
natural interaction technology

ASR

- Most popular voice input method in China
- Average 400 million voice input requests per day
- 4.629 people are using voice input per second
- The first one to publicly demonstrate Chinese lip-reading system
- Accuracy rate of 90% in vertical scenes

TTS
- Winner of two subtasks: Speech Pauses and Word Error Rate in Blizzard Challenge 2018
- Technology pioneer of emotion transfer and virtual anchor
- Winner of Chinese-English translation in WMT2017
- Average 150 million translation requests per day

MT

Speech Translation

Application

Speech Transcription

Voice

Lip-reading Recognition

Image

Handwriting/Lip-reading Recognition

Image Generation

Language

MT

NLU

ASR

Traveling Abroad

International Communication

Simultaneous Interpretation

Video Caption

Sogou Travel Translator

Sogou Input Method

Sogou Simultaneous Interpretation

Sogou Smart Recording Translator

Speech Interaction

Mobile Devices

Wearable Devices

Vehicles

Smart Home

Application Scenarios
Yahoo! JAPAN is Hiring!!

Yahoo! JAPAN is currently looking for Researchers and Engineers. Our mission is to develop speech technologies and offer them for more than 100 internal services. Our big data is appropriate for your brand-new machine learning ideas.

[Job Description]
- R&D for state-of-the-art Japanese speech recognition engine
- Signal processing algorithms for robustness
- Machine learning algorithms using big data
- Collaborate with various Web Service Teams in Yahoo! JAPAN

[Qualifications]
- MS degree in a related technical field or equivalent practical experience
- Experience in speech related technologies:
 - Acoustic modeling, language modeling, ASR decoder (search algorithm)
 - Front-end technologies such as denoising and dereverberation
- Excellent oral and written communication skills in English (Japanese skills are plus)
- Solid programming skills such as C/C++, Matlab, Python

[Web page]
https://about.yahoo.co.jp/hr/en/

[Contact]
speech-team-hr@mail.yahoo.co.jp
With more than 3,000 researchers, in 12 labs located across six continents, IBM Research is one of the world’s largest and most influential corporate research labs.

Research areas

Natural language processing
Machine translation, large scale information extraction, cross-document co-reference, question-answering

Computer vision and multimedia
Video content understanding, cloud-based vision services, multimodal comprehension: machine vision

Machine learning: AI Foundations
Deep learning, reinforcement learning, brain-inspired, learning to learn, interpretability, optimization, learning with memories

Knowledge representation and reasoning
Automated knowledge base creation, symbolic and trainable logic, reusable representations, document understanding

Novel systems
Neuromorphic, quantum computing

At IBM Research, we invent things that matter to the world.

1954 Mark I and Mark II Automatic Language Translators
1959 Checkers Player
1972 Probabilistic Speech Recognition
1984 First real time demonstration of a Large Vocabulary Speech Recognition Dictation System
1988 Statistical Translation Between Languages
1992 TD-Gammon
1995 Image Retrieval
1997 Deep Blue Chess
2000 Statistical machine translation
2002 BLEU metric
2011 IBM™ Watson™ Jeopardy!

6 Nobel Prizes
6 Turing Awards
3 Kavli Prizes
5 National Medals of Science
#1 Patent Recipient for 24 Years
10 National Medals of Technology
1 Presidential Medal of Freedom
1 Kyoto Prize
An interdisciplinary forum for phonetic science research and theory

Editor
C.T. Best
Bankstown NSW (Australia)

Associate Editors
S. Frota
Lisbon (Portugal)
W. Gu
Nanjing (China)
R. Hayes-Harb
Salt Lake City, UT (USA)
A. Jongman
Lawrence, KS (USA)
G. Khattab
Newcastle upon Tyne (United Kingdom)
A. Kochetov
Toronto, ON (Canada)
M. Pouplier
Munich (Germany)
R. Smith
Glasgow (United Kingdom)
P.C.M. Wong
Hong Kong (China)

Aims and Scope
Contemporary interdisciplinary research on phonetics employs a wide range of approaches, from instrumental measures to perceptual and neurocognitive procedures, to computational modelling, for investigating the properties and principles of phonetics in communicative settings across the world’s languages. It also ranges across styles, types of language users, and communicative modalities (speech, sign, song). Phonetica is an international forum for phonetic science that covers all aspects of the subject matter, from phonetic and phonological descriptions, to articulatory and signal analytic measures of production, to perception, acquisition, and phonetic variation and change. Phonetica thus provides a platform for a comprehensive understanding of producer-perceiver interaction across languages and dialects, and of learning throughout the lifespan and across contexts. Papers published in this journal report expert original work that deals both with theoretical issues, new empirical data, and innovative methods and applications that help to advance the field.

Find subscription information and guidelines for authors on www.karger.com/pho
EXHIBITORS

Amazon Alexa
Appen
Apple
Behavioral Signal Technologies
Beijing Magic Data Technology Co. Ltd.
Brno University of Technology
Baidu Research
Cobalt Speech and Language
CVTE
Datatang
DefinedCrowd
Dialpad
Facebook
Google
INTERSPEECH 2019

INTERSPEECH 2020
JD.com
Lionbridge
Microsoft
Phonexia
Qualcomm
Springer
Speech Ocean Limited
SpeechX
Slang labs
Samsung
Sogou
Uniphore
Xiaomi
Yahoo Japan
ISCA is a non-profit organization. Its original statutes (statutes in French or their translation in English), were deposited on February 23rd at the Prefecture of Grenoble, in France by René CARRÉ and registered on March 27th, 1988.

The association started as ESCA (European Speech Communication Association) and, since its foundation, has been steadily expanding and consolidating its activities. It has offered an increasing range of services and benefits to its members and it has put its financial and administrative functions on a firm professional footing. Indeed, over the ten years of its existence, ESCA has evolved from a small EEC-supported European organisation to a fully-independent and self-supporting international association.

At the General Assembly meeting that took place during the last Eurospeech conference in Budapest (September 1999), ESCA became a truly international association in the global field of speech science and technology, changing its name to ISCA (International Speech Communication Association) and modifying its statutes accordingly. This also marked the unification between ESCA and the PC-ICSLP: Permanent Council of International Conference on Spoken Language Processing, where ESCA and PC-ICSLP joined to form one international organization, ISCA, representing the world’s researchers in speech communication.

The purpose of the association is to promote, in an international world-wide context, activities and exchanges in all fields related to speech communication science and technology. The association is aimed at all persons and institutions interested in fundamental research and technological development that aims at describing, explaining and reproducing the various aspects of human communication by speech, that is, without assuming this enumeration to be exhaustive, phonetics, linguistics, computer speech recognition and synthesis, speech compression, speaker recognition, aids to medical diagnosis of voice pathologies. The main objectives of ISCA are to stimulate scientific research and education, to organize conferences and workshops, to encourage the study of different languages to promote relation between Public and Private and between Science and Technology.
Welcome to Hyderabad — the first time INTERSPEECH takes place in India! With a country of 1.3 billion people and 22 official languages, but more than 800 languages spoken, India represents one country where advancements in speech and language technology, as well as speech/linguistic sciences, are converging to improve the capabilities of communications between people-to-people and people-to-machines. We are pleased to have you join us for this gathering at our annual INTERSPEECH conference during Sept. 2-6, 2018 in Hyderabad, India. This year’s Interspeech is centered around the theme of “Speech Research for Emerging Markets in Multilingual Societies” – a clear reason why India is ideal to host our meeting. As the world continues to advance with applications based on computational modeling and technology inspired by recent advances in artificial intelligence (AI) and machine learning (ML), it is important to remember and recognize that many of these advanced ML concepts/paradigms were first conceived of and deployed within speech-based applications. As such, speech science, linguistics, acoustic phonetics, signal processing, and speech processing are undeniably at the heart of multimodal AI and ML advancements.

ISCA MEDAL for SCIENTIFIC ACHIEVEMENT: The ISCA Medal for Scientific Achievement recognizes and honors an individual each year who has made extraordinary contributions to the field of speech communication science and technology. We are pleased to announce that at this year’s INTERSPEECH-2018, we will honor Dr. Bishnu S. Atal, for “Pioneering contributions to speech coding and speech analysis.” A number of his papers have been landmark contributions to the field of speech modeling, and formed the basis for many of today’s speech coding and communication systems.

ISCA MEDAL SPECIAL SERVICE AWARD: This year, ISCA will recognize the extraordinary service contributions of Prof. Christian Wellekens, who has been providing support for ISCA since the organization was established! Of the many areas he has championed, the ISCApad has been the primary mechanism for information dissemination for the ISCA community.

We will also celebrate our members’ achievements by recognizing six ISCA Fellows for 2018, who include: Denis Burnham, Carol Espy-Wilson, Keikichi Hirose, Simon King, Haizhou Li, and Richard Schwartz. Please join me in extending our warm congratulations! INTERSPEECH 2018 marks the 19th Annual Conference of ISCA, which continues the success of recent events. It is a privilege for me to be a part of the conference preparation as ISCA President in the first year of my term. This year’s INTERSPEECH Organizing Committee was truly remarkable in their scope, depth, and attention to details – overseeing all the logistics of paper submission, reviews, and final program preparation. Under the leadership of the four technical program
chairs (Hema A. Murthy, Preeti Rao, Paavo Alku, and Prasanta Kumar Ghosh), a total of 48 Area Chairs oversaw the logistics of a 1668 paper submissions, 1319 reviewers, and 5235 reviews! A total of 749 papers were accepted this year. The technical program committee deserves our gratitude for putting an immense amount of work to prepare a quality technical program that covers the latest advancement of speech science and technology. To ensure high quality in the paper review process, this year’s INTERSPEECH-2018 ensures that on average each submission was evaluated by approximately four reviews. We extend our sincere thanks to all of our colleagues for completing reviews and ensuring a high quality technical program! Organizing an INTERSPEECH event takes enormous courage, endurance and dedication. I would like to express my gratitude and appreciation to the General Chair, B. Yegnanarayana, as well as the four General Co-Chairs (C. Chandra Sekhar, Shrikanth Narayanan, S. Umesh and S. R. M. Prasanna) who led an experienced organization team to bring INTERSPEECH to India for the first time. Finally, I do hope that you have an enjoyable and productive time in Hyderabad, that you have some time to see and experience the wonderful culture, people and food, and that you will leave with fond memories of INTERSPEECH 2018. With my best wishes for a successful conference!

\textbf{John H.L. Hansen}
ISCA President
Interspeech is the world’s largest and most comprehensive conference on the science and technology of speech and spoken language processing. The conference emphasizes interdisciplinary approaches, addressing all aspects of speech science and technology, ranging from basic theories to advanced applications.

Interspeech 2018 is the 19th annual conference of the International Speech Communication Association (ISCA). We are honoured and delighted to host this year’s conference in Hyderabad, the capital city of the newly formed state of Telangana in India. The venue of Interspeech 2018 is the Hyderabad International Convention Centre (HICC), a state-of-the-art facility to host conferences for over 10000 delegates. The attached Novotel hotel is a modern five star hotel with 287 guest rooms. The surrounding HiTech city area has numerous options for transport, accommodation, food, shopping and entertainment, all within a radius of about 10 kilometres from HICC. The city of Hyderabad is over four hundred years old, and has numerous attractions for visitors. There is something for everyone – historical monuments, museums, palaces, handicraft emporiums,
antiques stores, jewellery shops, leather shops, restaurants serving several gastronomic delights, and yoga ashrams. The HICC is 40 minute drive from the Rajiv Gandhi international airport, which is rated among the best in the world for airport service quality.

India is a land of rich history and diversity. With a population of over 1.3 billion, and a geographical area of over 3 million square kilometres, India’s rich diversity includes languages, script, history, arts, culture, clothing, cuisine, customs, hospitality, climate, terrain, flora and fauna. This makes communication among people, especially in spoken form, unique and challenging for scientific research and exploration. The theme of Interspeech 2018 “Speech Research for Emerging Markets in Multilingual Societies” is chosen in view of the focus of voice-based mobile services and emerging AI applications by industries across the world. Interspeech 2018 will give a rare opportunity to experience first hand, the challenges of providing technology services to a large multilingual population, with code switching in day-to-day conversations.

The technical program of the Interspeech 2018 conference starts with a talk by the ISCA medalist of this year, Dr. Bishnu S Atal, who happens to hail from India, and educated at the famous Indian Institute of Science in Bangalore. The technical program committee has worked tirelessly to come up with an excellent 5-day program, which includes plenary talks, oral and poster presentations, tutorials, special sessions and events, show & tell sessions, exhibits and social events. In addition to attending technical sessions, we hope that participants will be able to take some time off to enjoy and experience the wide variety of options for food, shopping and historical monuments that the city offers.

While the Indian Institute of Technology (IIT) Madras is the main organizer of the conference, the following institutes in India actively participated and supported this effort: IIT Hyderabad, IISc Bangalore, IIT Bombay, IIT Mandi, IIT Tirupati, Vignan University, AIISH Mysore, BVRIT Hyderabad and Geetanjali College of Engineering and Technology Hyderabad. The Government of India, especially DRDO and MEiTY, have also generously supported Interspeech 2018. We are very grateful to receive support in the form of sponsorship from many companies and organizations, which include: Amazon, Apple, Baidu, Microsoft, Facebook, Samsung, Uniphore, JD.com, Xiaomi, Qualcomm, Google, IBM Research, Yahoo Japan, Sogou, Nvidia, Adobe, GoVivace, Nuance and the University of Washington.

The organizing committee would like to acknowledge the excellent support from the team led by Arjun Narne, KW Conferences. The organizing committee would also like to thank the ISCA advisory committee, reviewers, area chairs, session chairs and volunteers for their dedicated effort.

Many participants of Interspeech 2018 are going to be the first time visitors to India. India means different things to different people. Come and participate in Interspeech 2018, and discover for yourself what India means for you. We look forward to welcoming you to Hyderabad, and to India.

B. Yegnanarayana
General Chair

C. Chandra Sekhar Shrikanth Narayanan S. Umesh S. R. M. Prasanna
General Co-Chairs
We are very proud to have had the privilege to put together the technical program for Interspeech 2018, in the Indian sub-continent for the first time ever! Over the past decade or more, a growing number of Indian academics and scientists have been participating in Interspeech in its different exciting locations across the globe. We knew we had a huge challenge on our hands, as Technical Program Chairs, to get this edition of the conference in India to live up fully to the long-standing reputation of Interspeech as the most topical, while also comprehensive, speech research conference.

We were truly gratified by the numbers that greeted us on submission closing date. We received 1668 contributed papers, and would like to express our heartfelt thanks to all the authors across 63 countries. The weeks following the submission deadline were filled with organising review assignments and delegating papers for review with the help of a very able team of 48 Area Chairs across the 12 technical areas. We deeply appreciate the promptness with which the Area Chairs responded to our (all too frequent) requests for updates and their commitment to ensuring the timely completion of reviews and the subsequent decision making. Above all, our large team of 1319 reviewers deserves huge thanks for high-quality reviews that made a great technical program possible. We are happy to mention that over 85% of the submissions received four or more reviews. The reviews were indicative of the overall high quality of the submissions, and resulted in the acceptance of a total of 749 papers (acceptance rate = 54%). The ensuing TPC meeting in Hyderabad in May 2018 saw the vibrant exchange of ideas leading to the crystallization of the technical program. We gratefully acknowledge the significant support of the entire ISCA Board in the planning of the program as we now see it. We would like to thank ISCA President John Hansen and the entire team for their valuable advice on various aspects, and for being so encouraging about the new initiatives proposed by the Interspeech India organising team.
Now, for a quick glimpse of the technical program - we have 9 technical sessions each having regular oral, poster, and Show & Tell sessions. We have a glittering line-up of Plenary Talks. In addition, for the first time this year, we shall have Perspective Talks that will offer a bird’s-eye view of research in a specific topic. These talks will serve as introduction to the uninitiated, while offering potentially new insights to experts. Interspeech 2018 received several excellent special session proposals including those relating to the theme, such as Indian language speech technology, and technologies for code-switching. The Special Sessions received a large number of submissions and constitute a prominent component of the technical program. We also have a parallel stream for Show & Tell demonstrations throughout the program. The regular technical program is preceded by the conference tutorials, judiciously selected by the 4-member Tutorials Committee from a number of submitted proposals. Several exciting Satellite Events are slated for days both before and after Interspeech in Hyderabad and at other locations in India.

India is a land of many languages, and this linguistic diversity presents many a challenge in spoken language technology, making it the perfect backdrop for Interspeech. We look forward to welcoming you to Hyderabad, and making sure that you have an interesting, enjoyable and productive conference experience!

Hema A. Murthy Preeti Rao Paavo Alku Prasanta Kumar Ghosh
Technical Program Chairs
Speech Research in India

Speech research is today an integral part of academic activity in several prominent institutes across the country, primarily in the departments of Electrical Engineering, Electronics and Communication, and Computer Science. With its origins nearly four decades ago in fundamental studies in Acoustics, Linguistics and Electronics, research focusing on speech signals emerged first in the context of telecommunications applications for bandwidth compression. Almost simultaneous was the inception of interest in human-machine interaction with its naturally high place for voice based communication. The development of academic coursework around the time in the then emerging field of digital signal processing was a natural impetus for signal based research towards the above two large problems. Certain institutions and individuals stand out clearly in the journey of speech research in India from its beginnings in the 1970s. At Indian Institute of Science (IISc) in Bangalore, Prof. B.S. Ramakrishna was known for his work in Acoustics (Architectural, Wave propagation, Music instruments, SAW devices), followed by several brilliant scholars in the same Institute who took up speech processing. Dr. Bishnu Atal, Dr. Man Mohan Sondhi, Dr. Nikhil Jayanth and Prof. B. Yegnanarayana all belong to this impressive league. Similarly, at the Tata Institute of Fundamental Research (TIFR), Mumbai, a Physics and Mathematics research Institute, Computer Science was established in the 1960s under the leadership of Prof. R. Narasimhan and Prof. P.V.S. Rao. The closely related research topics of speech, image, script and language processing occupied a prominent place. Advanced laboratories were developed around the Kay Sonograph and other large data processing facilities based on CDC-3600 and DEC-10 computers. Prof. Kuldip Paliwal is another prominent researcher who did seminal work in TIFR. The first dedicated symposium on speech processing was held in TIFR in 1978, with the participation of the top scientists of the time, Prof. Gunnar Fant, KTH, Sweden and Prof. Alvin Liberman, Haskins Labs, USA.

While centres of speech research in India existed in relatively few places until the 1980s, a major spurt occurred soon after with the growing number of doctorates awarded in the area by the aforementioned institutes. With the available larger pool of academics and researchers, several of the Indian Institutes of Technology (IITs) set up speech research labs. This was followed by several private universities who started fruitful collaborations with IIT departments. The traditional emphasis in the early years was on speech analyses including notable work on glottal source signal estimation and group-delay processing. Over the past two decades, large research and development efforts in speech technology have taken root, generously funded by the Department of Electronics and Information Technology, Government of India, as well as some of India’s defence research labs. The funding has helped propel the much needed effort of spoken language corpora building for major Indian languages. Collaborative research consortia that have come up across institutes worked to develop limited-domain automatic speech recognition systems for Interactive Voice Response (IVR) as well as text-to-speech systems for Hindi, Marathi, Tamil, Bengali and Assamese among other languages. The challenges posed by the dialect variation and environmental conditions served as important research topics for academic studies and student theses in the member institutions. The growing activity in speech research in India is evident in the prominent place that speech research occupies in major India-based conferences such as the annual National Conference on Communications (NCC) and the biennial International Conference on Signal Processing and Communications (SPCOM). Further, engagement with global leaders in speech research is an important component of the thematic series of winter schools, the Winter School on Speech and Audio Processing (WiSSAP), first envisioned and convened by Prof. T.V.
Sreenivas of IISc Bangalore in 2006, and now much appreciated by the entire speech research community in India. There are also several other prominent speech workshops held annually in India such as the Summer School on Speech Signal Processing and Workshop on Image and Speech Processing.

Currently, the speech research community in India is a very vibrant one and spread across TIFR, IISc, IITs, International Institutes of Information Technology (IIITs), National Institutes of Technology (NITs), and numerous private universities and institutes. Organizations such as the All India Institute of Speech and Hearing (AIISH), Mysore also render clinical services related to speech disorders and hearing impairment in addition to carrying out academic research. There has also been a huge surge in the number of startup companies focusing on speech based applications. Several multinational companies also have a strong presence in all major cities in the country. Going forward, we see an increasing emphasis on data science perspectives in speech research, sophisticated experimental set-ups and the growth of interdisciplinary research.

Preeti Rao
Indian Institute of Technology Bombay

T. V. Sreenivas
Indian Institute of Science Bangalore
The theme of INTERSPEECH 2018 is “Speech Research for Emerging Markets in Multilingual Societies.” In keeping with the theme, various sessions have been planned. These include code-switching in speech synthesis, recognition, low-resource speech recognition, low-resource ASR challenges, language diarization, accent and language adaptation for speaker recognition, and dialog design for multilingual societies. A session-wise listing of the theme related contributions is given below.

(\textbf{Wed-P-2-3}) \textit{Second Language Acquisition and Code-switching}: This poster session has several papers on L1, L2 acquisition and interaction.

(\textbf{Wed-O-3-3}) \textit{Dialectal Variation}: This oral session has contributions related to code switching, regional variations, and multilingual studies.

(\textbf{Wed-O-1-2}) \textit{Language Identification}: This session has papers on language diarization – equivalent to code-switching in spoken dialog.

(\textbf{Wed-P-2-2}) \textit{Speech Synthesis Paradigms and Methods}: This session has papers on cross-lingual studies and code switching.

(\textbf{Wed-P-2-1}) \textit{Adjusting to Speaker, Accent and Domain}: This session has papers on cross-lingual and multilingual aspects in automatic speech recognition (ASR).

(\textbf{Wed-O-3-1}) \textit{Zero-resource Speech Recognition}: This session has papers that deal with languages that do not have too many digital resources.

(\textbf{Wed-P-2-4}) \textit{Topics in Speech Recognition}: This session has important papers on code-switched ASR.

(\textbf{Mon-P-2-1}) \textit{Spoken Dialog Systems and Conversational Analysis}: This session has papers focused on cross-lingual analysis in the context of dialogue.

(\textbf{Tue-SS-1-1}) \textit{Speech Recognition for Indian languages}: This session is completely devoted to ASR for multiple Indian languages with very low resources.

(\textbf{Thu-SS-1-2}) \textit{Low-resource Speech Recognition Challenge for Indian Languages}: This session has papers related to the low-resource challenge that was organised by Microsoft India, Hyderabad.

(\textbf{Wed-SS-1-2}) \textit{Speech Technologies for Code-switching in Multilingual Communities}: This is again a session that is fully devoted to code-switching in multilingual societies.

In addition, we have the following satellite events related to the theme:

\textit{6th International Workshop on Spoken Language Technologies for Under-resourced Languages (SLTU’18)}, New Delhi, India
August 29-31, 2018
URL: http://www.mica.edu.vn/sltu2018/

\textit{English in India and Indian Englishes: New Horizons in the Study of Phonetics and Phonology}, University of Hyderabad
September 07, 2018
URL: https://phinde1.wordpress.com/blog/phonology-of-indian-englishes-2018/
Welcome to Hyderabad

Hyderabad is the capital city of the Indian states of Telangana and Andhra Pradesh, in the region of Telangana.

It lies on the Deccan Plateau, 541 meters (1776 ft) above sea level, over an area of 625 km². The city has an estimated population of around 8 million, making it the 4th largest city in India, while the population of the metropolitan area is estimated to be 9 million. Hyderabad is home to several religions and cultures co-existing in harmony.

Name of the city
Name of the state
Area 625 km² (241 sq mi)
Time Zone IST (UTC+5:30)
Distance(s) From Delhi - 1499 km From Mumbai - 711 km From Bangalore - 562 km From Chennai - 688 km From Kolkata - 1516 km
Region Telangana
Founded 1591
Founder Muhammad Quli Qutb Shah
Fifth Qutb Shahi Ruler
Country code of India 0091 or +91
City code / STD code of Hyderabad 040
Languages Urdu, Telugu, Hindi and English
Currency of Hyderabad India Indian Rupees (INR)

Hyderabad city is known for its rich history, food and its multilingual culture, both geographically and culturally. The city was founded in the year 1591 by the fifth Qutb Shahi Ruler Muhammad Quli Qutb Shah. Hyderabad was founded on the banks of river Musi, now known as the historic old city which is home to the Charminar, Falaknuma Palace, Chowmahallah Palace and Mecca Masjid.

Hyderabad and Secunderabad are twin cities, separated by the Hussain Sagar (bound by the 'Tank Bund'), an artificial lake made during the time of Ibrahim Qutub Shah in 1562.

People
What makes Hyderabad such a special destination is its multicultural mix of people.

Languages
There are four languages in Hyderabad: Hindi, Deccani-Urdu, Telugu and English. English is the language for business and administration, and is widely spoken and understood. Most Hyderabadis are bilingual, and speak their mother tongue as well as English.

Religions
Hyderabad is also a mixture of religions. Hyderabad’s skyline boasts the distinctive minarets of
mosques, the intricate figurines of Hindu temple gods, beautiful Churches and the distinctive architecture of Gurudwaras. The main religions are Hinduism, Islam, Christianity and Sikhism.

Security & Safety
Hyderabad has a well-founded reputation as one of the safest cities in the world. Crime rates are very low and the streets are safe to walk at any time of the day or night. However, we do recommend that visitors to the city take the normal precaution of keeping their valuables in a safe place at all times.
The Telangana Government has been vigilant in ensuring that Hyderabad remains safe. It has stepped up security measures at key installations and other sensitive places.

Wine & Dine
Hyderabad’s multicultural population is reflected in the wide variety of excellent restaurants offering a diversity of cuisines from around the world.

Driving
Minimum age for driving is 18 years with a valid state/provincial driver’s license. An international driver’s license is required for visits beyond one month. Cars follow the right-hand drive and have to be driven on the left-hand side of the road.

Passport
By law, you are required to carry your passport with you at all times. You would also need your passport to check-in to your hotel. The police personnel have the authority to ask a foreigner to produce his/her passport.

What to Wear
Hyderabad has a moderate temperature with 15 to 35 degrees centigrade during September. Light and summer clothing made from natural fabrics like cotton is best for everyday wear. Casual dress is acceptable for most situations and occasions but some establishments may require a more formal dress code. It is always advisable to check beforehand on dress regulations. If you are well dressed, you will usually be treated better, especially when you are doing official business. When going to religious places, you should dress conservatively.
Credit Cards
American Express, Diners Club, Mastercard and Visa are widely accepted.

Banking & Money Changing
In general, banks open at 9.30 am and close at 3.30 pm Monday to Friday, and 9.30 am to 12.30 am on Saturday. The second and fourth Saturdays are holidays. Automated teller machines (ATM) are open round-the-clock, offering the MAESTRO or CIRRUS network system. Apart from the convenience of exchanging money at all banks and hotels, money can also be exchanged wherever the sign “Licensed Money Changer” is displayed. Most shopping complexes have a licensed money changer. Visitors are advised not to change money with unlicensed money changers.

Office Hours
Business and government offices are usually open from Monday to Saturday, 9 am - 6 pm. Offices and shops are closed on Sunday.

Shopping Hours
Usually shops are open from 10 am to 9 pm.

Communications / Mobile Phones
Hyderabad is the center of telecommunications in India with 24-hour telex, international direct dial (IDD) telephone, telegram and facsimile services. Telephone country code is +91 and city code is 040. There are many telephone service providers – AirTel, Idea, Reliance, Vodafone and BSNL.

Travel and Health Insurance
It is strongly recommended that you carry an insurance policy to cover medical and travel expenses.

Drug Abuse
Illicit trafficking in narcotic drugs and psychotropic substances are strictly prohibited by law.

Hitech City
Hyderabad is an emerging information technology (IT) and biotechnology hub of India. Hyderabad has witnessed a remarkable growth in the real estate business, thanks to a predominantly information technology-driven boom in the 1990s and the retail industry growth over the last few years which has spurred hectic commercial activity. A number of mega malls have come up in the city.

The rapid growth of the city, along with the growth of Secunderabad and neighbouring municipalities has resulted in a large metropolitan area. Hyderabad is the financial and economic capital of the state. The city is the largest contributor to the state’s gross domestic product, state tax and excise revenues. The infrastructural facilities for basic research in Hyderabad are some of the best in the country, hosting a large academic population from all over the country and beyond.

Health
Please consult your physician regarding health precautions prior to visiting India. If you are coming from or have recently visited Africa, South America or an area infected with Yellow Fever within five days prior to your arrival in India, proof of vaccination against Yellow Fever is required.

Drinking bottled water at all times is strongly recommended. Avoid eating salads or cut fruits on the roadside.
Electricity
The voltage in India is 230 volts. You will require a voltage converter if you are carrying a device that does not support 230 volts. Wall sockets accept plugs with two or three round pins with a separation of 2 cm between the two smaller round pins. Should you wish to use appliances of 110 volts, most conference hotels will provide adapters on request but it may be useful to carry your own for convenience. It is also advisable to carry a good flashlight.

Local Time
Indian Standard Time (IST) is 5 hours 30 minutes ahead of GMT. During the congress, IST is 4 hours 30 minutes ahead of London, 3 hours 30 minutes ahead of Paris and 9 hours 30 minutes ahead of New York and 2 hours 30 minutes behind Singapore. We do not change the time during summer. All of India has just one time zone.

Alcohol Consumption
There are plenty of shops selling liquor of all varieties where the price will be less than the same brand served in the hotel.

As a result of current legislation in the state of Telangana, it is illegal to serve alcohol in public places after 10.30 pm.
General Information

Conference Venue
Hyderabad International Convention Centre (HICC)
P O Bag 1101 Cyberabad Post Office, 500081
Kondapur, Hyderabad
India
Tel: +91-40-66824422
Fax: +91-40-66844422

Plenary Sessions: Hall 3
Oral Sessions: Hall 1, Hall 2, Hall 3, MR 1.01-1.02, MR G.01-G.02, MR G.03-G.04,
Poster sessions: Hall 4
Tutorials: MR 1.01-1.02, MR G.01-G.03, MR 1.03, MR 1.04
Show & Tell: MR G.05-G.06

Registration Desk
Location: Ground Floor, HICC
Timings:
Sunday, September 2, 2018: 08:00 - 18:00
Monday, September 3, 2018: 09:00 - 18:00
Tuesday, September 4, 2018: 08:00 - 18:00
Wednesday, September 5, 2018: 08:00 - 18:00
Thursday, September 6, 2018: 08:00 - 18:00

Speaker Information
Oral presenters will have 15 minutes for presentation, followed by 4 minutes for summary and question & answer (Q&A), and 1 minute for speaker change. The timing will be strict, and session chairs have been requested to stop speakers from exceeding the 19-minute presentation slot. Presenters should introduce themselves to the session chairs during the break before the start of their oral session.

Speaker Check-in Room
Location: MR 1.07
Presentations must be submitted on a USB stick at the Speaker Check-In Desk (at least an hour before the scheduled session) during the designated hours to ensure that the talk is accompanied by slides. The operating hours for speaker check-in room are as follows:
Monday, September 3, 2018: 09:00 - 18:30
Tuesday, September 4, 2018: 08:00 - 17:00
Wednesday, September 5, 2018: 08:00 - 19:00
Thursday, September 6, 2018: 08:00 - 16:30
Presentation Format and Room Facilities
Speakers are required to use the computers provided by the conference organizers for their oral presentations. Personal laptops may not be used. The laptops provided by the organizers are equipped with the following:
• Windows i5 Laptops with OS - Windows 7
• Acrobat version - Adobe 11
• PowerPoint Version - MS Office 2013
• Video player - VLC player
• Browser - Google Chrome
PowerPoint or Adobe PDF are the accepted file formats.

The aspect ratio of projectors will be 4:3.

It is recommended that multimedia, sound, or video files are embedded in the presentation. If, for some reason, this is not possible, then they must be provided at the speaker check-in together with the presentation file and clear instructions about which presentation file they belong to.

Speaker Tips
Please arrive at your presentation room at least 10 minutes prior to the session start time in order to familiarize yourself with the stage set-up (e.g. laser pointer, remote slide advancing etc). Please occupy the front-row seats, which are reserved for the presenters.
The Session Chair will introduce you as well as monitor the length of the presentation. Mobile phones must be turned off while you are presenting. Mobile phones even in silent mode might cause feedback with the microphones. A laser pointer and slide advancer will be available at the podium for your use.

An illustration of how the timer works is given below.

<table>
<thead>
<tr>
<th>Time</th>
<th>Green = Talk Time</th>
<th>Yellow = Summary & Q&A</th>
<th>Red Flash = End</th>
</tr>
</thead>
<tbody>
<tr>
<td>20:00</td>
<td>15 minutes</td>
<td>4 minutes</td>
<td>1 min (Light flashes)</td>
</tr>
</tbody>
</table>

Poster Information
The poster boards are of size width 72” x height 48” (width 182 cm x height 122 cm). Material to affix your poster to the board will be available on site.

Presenters are advised to mount their posters 15 minutes before the start of the session, and remove it after the session ends. Posters have to be removed after the end of the session. Conference organizers will not be responsible for posters left behind after the session ends.

At least one of the authors must be present at the poster during the designated session. This will help the session chair to identify the presenter and seek any clarifications should the need arise.

Suggested Poster Format
• Posters should be readable from a distance of 5 feet (1.5 meters).
• A poster printed on one large sheet of matte or semi-gloss paper is preferred. Please avoid
Pinning up A4 or A3 sheets of paper.

- Include the title of the presentation in large font, the authors’ names, and the institution(s) where the work was carried out at the top of the poster.
- Avoid lengthy paragraphs, provide information in distinct clear and short bullet points.
- Poster numbers will be provided on the poster boards. You do not have to provide space for the poster number on your poster.
- It is advisable to have an introduction and summary/conclusions section.
- Format text with double spacing between lines.

Poster Design Recommendations

Title: no smaller than 72 points

Author names: no smaller than 36 points

Affiliations: including city and country, no smaller than 26 points

Fonts: Preferably sans serif such as Helvetica or Arial

Abstract: The abstract presents the main results succinctly.

Body: The body of the poster will describe background, methodology, results, and interpretation. The text in the body should be no smaller than 16 points and preferably sans serif such as Helvetica or Arial.

Graphics: Graphics are essential for an effective poster and should be accompanied by captions. The captions should be no smaller than 14 points and preferably sans serif.

Conclusions: Conclusions should be succinct and provide a clear “take-home” message.

Recommended Printer for Posters and Other Print Material

If you wish to print your poster in Hyderabad, we recommend that you contact the printer service:

M/s. Shakthikala Printers, Hyderabad
Email: avinash@shakthikala.co.in
Phone: +91 99493 51777

Shakthikala offers poster printing and delivery at Posters Help Desk in Halls 4, 5, and 6 (Exhibition Hall) at HICC (Conference venue). Printing orders can be placed via email on or before August 31, 2018. The accepted file format is a high-resolution PDF/CDR in ready-to-print format. Payment to be made in advance through a bank transfer, the details of which will be provided along with the invoice on the receipt of the order. Below are the printing options and costs.

Poster size 33” (H) X 46” (W)

- Printing on non-tearable material or cloth – INR 1,600 + 18% GST
- Printing on 100 GSM paper – INR 950 + 18% GST

On-site Printing Orders: Printing orders can be placed on-site at the Posters Help Desk by making the payment either by cash or by card. It is advisable that the orders be placed one day in advance of the scheduled poster presentation.

Show-and-Tell Presentation

The authors of Show-and-Tell presentations are expected to make a poster presentation showcasing their contribution. Poster boards similar to those provided in regular poster sessions will be available. Every Show-and-Tell presentation must be accompanied by a demonstration. A table will be provided in front of every poster board to setup the demo. Electric plug sockets will also be provided to charge computers or laptops or any other equipment needed for demonstration. Wi-Fi will be available in the Show-and-Tell room.
Emergency Contact Numbers
• Police 100
• Fire 101
• Ambulance 102
These are the numbers in Hyderabad, but they are usually the same in other cities of India.

Liability
The conference organizers cannot accept liability for injuries or losses arising from accidents or other situations during or as a consequence of the conference.

Smoking
Smoking is prohibited in public places such as buses, elevators, theatres, cinemas, air-conditioned restaurants, shopping centres and government offices.

Phones
All mobile phones must be turned off while presenting. Mobile phones kept in silent mode will cause feedback with the microphones.

Lost & Found
A lost & found counter will be located at the Registration Desk of the conference venue.

Name Badge
Access to conference events will not be granted without the conference name badge.

Disabilities
Wheelchair-accessible transportation, reserved seating are available if requested in advance. Should you require assistance onsite, please visit the Registration Desk at the conference venue.
Interspeech 2018 is happy to announce exciting social events.

1. Cultural Program (September 3, 2018)
 Venue: Hall 3, HICC, Hyderabad
 Time: 18:30-19:30
 “Bahurang” - Celebrating Colours, Culture & Creativity
 by Nirupama and Rajendra of the Abhinava Dance Company, Bangalore
 As the name indicates, Bahurang opens into a blaze of swirling colours, highlighting the beauty and glory of Indian culture, art and philosophy through exquisitely choreographed sequences, high in energy and enthusiasm, and innovative in theme.

2. Welcome Reception (September 3, 2018)
 Venue: Novotel Gardens, HICC, Hyderabad
 Reception Period: 19:30-21:30
3. Students' Reception (September 4, 2018)
Location: Club House, Jesmin, Ellaa Hotel, Gachibowli, Hyderabad
Vehicles start at HICC at 19:00
Reception Period: 20:00 - 22:00
Entertainment: DJ Zamaika

4. Reviewers' Reception (September 4, 2018)
Location: Kebab Pavilion, Ellaa Hotel, Gachibowli, Hyderabad
Vehicles start at HICC at 19:00
Reception Period: 20:00 - 22:00
Entertainment: Live band - Niraval
5. Conference Banquet (September 5, 2018)

Location: HICC, Hyderabad
Reception Period: 19:00 - 21:30
Entertainment: Live band - Threeory

Threeory started with three musicians: Mark - The Pianist, Dattasai - The Violinist, jamming together with a drummer. Today, it is one of the most sought-after bands in Hyderabad and has been awarded Best Live Act award at the India Nightlife Convention and Awards. The initial objective of the band was to collaborate with other artists from the country and explore various genres. They were joined by Syntyche Mongro - The Vocalist later in mid 2014, Sentilong on the Guitars, and Tarun Vishal - The Drummer joined the band later and made the band complete.
INTERSPEECH 2018
Organizing Team

General Chair
B. Yegnanarayana, International Institute of Information Technology Hyderabad

General Co-Chairs
C. Chandra Sekhar, Indian Institute of Technology Madras
Shrikanth Narayanan, University of Southern California, Los Angeles
S. Umesh, Indian Institute of Technology Madras
S. R. M. Prasanna, Indian Institute of Technology Dharwad

Technical Program Chairs
Hema A. Murthy, Indian Institute of Technology Madras
Preeti Rao, Indian Institute of Technology Bombay
Paavo Alku, Aalto University, Aalto, Finland
Prasanta Kumar Ghosh, Indian Institute of Science Bangalore

Local Organizing Committee
Suryakanth V. Gangashetty, International Institute of Information Technology Hyderabad
V. Kamakshi Prasad, Jawaharlal Nehru Technological University, Hyderabad
C. Krishna Mohan, Indian Institute of Technology Hyderabad

Publicity Committee
Chandra Sekhar Seelamantula, Indian Institute of Science Bangalore
A. G. Ramakrishnan, Indian Institute of Science Bangalore
T. V. Sreenivas, Indian Institute of Science Bangalore
Mathew Magimai Doss, Idiap Research Institute, Martigny
Andreas Stolcke, Microsoft Research, USA

Sponsorship Committee
Sriram Ganapathy, Indian Institute of Science Bangalore
Prem Natarajan, University of Southern California, Los Angeles
Rohit Prasad, Amazon, USA
Lin-shan Lee, National Taiwan University, Taipei
Ajish Abraham, All India Institute of Speech and Hearing, Mysore

Tutorials
V. Ramasubramanian, International Institute of Information Technology Bangalore
Yannis Stylianou, University of Crete, Crete
G. Panayiotis Georgiou, University of Southern California, Los Angeles
Israel Cohen, Technion Israel Institute of Technology, Technion City
Satellite Workshops
Mark Hasegawa-Johnson, University of Illinois at Urbana-Champaign
Gerard Bailly, GIPSA Lab, CNRS
Hemant A. Patil, Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar

Finance
K. Sreenivasa Rao, Indian Institute of Technology Kharagpur
A. D. Dileep, Indian Institute of Technology Mandi

Publications
K. Samudravijaya, Indian Institute of Technology Guwahati
T. Nagarajan, SSN College of Engineering, Chennai
Samuel Thomas, IBM Watson Research Center, USA
D. R. Sanand, Toshiba Research, UK

Special Events
Preethi Jyothi, Indian Institute of Technology Bombay
Pratibha Moogi, Samsung R&D, Bangalore
Dinesh Babu, International Institute of Information Technology Bangalore
Deepu Vijayasenan, National Institute of Technology Karnataka, Surathkal

Students Affairs and Grants
John H. L. Hansen, University of Texas-Dallas, USA
Priyankoo Sarmah, Indian Institute of Technology Guwahati

Web, Tools and APPs
Chandra Sekhar Seelamantula, Indian Institute of Science Bangalore
Srikanth Madikeri, IDIAP, Martigny
Harshavardhan Sundar, Johns Hopkins University, Baltimore
Ajay Srinivasamurthy, Amazon, Bangalore
Anil Kumar Vuppala, International Institute of Information Technology Hyderabad

Industry Liaison
Radhakrishnan Srikanth, Microsoft, Hyderabad
Jithendra Vepa, Samsung R&D, Bangalore
Kavita Reddi, Voxta Communication Solutions Pvt. Ltd., Hyderabad

Social Events
R. Padmanabhan, Indian Institute of Technology Mandi
K. S. Vijaya Sekhar, International Institute of Information Technology Hyderabad
V. V. Ramana, International Institute of Information Technology Hyderabad

Exhibits
K. Sri Rama Murty, Indian Institute of Technology Hyderabad
Vinay Kumar Mittal, Ritwik Software Technologies Pvt. Ltd., Hyderabad
Sunayana Sitaram, Microsoft India, Bangalore

Advisory Committee
D. Raj Reddy, Carnegie Mellon University, Pittsburgh
Bhaskar Ramamurthi, IIT Madras
S. S. Agrawal, KIIT Group of Colleges, Gurgaon
Keikichi Hirose, University of Tokyo Tokyo
Roger K. Moore, University of Sheffield, Sheffield
Isabel Trancoso, INESC-ID / IST / UTL Spoken Language Processing
Douglas O’Shaughnessy, INRS-EMT, Montreal
Abeer Alwan, University of California, Los Angeles
John H.L. Hansen, The University of Texas at Dallas
Hynek Hermansky, Johns Hopkins University, Baltimore
Haizhou Li, National University of Singapore, Singapore
G. Satheesh Reddy, Scientific Advisor to Raksha Mantri, Government of India
Swaran Lata, TDIL Programme, DEITY, New Delhi
Rajeev Sangal, Director, IIT (BHU) Varanasi
David Nahamoo, IBM Research, USA
Technical Program Committee

Technical Program Chairs
Hema A. Murthy, Indian Institute of Technology Madras
Preeti Rao, Indian Institute of Technology Bombay
Paavo Alku, Aalto University, Aalto
Prasanta Kumar Ghosh, Indian Institute of Science Bangalore

Show & Tell Chairs
Ananth Sankar, LinkedIn USA
Kalika Bali, Microsoft Research Lab India

Area Chairs

Speech Perception, Production, and Acquisition
Martin Cooke, University of the Basque
Olov Engwall, KTH Royal Institute of Technology
Tan Lee, Chinese University of Hong Kong
Odette Scharenborg, Delft University of Technology
T. V. Ananthapadmanabha, Voice and Speech Systems, Bangalore

Phonetics, Phonology, and Prosody
Julia Hirschberg, Columbia University
Jacques Koreman, NTNU
Priyankoo Sarmah, Indian Institute of Technology Guwahati
Mariapaola D’Imperio, Aix Marseille University

Analysis of Paralinguistics in Speech and Language
Chi-Chun Lee, National Tsing Hua University, Taiwan
Elizabeth Shriberg, International Computer Science Institute, Berkeley
Björn W. Schuller, Imperial College London & University of Augsburg
Denis Jouvet, LORIA – INRIA Nancy – Grand-Est.

Speaker and Language Identification
Haizhou Li, National University of Singapore
Najim Dehak, Johns Hopkins University
Petr Motlicek, Idiap Research Institute
Luciana Ferrer, National Council of Scientific and Technical Research, Argentina
Ming Li, Duke Kunshan University
Analysis of Speech and Audio Signals
Mark Hasegawa-Johnson, Beckman Institute, University of Illinois at Urbana-Champaign
Koichi Shinoda, Tokyo Institute of Technology
K. Sri Rama Murty, Indian Institute of Technology Hyderabad
P. Vijayalakshmi, SSN College of Engineering

Speech Coding and Enhancement
Rajesh M. Hegde, Indian Institute of Technology Kanpur
Sebastian Möller, Technische Universität Berlin
Tom Bäckström, Aalto University
Gernot Kubin, Graz University of Technology

Speech Synthesis and Spoken Language Generation
Heiga Zen, Google Inc., U.K.
K. Sreenivasa Rao, Indian Institute of Technology Kharagpur
Raul Fernandez, Human Language Technologies, IBM

Speech Recognition–Signal Processing, Acoustic Modeling, Robustness, and Adaptation
Jean-Luc Gauvain, LIMSI-CNRS
Bhiksha Raj, Carnegie Mellon University
Thomas Hain, University of Sheffield
Rohit Sinha, Indian Institute of Technology Guwahati
Martin Karafiat, Brno University of Technology

Speech Recognition–Architecture, Search, and Linguistic Components
Murat Saraclar, Boğaziçi University
Preethi Jyothi, Indian Institute of Technology Bombay
Michiel Bacchiani, Google Inc., New York

Speech Recognition–Technologies and Systems for New Applications
Sri Garimella, Amazon, Bangalore
Mathew Magimai Doss, Idiap Research Institute
Torbjorn Svendsen, Norwegian University of Science and Technology

Spoken Dialog Systems and Analysis of Conversations
Joakim Gustafson, Royal Institute of Technology (KTH), Sweden
Alexandros Potamianos, National Technical University of Athens
Isabel Trancoso, University of Lisbon, Chair of Scientific Council of INESC-ID
Helen Meng, The Chinese University of Hong Kong

Spoken Language Processing–Translation, Information Retrieval, Summarization, Resources and Evaluation
Tanja Schultz, University of Bremen
Arne Jönsson, Linköping University
Lori Lamel, French National Centre for Scientific Research

Special Sessions
Panayiotis Georgiou, University of Southern California
Brian Kingsbury, IBM Research, USA
Shiva Sundaram, Amazon, USA
Bhuvana Ramabhadran, Google Inc., USA
Scientific Review Committee

Aaron Lawson
Asish Pappu
Abdellah Kacha
Abhinav Misra
Abualsoud Hanani
Adan Janin
Adam Vogel
Adamantios Gafos
Adriana Vasilache
Agnieszka Wagner
Agustin Gravano
Ahilan Kanagasundaram
Ahmed Ali
Ahmed Hussein Abdelaziz
Ajun Li
Ajay Srinivasamurthy
Akio Kobayashi
Akira Sasou
Alan McCree
Alfred Abad
Alejandro Cristia
Alessandro Delfino
Alessandro Moschitti
Alessio Bruni
Alex Acero
Alexander Lodermeyer
Alexander Rudnicki
Alexander Sorin
Alexandra Jesse
Alexandre Allauzen
Alexandros Lazaridis
Alexei Kochetov
Alexey Karpov
Alexandro Meireles
Alois Darji
Amitay Galil
Amelie Rochet-Capellan
Anand Jhunjhunwala
Anantakrishnan Gopal
Anas El Hage
Agnieszka Wagner
Adamantios Gafos
Adam Vogel
Ante Jukić
Anthony Larcher
Antje Schweitzer
Antoine Laurent
Anton Batliner
Anton Vagni
Antonio Bonafonte
Antonio M. Peinado
Antonio Miguel
Antonio Orgilia
Antonio Satue Vilar
Antonio Teixeira
Arvidul Nambi
Ariya Rastrow
Arnaud Delhay
Arseniy Gorin
Arv Narayanan
Arvi Tavast
Åsa Abelin
Ascension Gallardo-Antolin
Asger Heidemann Andersen
Ashish Panda
Ashotsh Sapru
Asli Celikyilmaz
Asterios Toutou
Asik Biswas
Asuncion Moreno
Aswin Shanmugam Subramanian
Atif Ben Youssef
Athanasios Katsamanis
Athanasios Lyktaris
Athanasios Mouchtaris
Atsunori Ogawa
Attila Máté Tóth
Atef Ben Youssef
Asuncion Moreno
Aswin Shanmugam Subramanian
Atif Ben Youssef
Athanasios Katsamanis
Athanasios Lyktaris
Athanasios Mouchtaris
Atsunori Ogawa
Attila Máté Tóth
Atef Ben Youssef
Asuncion Moreno
Aswin Shanmugam Subramanian
Atif Ben Youssef
Athanasios Katsamanis
Athanasios Lyktaris
Athanasios Mouchtaris
Atsunori Ogawa
Attila Máté Tóth
<table>
<thead>
<tr>
<th>Mark Gales</th>
<th>Mark Hasegawa-Johnson</th>
<th>Mark Huclvale</th>
<th>Mark Steedman</th>
<th>Mark Tieke</th>
<th>Markku Turunen</th>
<th>Markus Müller</th>
<th>Markus Nussbaum-Thom</th>
<th>Martha Larson</th>
<th>Martin Cmerek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marion Dohen</td>
<td>Mario Refice</td>
<td>Mariko Kondo</td>
<td>Marie Tahon</td>
<td>Marianne Pouplier</td>
<td>Marti Vainio</td>
<td>Mary Beckman</td>
<td>maryam najafian</td>
<td>Marzeh Razavi</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Masafumi Nishida</td>
<td>Masafumi Nishimura</td>
<td>Masakiyo Fujimoto</td>
<td>Masami Akamine</td>
<td>Masanori Morise</td>
<td>Masashi Unoki</td>
<td>Masato Akagi</td>
<td>Masato Ishizaki</td>
<td>Masayuki Nishiguchi</td>
<td>Massimiliano Todisco</td>
</tr>
<tr>
<td>Masayuki Suzuki</td>
<td>Mathieu Chollet</td>
<td>Mats Wirén</td>
<td>Matt Seigel</td>
<td>Matt Shannon</td>
<td>Matthew Henderson</td>
<td>Matthias Paulik</td>
<td>Matthias Sjers</td>
<td>Mattias Wolff</td>
<td>Mathieu Chollet</td>
</tr>
<tr>
<td>Mauilik Madhavi</td>
<td>Mauro Falcone</td>
<td>Mauro Nicolao</td>
<td>Md Jahangir Alam</td>
<td>Md Sahidullah</td>
<td>Melanie Weirich</td>
<td>Melissa A. Redford</td>
<td>Melvyn Hunt</td>
<td>Mengyue Wu</td>
<td></td>
</tr>
<tr>
<td>Mauro Suzuki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maurik Madhavi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauriik Madhavi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauro Falcone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauro Nicolao</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md Sahidullah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Johnson</td>
<td>Michael Johnson</td>
<td>Michael Johnson</td>
<td></td>
</tr>
<tr>
<td>Melodie Weirich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Heik</td>
<td>Michael Johnsen</td>
<td>Michael Levit</td>
<td></td>
</tr>
<tr>
<td>Melissa A. Redford</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Michael</td>
<td>Michael Pichon</td>
<td>Michael Pichon</td>
<td></td>
</tr>
<tr>
<td>Melvyn Hunt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Proctor</td>
<td>Michael Riley</td>
<td>Michael Riley</td>
<td></td>
</tr>
<tr>
<td>Mengyue Wu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Seltzer</td>
<td>Michael Tjäve</td>
<td>Michael Tjäve</td>
<td></td>
</tr>
<tr>
<td>Michael Dasher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Tyler</td>
<td>Michael Tyler</td>
<td>Michael Tyler</td>
<td></td>
</tr>
<tr>
<td>Michael Heck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michael Wagner</td>
<td>Michael Wagner</td>
<td>Michael Wagner</td>
<td></td>
</tr>
<tr>
<td>Michael Heik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michel Hoen</td>
<td>Michel Hoen</td>
<td>Michel Hoen</td>
<td></td>
</tr>
<tr>
<td>Michael Johnsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michel Simon</td>
<td>Michel Simon</td>
<td>Michel Simon</td>
<td></td>
</tr>
<tr>
<td>Michael Levit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Michelina Savino</td>
<td>Michelina Savino</td>
<td>Michelina Savino</td>
<td></td>
</tr>
<tr>
<td>Michael Pichon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mikhail Roll</td>
<td>Mikhail Roll</td>
<td>Mikhail Roll</td>
<td></td>
</tr>
<tr>
<td>Michael Proctor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mikael Kurimo</td>
<td>Mikael Kurimo</td>
<td>Mikael Kurimo</td>
<td></td>
</tr>
<tr>
<td>Michael Riley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milan Legát</td>
<td>Milan Legát</td>
<td>Milan Legát</td>
<td></td>
</tr>
<tr>
<td>Michael Seltzer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milos Cernak</td>
<td>Milos Cernak</td>
<td>Milos Cernak</td>
<td></td>
</tr>
<tr>
<td>Michael Tjäve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Miloslav Konopik</td>
<td>Miloslav Konopik</td>
<td>Miloslav Konopik</td>
<td></td>
</tr>
<tr>
<td>Michael Tyler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Milton Sarria-Paja</td>
<td>Milton Sarria-Paja</td>
<td>Milton Sarria-Paja</td>
<td></td>
</tr>
<tr>
<td>Michael Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min Ma</td>
<td>Min Ma</td>
<td>Min Ma</td>
<td></td>
</tr>
<tr>
<td>Michel Hoen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ming Li</td>
<td>Ming Li</td>
<td>Ming Li</td>
<td></td>
</tr>
<tr>
<td>Michel Simon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ming Sun</td>
<td>Ming Sun</td>
<td>Ming Sun</td>
<td></td>
</tr>
<tr>
<td>Michelina Savino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ming Sun</td>
<td>Ming Sun</td>
<td>Ming Sun</td>
<td></td>
</tr>
<tr>
<td>Mikhaili Roll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ming-Hsiang Su</td>
<td>Ming-Hsiang Su</td>
<td>Ming-Hsiang Su</td>
<td></td>
</tr>
<tr>
<td>Mikko Kurimo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minghui Dong</td>
<td>Minghui Dong</td>
<td>Minghui Dong</td>
<td></td>
</tr>
<tr>
<td>Milan Legát</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minho Jin</td>
<td>Minho Jin</td>
<td>Minho Jin</td>
<td></td>
</tr>
<tr>
<td>Milos Cernak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mireia Diez</td>
<td>Mireia Diez</td>
<td>Mireia Diez</td>
<td></td>
</tr>
<tr>
<td>Miloslav Konopik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mireia Fariss</td>
<td>Mireia Fariss</td>
<td>Mireia Fariss</td>
<td></td>
</tr>
<tr>
<td>Milton Sarria-Paja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mitchell McLaren</td>
<td>Mitchell McLaren</td>
<td>Mitchell McLaren</td>
<td></td>
</tr>
<tr>
<td>Min Ma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Afify</td>
<td>Mohamed Afify</td>
<td>Mohamed Afify</td>
<td></td>
</tr>
<tr>
<td>Ming Li</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Faouzi Benzehhiba</td>
<td></td>
</tr>
<tr>
<td>Ming Sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Ming Sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Ming-Hsiang Su</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Minghui Dong</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Minho Jin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mireia Diez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mireia Fariss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mitchell McLaren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Afify</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Faouzi Benzehhiba</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
<tr>
<td>Mohamed Mochrid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td>Mohamed Mochrid</td>
<td></td>
</tr>
</tbody>
</table>
Future INTERSPEECH Conferences

CROSSROADS OF SPEECH AND LANGUAGE

GENERAL CHAIRS: Gernot Kubin (Graz), Zdravko Kačič (Maribor)
TECHNICAL CHAIRS: Thomas Hain (Sheffield), Björn Schuller (Passau/London)

INTERSPEECH 2019
GRAZ – AUSTRIA
SEPTEMBER 15th – 19th 2019
WWW.INTERSPEECH2019.ORG

INTERSPEECH 2020
Shanghai, China
Cognitive Intelligence for Speech Processing
September 14-18, 2020
Satellite Workshops and Events

SATELLITE EVENTS

1. Speech Processing in Challenging Environments (SPICE)
 September 8, 2018, IISc Bangalore, India
 URL: https://spiceworkshop2018.wixsite.com/spice2018

 Organizers
 Anil Kumar Chilli, CAIR, DRDO
 Anupam Mandal, CAIR, DRDO
 Prasanna Kumar K R, CAIR, DRDO
 Sriram Ganapathy, IISc, Bangalore
 Prasanta Kumar Ghosh, IISc, Bangalore
 Dr. S. Sethu Selvi, Electronics and Communications Department of MSRIT

2. Summer School on Speech Production
 September 9-11, 2018, DA-IICT Gandhinagar
 URL: https://sites.google.com/site/s4p2018daiict/home

 Organizers
 Hemant A. Patil, DA-IICT Gandhinagar
 Suman K. Mitra, DA-IIICT Gandhinagar
 Prasenjit Majmuder, DA-IICT Gandhinagar
 Yash Vasavada, DA-IIICT Gandhinagar
 Soman Nair, DA-IIICT Gandhinagar
SATELLITE WORKSHOPS

1. 6th International Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU’18)
 August 29-31, 2018, New Delhi, Gurgaon, India
 URL: http://www.mica.edu.vn/sltu2018/

 Organizers
 Shyam S Agarwal, KIIT, India
 Laurent Besacier, LIG, France
 Sakriani Sakti, NAIST, Japan
 Neelima Kamrah, KIIT, Gurgaon, India
 Hemant A. Patil, DA-IICT Gandhinagar
 Sunayana Sitaram, Microsoft India

2. Speech, Music and Mind 2018 (SMM18): Detecting and Influencing Mental States with Audio
 September 1, 2018, IIIT Hyderabad, India
 URL: http://smmw.iiit.ac.in/

 Organizers
 Venkata Subramanian Viraraghavan, TCS Research and Innovation
 Suryakanth V Gangashetty, IIIT Hyderabad
 Balamuralidhar P, TCS Research and Innovation
 Sunil Kopparapu, TCS Research and Innovation

3. English in India and Indian Englishes: New Horizons in the Study of Phonetics and Phonology
 September 7, 2018, University of Hyderabad.
 URL: https://phinde1.wordpress.com/blog/phonology-of-indian-englishes-2018/

 Organizers
 Robert Fuchs, University of Hamburg, Germany
 Pingali Sailaja, University of Hyderabad, India
4. Workshop on Machine Learning in Speech and Language Processing (MLSLP)
September 7, 2018, Google, Hyderabad, India
URL: https://sites.google.com/view/mlslp/home

Organizers
Preethi Jyothi, Indian Institute of Technology Bombay
Rohit Prabhavalkar, Google Inc.
Liang Lu, Microsoft Inc.
Tara Sainath, Google Inc.
Negar Saei, Google Inc.

5. The 5th International Workshop on Speech Processing in Everyday Environments (CHiME 2018)
September 07, 2018, Microsoft Hyderabad campus
URL: http://spandh.dcs.shef.ac.uk/chime_workshop/

Organizers
Jon Barker, Univ. of Sheffield, UK
Shinji Watanabe, Johns Hopkins University, USA
Emmanuel Vincent, INRIA, France

6. Workshop on Speech Processing for Voice, Speech and Hearing Disorders
September 8-9, 2018, All India Institute of Speech and Hearing, Mysore, India
URL: http://wspd.co.in/

Organizers
Ajish K. Abraham, All India Institute of Speech & Hearing, Mysore
S R M Prasanna, IIIT Dharwad, India
Rainer Martin, Institute of Communication Acoustics, Ruhr University, Germany
Yannis Stylianou, University of Crete, Greece
K. T. Deepak, IIIT Dharwad, India

7. Blizzard Challenge Workshop 2018
September 8, 2018, Microsoft, Hyderabad, India
URL: https://www.synsig.org/index.php/Blizzard_Challenge_2018

Organizers
Alan Black, Carnegie Mellon University, USA
Keiichi Tokuda, Nagoya Institute of Technology, Japan
Simon King, University of Edinburgh, UK
Tutorials

The INTERSPEECH 2018 Tutorial committee comprising V. Ramasubramanian, Yannis Stylianou, G. Panayiotis and Israel Cohen is pleased to announce the following eight pre-conference tutorials. They will be offered on Sunday, September 2, 2018. All tutorials will be of 3.5 hours duration including a 30 minute break.

September 2, 2018
FORENOON TUTORIALS
(Parallel sessions; 09:00 - 12.30; Coffee/tea break: 10.30 - 11.00)

Tutorial 1 (T1): Deep Learning Based Speech Separation
DeLiang Wang, The Ohio State University

Abstract: Speech separation is the task of separating target speech from background interference. In contrast to the traditional signal processing perspective, speech separation can be formulated as a supervised learning problem, where the discriminative patterns of speech, speakers, and background noise are learned from training data. The recent introduction of deep learning to supervised speech separation has dramatically accelerated progress and boosted separation performance, including the first demonstration of substantial speech intelligibility improvements by hearing impaired listeners in noisy environments. This tutorial provides a comprehensive overview of the research on deep learning based supervised speech separation in the last several years. We systematically introduce three main components of supervised separation: learning machines, training targets, and acoustic features. Much of the tutorial will be on separation algorithms where we describe monaural methods, including speech enhancement (speech-nonspeech separation), speaker separation (multi-talker separation), and speech dereverberation, as well as multi-microphone techniques. In addition, we discuss a number of conceptual issues, including what constitutes the target source.

DeLiang Wang received the B.S. degree in 1983 and the M.S. degree in 1986 from Peking (Beijing) University, Beijing, China, and the Ph.D. degree in 1991 from the University of Southern California, Los Angeles, CA, all in computer science. Since 1991, he has been with the Department of Computer Science & Engineering and the Center for Cognitive and Brain Sciences at Ohio State University, Columbus, OH, where he is currently a Professor and University Distinguished Scholar. He also holds a visiting appointment at the Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, Xi’an, China. He has been a visiting scholar to Harvard University, Oticon A/S (Denmark), and Starkey Hearing Technologies. Wang’s research interests include machine perception and deep neural networks. Among his recognitions are the Office of Naval Research Young Investigator Award in 1996, the 2005 Outstanding Paper Award from IEEE Transactions on Neural Networks, and the 2008 Helmholtz Award from the International Neural Network Society. He serves as Co-Editor-in-Chief of Neural Networks, and on the editorial boards of several journals. He is an IEEE Fellow.
Tutorial 2 (T2): End-To-End Models for Automatic Speech Recognition
Rohit Prabhavalkar, Google Inc., USA
Tara Sainath, Google Inc., USA

Abstract: Traditional automatic speech recognition (ASR) systems are comprised of a set of separate components, namely an acoustic model (AM); a pronunciation model (PM); and a language model (LM). The AM takes acoustic features as input and predicts a distribution over subword units, typically context-dependent phonemes. The PM, which is traditionally a hand-engineered lexicon maps the sequence of subword units produced by the acoustic model to words. Finally, the LM assigns probabilities to various word hypotheses. In traditional ASR systems, these components are trained independently on different datasets, with a number of independence assumptions which are made for tractability.

Over the last several years, there has been a growing interest in developing end-to-end systems, which attempt to learn these separate components jointly in a single system. Examples of such system include attention-based models [1, 6], the recurrent neural transducer [2, 3], the recurrent neural aligner [4], and connectionist temporal classification with word targets [5]. A common feature of all of these models is that they are composed on a single neural network, which when given input acoustic frames directly outputs a probability distribution over graphemes or word hypotheses. In fact, as has been demonstrated in recent work, such end-to-end models can surpass the performance of a conventional ASR systems [6].

In this tutorial, we will provide a detailed introduction to the topic of end-to-end modeling in the context of ASR. We will begin by charting out the historical development of these systems, while emphasizing the commonalities and the differences between the various end-to-end approaches that have been considered in the literature. We will then discuss a number of recently introduced innovations that have significantly improved the performance of end-to-end models, allowing these to surpass the performance of conventional ASR systems. The tutorial will then describe some of the exciting applications of this research, along with possible fruitful directions to explore.

Finally, the tutorial will discuss some of the shortcomings of existing end-to-end modeling approaches and discuss ongoing efforts to address these challenges.

Rohit Prabhavalkar received the B.E. degree in computer engineering from the University of Pune, India, in 2007 and the M.S. and Ph.D. degrees in computer science and engineering from The Ohio State University, USA, in 2012 and 2013, respectively. He is currently a research scientist at Google, having joined in 2013, where his research focuses on various aspects of acoustic modeling with the goal of improving automatic speech recognition technology. His other research interests include deep neural networks, natural language processing, and machine learning.
Tara Sainath received her PhD in Electrical Engineering and Computer Science from MIT in 2009. The main focus of her PhD work was in acoustic modeling for noise robust speech recognition. After her PhD, she spent 5 years at the Speech and Language Algorithms group at IBM T.J. Watson Research Center, before joining Google Research. She has served as a Program Chair for ICLR in 2017 and 2018. Also, she has co-organized numerous special sessions and workshops, including Interspeech 2010, ICML 2013, Interspeech 2016 and ICML 2017. In addition, she is a member of the IEEE Speech and Language Processing Technical Committee (SLTC) as well as the Associate Editor for IEEE/ACM Transactions on Audio, Speech, and Language Processing. Her research interests are mainly in acoustic modeling, including deep neural networks, sparse representations and adaptation methods.
Tutorial 3 (T3): Spoofing Attacks in Automatic Speaker Verification: Analysis and Countermeasures

Haizhou Li, National University of Singapore, Singapore
Hemant A. Patil, Dhirubhai Ambani Institute of Information and Communication Technology, India
Nicholas Evans, EURECOM, France

Abstract: Speech is the most natural means of communication between humans. Speech signals carry various levels of information, such as linguistic content, emotion, the acoustic environment, language, the speaker's identity and their health condition, etc. Automatic speaker recognition technologies aim to verify or identify a speaker using recordings of his/her voice. In practice, automatic speaker verification (ASV) systems should be robust to nuisance variation such as differences in the microphone and transmission channel, intersession variability, acoustic noise, speaker ageing, etc. Significant effort invested over the last three decades has been tremendously successful in developing technologies to compensate for such nuisance variation, thereby improving the reliability of ASV systems in a multitude of diverse application scenarios. In a number of these, specifically those relating to authentication applications, reliability can still be compromised as a result of spoofing attacks whereby fraudsters can gain illegitimate access to protected resources or facilities through the presentation of specially crafted speech signals that reflect the characteristics of another, enrolled person's voice. ASV systems should be resilient to such malicious spoofing attacks. This tutorial presents a treatment of the issues concerning the robustness and security of an ASV system in the face of spoofing attacks. We also discuss current research trends and progress in developing anti-spoofing countermeasures to protect against attacks derived from voice conversion, speech synthesis, replay, twins (which has more malicious nature in attacking ASV systems and also called as twin’s fraud in biometrics literature) and professional mimics. The tutorial will give an overview of the risk and technological challenges associated with each form of attack in addition to an overview of the two internationally competitive ASVspoof challenges held as special sessions at INTERSPEECH 2015 and INTERSPEECH 2017. The tutorial will conclude with a summary of the current state-of-the-art in the field and a discussion of future research directions.

Core Topics Covered
• ASV design cycle, research issues and technological challenges
• Different spoofing attacks: voice conversion, speech synthesis, replay and twins, professional mimicry
• ASVspoof 2015 Challenge, INTERSPEECH 2015 – Objective, Database and Results
• ASVspoof 2017 Challenge, INTERSPEECH 2017 – Objective, Database and Results
• ASVspoof 2019 Roadmap
• Technological Challenges in Replay Spoof Speech Detection (SSD)
• Strategies to combined spoofing countermeasures with ASV

Haizhou Li is currently a Professor at the Department of Electrical and Computer Engineering, National University of Singapore. Professor Li’s research interests include speech information processing and natural language processing. He is currently the Editor-in-Chief of IEEE/ACM Transactions on Audio, Speech and Language Processing (2015-2018). Professor Li was the President of the International Speech Communication Association (2015-2017), the President of Asia Pacific Signal and Information Processing Association (2015-2016). Professor Li is a Fellow of the IEEE. He was a recipient of the President’s Technology Award 2013 in Singapore.
Hemant A. Patil is a Professor at DA-IICT Gandhinagar, India. Prof. Patil’s research interests include speaker recognition, spoofing attacks, TTS, infant cry analysis, etc. He developed Speech Research Lab at DA-IICT, which is recognized as ISCA speech labs. Dr. Patil is member of IEEE, IEEE Signal Processing Society, IEEE Circuits and Systems Society, International Speech Communication Association (ISCA), EURASIP and an affiliate member of IEEE SLTC. He visited department of ECE, University of Minnesota, Minneapolis, USA (May-July, 2009) as short-term scholar. Dr. Patil has taken a lead role in organizing several ISCA supported events at DA-IICT. Dr. Patil has supervised 03 doctoral and 37 M.Tech. theses. Recently, he offered a joint tutorial with Prof. Haizhou Li during Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 2017. He has been selected as APSIPA Distinguished Lecturer (DL) for 2018-2019. He delivered APSIPA Distinguished Lecture at University of Calgary, Canada, SJTU, Shanghai, China, KIIT Gurgaon, India and SGGSIE&T Nanded, India.

Nicholas Evans is a Professor at EURECOM, France where he heads research in Speech and Audio Processing within the Biometrics and Digital Media Research Group of the Digital Security Department. His current research aims to develop new countermeasures to protect automatic speaker verification technology from the threat of spoofing. He is among the co-founders of the ASVspoof initiative and evaluation series (2015 & 2017) and was Lead Guest Editor for the IEEE Transactions on Information Forensics and Security special issue in Biometrics Spoofing and Countermeasures, Lead Guest Editor for the IEEE SPM special issue on Biometric Security and Privacy and Guest Editor for the IEEE JSTSP special issue on Spoofing and Countermeasures for Automatic Speaker Verification. He delivered an invited talk on Spoofing and Countermeasures for Automatic Speaker Verification at the IEEE SPS Winter School on Security and Privacy Issues in Biometrics and contributed to a tutorial on Spoofing and Anti-Spoofing: A Shared View of Speaker Verification, Speech Synthesis and Voice Conversion at APSIPA ASC 2015. He is currently co-editing the 2nd edition of the Handbook of Biometric Anti-spoofing to be published in 2018.
Tutorial 4 (T4): Spoken Dialog Technology for Education Domain Applications
Vikram Ramanarayanan, Keelan Evanini and David Suendermann-Oeft
Educational Testing Service R&D, San Francisco, USA

Abstract: This workshop will introduce participants to the basics of designing conversational applications in the educational domain using spoken and multimodal dialog technology. The increasing maturation of automated conversational technologies in recent years holds much promise towards developing intelligent agents that can guide one or multiple phases of student instruction, learning, and assessment. In language learning applications, using spoken dialogue systems (SDS) could be an effective solution to improving conversational skills, because an SDS provides a convenient means for people to both practice and obtain feedback on different aspects of their conversational skills in a new language. These allow learners to make mistakes without feeling incompetent, empowering them to improve their skills for when they do speak with native speakers. From the assessment perspective, well-designed dialog agents have potential to elicit and evaluate the full range of English speaking skills (such as turn taking abilities, politeness strategies, pragmatic competence) that are required for successful communication. Such technologies can potentially personalize education to each learner, providing a natural and practical learning interface that can adapt to their individual strengths and weaknesses in real time so as to increase the efficacy of instruction.

The workshop will assume no prior knowledge of dialog technology or intelligent tutoring systems and will demonstrate the use of open-source software tools in building conversational applications. The first part of the tutorial will cover the state of the art in dialog technologies for educational domain applications, with a particular focus on language learning and assessment. This will include an introduction to the various components of spoken dialog systems and how they can be applied to develop conversational applications in the educational domain, as well as some advanced topics such as methods for speech scoring. The final part of the tutorial will be specifically dedicated to a hands-on application building session, where participants will have a chance to design and deploy their own dialog application from scratch on the HALEF cloud-based dialog platform using open-source OpenVXML design toolkit, which will allow a better understanding how such systems can potentially be designed and built. Participants are required to bring their own laptops for this portion of the workshop (with Windows or Mac operating systems installed; Linux not currently supported). Additional software installation instructions will be sent prior to the workshop.

Vikram Ramanarayanan is a Research Scientist at Educational Testing Service’s R&D division in San Francisco and also holds an Assistant Adjunct Professor appointment in the Department of Otolaryngology — Head and Neck Surgery at the University of California, San Francisco. Vikram’s research interests lie in applying scientific knowledge to interdisciplinary engineering problems in speech, language and vision and in turn using engineering approaches to drive scientific understanding. He has authored over 70 papers in peer-reviewed journals and conference proceedings. His work on speech science and technology has won 2 Best Paper Awards, an Editor’s Choice Award and an ETS Presidential Award. He holds M.S and Ph.D. degrees in Electrical Engineering from the University of Southern California, Los Angeles. Personal Webpage: http://vikramr.com

Keelan Evanini is a Research Director at Educational Testing Service in Princeton, NJ. His research interests include automated assessment of non-native spoken English, automated feedback in computer assisted language learning applications, and spoken dialog systems. He leads the research team that develops SpeechRater, the ETS capability for automated spoken language assessment. He also leads the team of research engineers that work on applying state-of-the-art natural language processing, speech processing, and machine
learning technology to a wide range of research projects aimed at improving assessment and learning. He received his Ph.D. from the University of Pennsylvania in 2009, has published over 70 papers in peer-reviewed journals and conference proceedings, has been awarded 9 patents, and is a senior member of the IEEE. Personal Webpage: http://www.evanini.com/keelan.html

David Suendermann-Oeft is director of the Dialog, Multimodal, and Speech (DIAMONDS) research center and manager of the San Francisco Office at Educational Testing Service (ETS). He is also the director, co-founder, and chief scientist of EMR.AI Inc., a company providing AI solutions to the medical sector, headquartered in San Francisco. Throughout his career, he has been working in the field of spoken language processing, machine learning, and artificial intelligence at multiple industrial and academic institutions including Siemens (Munich and Mexico City), RWTH (Aachen), UPC (Barcelona), USC (Los Angeles), Columbia University (New York), SpeechCycle (New York), Synchronoss (New York), and ICSI (Berkeley) and has also held appointments as tenured professor of computer science and department head at DHBW Stuttgart. David has authored over 140 publications and patents including two books and ten book chapters and serves as evaluator, rapporteur, and innovation expert for the European Commission. Personal Webpage: http://suendermann.com

(Interactive Video Mode)
Naftali Tishby, Hebrew University of Jerusalem

Abstract: In this tutorial I will present a novel comprehensive theory of large scale learning with Deep Neural Networks, based on the correspondence between Deep Learning and the Information Bottleneck framework. The new theory has the following components: (1) rethinking Learning theory; I will prove a new generalization bound, the input-compression bound, which shows that compression of the representation of input variable is far more important for good generalization than the dimension of the network hypothesis class, an ill-defined notion for deep learning. (2) I will prove that for large scale Deep Neural Networks the mutual information on the input and the output variables, for the last hidden layer, provide a complete characterization of the sample complexity and accuracy of the network. This makes the information Bottleneck bound for the problem as the optimal trade-off between sample complexity and accuracy with ANY learning algorithm. (3) I will show how Stochastic Gradient Descent, as used in Deep Learning, achieves this optimal bound. In that sense, Deep Learning is a method for solving the Information Bottleneck problem for large scale supervised learning problems. The theory provides a new computational understating of the benefit of the hidden layers and gives concrete predictions for the structure of the layers of Deep Neural Networks and their design principles. These turn out to depend solely on the joint distribution of the input and output and on the sample size.

Based partly on joint works with Ravid Shwartz-Ziv, Noga Zaslavsky, and Amichai Painsky.

Naftali Tishby is a professor of Computer Science, and the incumbent of the Ruth and Stan Flinkman Chair for Brain Research at the Edmond and Lily Safra Center for Brain Science (ELSC) at the Hebrew University of Jerusalem. He is one of the leaders in machine learning research and computational neuroscience in Israel, and his numerous former students serve in key academic and industrial research positions all over the world. Tishby was the founding chair of the new computer-engineering program, and a director of the Leibnitz Center for Research in Computer Science at Hebrew University. Tishby received his PhD in theoretical physics from Hebrew University in 1985 and was a research staff member at MIT and Bell Labs from 1985 to 1991. Tishby has been a visiting professor at Princeton NECI, the University of Pennsylvania, UCSB, and IBM Research.

Carol Espy-Wilson, University of Maryland, USA
Mark Tiede, Haskins Lab, USA
Hosung Nam, Korea University, Seoul
Vikramjit Mitra, Apple Inc., USA
Ganesh Sivaraman, Pindrop, Atlanta, USA

Abstract: Articulatory representations have been studied and applied to various speech technologies for many years. One of the persisting challenges of articulatory research has been the paucity of reliable articulatory data and non-scalability to large scale subject-independent applications. The aim of this tutorial is to present an overview of research in articulatory representations for large scale applications. This tutorial will discuss best practices in articulatory data collection and synthesis, present recent developments in subject independent acoustic-to-articulatory speech inversion and describe state-of-the-art Convolutional Neural Network (CNN) architectures for large vocabulary continuous speech recognition incorporating both articulatory and acoustic features. This tutorial combines experts from scientific and engineering backgrounds to present a concise tutorial about articulatory features, their measurement, synthesis and application to state-of-the-art Automatic Speech Recognition.

Carol Espy-Wilson, the lead organizer is a Professor in the Department of Electrical and Computer Engineering and the Institutes for Systems Research at the University of Maryland, College Park. She has more than 3 decades of leading research endeavors in fundamental speech acoustics, vocal tract modeling, speech and speaker recognition, speech segregation, speech enhancement, and more recently speech inversion. One of the tools coming out of Dr. Espy-Wilson’s lab is a vocal tract modeling tool, VTAR that many scientists and engineers have downloaded to use for research and teaching. Dr. Espy-Wilson has advised a number of PhD and MS students and published many papers in reputed academic conferences and journals.

Mark Tiede is a Senior Scientist at Haskins Laboratories active in speech production research, particularly the study of dyadic interaction. He has more than 20 years experience in the use of point source tracking methods such as electromagnetic articulography (EMA) and is the author of a widely used tool for the use of analyzing such data (mview).

Hosung Nam is an Assistant Professor in the Department of English Language and Literature at Korea University, Seoul, South Korea. He received the M.S. and Ph.D. degrees from the Department of Linguistics at Yale University, New Haven, CT, in 2007. He is a linguist who is an expert in the field of articulatory phonology. His research emphasis is on the link between speech perception and production, speech error, automatic speech recognition, sign language, phonological development, and their computational modeling. He has been a Research Scientist at Haskins Laboratories, New Haven, since 2007.
Vikramjit Mitra is a Research Scientist at Apple Inc. He received his Ph.D. in Electrical Engineering from University of Maryland, College Park; M.S. in Electrical Engineering from University of Denver, B.E. in Electrical Engineering from Jadavpur University, India. His research focuses on signal processing for noise/channel/reverberation, speech recognition, production/perception-motivated signal processing, information retrieval, machine learning and speech analytics. He is a senior member of the IEEE, an affiliate member of the SLTC and has served on NSF panels.

Ganesh Sivaraman is a Research Scientist at Pindrop. He received his M.S. and Ph.D. in Electrical Engineering from University of Maryland College Park, B.E. in Electrical Engineering from Birla Institute of Technology and Science, Pilani, India. His research focuses on speaker independent acoustic-to-articulatory inversion, speaker adaptation, speech enhancement and robust speech recognition.
Tutorial 7 (T7): Vocal Music Processing for Music Information Retrieval (MIR)

Preeti Rao, Indian Institute of Technology Bombay, Mumbai
Hema Murthy, Indian Institute of Technology Madras, Chennai

Abstract: The singing voice is the most flexible of musical instruments and, unsurprisingly, vocal performance has dominated the music of many cultures. Information extraction from the singing voice requires dealing with the structure and semantics of music which are quite distinct from that of spoken language. Like speech, MIR is an interdisciplinary field where signal processing and computing experts benefit from interaction with musicologists and psychologists working in music cognition. Extracting musically useful information from vocal music recordings benefits real-world applications such as music recommendation, search and navigation, musicology studies and evaluation of singing skill. The relevant signal-level tasks include vocal activity detection and separation in polyphonic music, song segmentation, extracting voice features related to melody, rhythm and timbre and establishing models for perceived similarity across the possibly culture-specific musical dimensions. In this tutorial, we will present the audio signal processing and machine learning methods that underlie a variety of MIR applications with examples drawn from Western popular and Indian classical genres. The goal of the tutorial is to show speech researchers how they can contribute fruitfully to MIR problems which are considered topical and rewarding.

Preeti Rao has been on the faculty of the Department of Electrical Engineering, I.I.T. Bombay since 1999. She currently serves as H.A.L. R&D Chair Professor. She received the B.Tech. EE degree from I.I.T. Bombay in 1984, and Ph.D. from the University of Florida, Gainesville in 1990. After post-doctoral stints at the University of Illinois at Urbana-Champaign and Hitachi Research Labs in Tokyo, she joined the EE department at I.I.T. Kanpur in 1994, before moving to I.I.T. Bombay in 1999. Her research interests lie in speech and audio signal processing. She previously worked on low bit rate speech compression algorithms for the sub 1 kbps rates. More recently, she has been involved in computer aided spoken language training, prosody modeling for Indian languages and multichannel speech enhancement. She took up research in music computing about a decade ago and this effort received a big boost through engagement with the ERC funded CompMusic project led by UPF Barcelona in 2011-2016, towards culture-specific music information extraction with a focus on Indian classical genres. Her team of students also participated successfully in melody extraction and vocal separation challenges hosted by MIREX (MIR Evaluations) during this period. She is currently on the Editorial Board of the Journal of New Music Research (JNMR). She has been actively involved in the development of systems for Indian music and spoken language learning applications. She co-founded SensiBol Audio Technologies, a start-up focusing on music learning applications, with her Ph.D. and Masters students in 2011.

Hema Murthy is a Professor in the Department of Computer Science and Engineering, I.I.T Madras. She received the B.E (Electronics and Communication Engineering) from Osmania University (1980), M.Eng (Electrical and Computer Engineering) from McMaster University in 1986, and Ph.D (Computer Science and Engineering) from I.I.T Madras in 1992. She worked as Scientific Officer at the Tata Institute of Fundamental Research from 1980-83 where she worked in computer graphics. She joined as faculty in the Department of Computer Science and Engineering in 1988 as a lecturer. Her primarily line of work is in “signal processing directed machine learning,” where the objective is to understand a given domain, apply appropriate signal processing
techniques to enable faster convergence of machine learning algorithms. She has worked in various domains including education, text, networks, brain signals, speech and music. Her major focus currently is on speech, music and brain signals. Her involvement in the ERC funded project on CompMusic where she was responsible for the analysis of Carnatic music gave an impetus to the effort on Carnatic music. The shifting tonic, and significant extempore improvisation in Indian music were some of the genre specific challenges that were addressed. She also led a consortium effort on text to speech synthesis where the objective was to build text to speech synthesis for 13 Indian languages. This technology has been transferred to a number of companies.
Tutorial 8 (T8): Multimodal Speech and Audio Processing in Audio-Visual Human-Robot Interaction

Petros Maragos, School of E.C.E., National Technical University of Athens, Athens 15773, Greece
Athanasia Zlatintsi, Athena Research Center, Robot Perception and Interaction Unit, Greece

Abstract: The goal of this tutorial is to provide a concise overview of ideas, methods and research results in multimodal speech and audio processing, spatio-temporal sensory processing, perception and fusion, with applications in Human-Robot Interaction. Nowadays, most data are multimodal, thus there is the emergent need of developing multimodal methodologies, taking also into account the visual modality so as to enhance and assist the audio/speech modality. This tutorial will present state-of-the-art work for the major application area, which is Human-Robot Interaction, for social, edutainment and healthcare applications, including among others audio-gestural recognition for natural communication with the robotic agent and audio-visual speech synthesis for assistance and maximization of the naturalness of the interaction. Established results and recent advances from our research in various EU projects concerning the above areas as well as for the purposes of distant-speech interaction for robust home applications will also be discussed. Additionally, it will present a secondary application area that also relies on audio-visual processing, including in this case methodologies for saliency detection and automatic summarization of mono-modal or multimodal data (i.e., audio or video) and for the development of virtual interactive environments, where human body motion or hand gestures are used for audio-gestural music synthesis. Related papers and current results can be found in http://cvsp.cs.ntua.gr and http://robotics.ntua.gr

Petros Maragos received the M.Eng. Diploma in E.E. from the National Technical University of Athens (NTUA) in 1980 and the M.Sc. and Ph.D. degrees from Georgia Tech, Atlanta, in 1982 and 1985. In 1985, he joined the faculty of the Division of Applied Sciences at Harvard University, Boston, where he worked for eight years as professor of electrical engineering, affiliated with the Harvard Robotics Lab. In 1993, he joined the faculty of the School of ECE at Georgia Tech, affiliated with its Center for Signal and Image Processing. During periods of 1996-98 he had a joint appointment as director of research at the Institute of Language and Speech Processing in Athens. Since 1999, he has been working as professor at the NTUA School of ECE, where he is currently the director of the Intelligent Robotics and Automation Lab. He has held visiting positions at MIT in 2012 and at UPenn in 2016. His research and teaching interests include signal processing, systems theory, machine learning, image processing and computer vision, audio-speech & language processing, and robotics. In the above areas he has published numerous papers, book chapters, and has also co-edited three Springer research books, one on multimodal processing and two on shape analysis. He has served as: Member of the IEEE SP5 committees on DSP, IMDSP and MMSP; Associate Editor for the IEEE Transactions on ASSP and the Transactions on PAMI, as well as editorial board member and guest editor for several journals on signal processing, image analysis and vision; Co-organizer of several conferences and workshops, including ECCV 2010 (Program Chair), IROS 2015 Workshop on Cognitive Mobility Assistance Robots, and EUSIPCO 2017 (General Chair). He has also served as member of the Greek National Council for Research and Technology. He is the recipient or co-recipient of several awards for his academic work, including: a 1987-1992 US NSF Presidential Young Investigator Award; the 1988 IEEE ASSP Young Author Best Paper Award; the 1994 IEEE SP5 Senior Best Paper Award; the 1995 IEEE W.R.G. Baker Prize for the most outstanding original paper; the 1996 Pattern Recognition Society’s Honorable Mention best paper award; the best paper award from the CVPR-2011 Workshop on Gesture Recognition. In
1995, he was elected IEEE Fellow for his research contributions. He received the 2007 EURASIP Technical Achievement Award for contributions to nonlinear signal processing, systems theory, image and speech processing. In 2010 he was elected Fellow of EURASIP for his research contributions. He has been elected IEEE SPS Distinguished Lecturer for 2017-2018.

Athanasia Zlatintsi is a Senior Researcher at the School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Greece. She received the Ph.D. degree in Electrical and Computer Engineering from NTUA in 2013 and her M.Sc. in Media Engineering from Royal Institute of Technology (KTH, Stockholm, Sweden) in 2006. Since 2007 she has been a researcher at the Computer Vision, Speech Communication & Signal Processing Group (CVSP) at NTUA participating in different projects, funded by the European Commission and Greek Ministry of Education in the areas of music and audio signal processing and specifically the analysis of music signals using computational methods aiming in their automatic recognition. Her research interests include signal processing and analysis of musical signals, analysis and processing of monomodal and multimodal signals for the extraction of robust representations for detection of perceptually salient events, speech/multimodal processing for human-computer interaction, and machine learning. Her research contributions include the development of efficient algorithms (using also nonlinear methods) for the analysis of the structure and the characteristics of musical signals, the detection of saliency in audio signals in general, the creation of multimodal, audio and music summaries, as well as the development of multimodal human-computer interaction systems.
ISCA Medalist

Bishnu S. Atal
Department of Electrical Engineering
University of Washington, Seattle, WA 98195
https://www.ee.washington.edu/people/bishnu-atal/

From Vocoder to Code-Excited Linear Prediction: Learning How We Hear What We Hear

Abstract
It all started almost a century ago, in 1920s. A new undersea transatlantic telegraph cable had been laid. The idea of transmitting speech over the new telegraph cable caught the fancy of Homer Dudley, a young engineer who had just joined Bell Telephone Laboratories. This led to the invention of Vocoder - its close relative Voder was showcased as the first machine to create human speech at the 1939 New York World’s Fair. However, the voice quality of vocoders was not good enough for use in commercial telephony. During the time speech scientists were busy with vocoders, several major developments took place outside speech research. Norbert Wiener developed a mathematical theory for calculating the best filters and predictors for detecting signals hidden in noise. Linear Prediction or Linear Predictive Coding became a major tool for speech processing. Claude Shannon established that the highest bit rate in a communication channel in presence of noise is achieved when the transmitted signal resembles random white Gaussian noise. Shannon’s theory led to the invention of Code-Excited Linear Prediction (CELP). Nearly all digital cellular standards as well as standards for digital voice communication over the Internet use CELP coders. The success in speech coding came with understanding of what we hear and what we do not. Speech encoding at low bit rates introduce errors and these errors must be hidden under the speech signal to become inaudible. More and more, speech technologies are being used in different acoustic environments raising questions about the robustness of the technology. Human listeners handle situations well when the signal at our ears is not just one signal, but also a superposition of many acoustic signals. We need new research to develop signal-processing methods that can separate the mixed acoustic signal into individual components and provide performance similar or superior to that of human listeners.

Biography
Bishnu S. Atal is an Affiliate Professor in the Electrical Engineering Department at the University of Washington, Seattle, WA. Born in India, Atal received his bachelor’s degree in physics from the University of Lucknow, Diploma of the Indian Institute of Science, Bangalore, and a Ph.D. in electrical engineering from Brooklyn Polytechnic Institute. He joined Bell Laboratories in
1961, where he researched speech and acoustics until retiring in 2002. Atal holds more than 16 patents. Inspired by the high cost of long-distance phone calls to his family in India when he first moved to the U.S., Atal’s research led to the invention of efficient digital speech coders and standards that lie at the heart of practically every mobile phone in use today. His work has enabled wireless networks to use less spectrum space and fewer towers, enabling even countries without substantial fiber-optic infrastructures to join the mobile revolution. He is a member of the U.S. National Academy of Sciences and National Academy of Engineering. His many honors include the IEEE Jack S. Kilby Signal Processing Medal (2013), the Benjamin Franklin Medal in Electrical Engineering (2003), the Thomas Edison Patent Award (1994), the New Jersey Hall of Fame Inventor of the Year Award (2000), and the IEEE Morris N. Liebmann Memorial Field Award (1986). Bishnu resides in Mukilteo, Washington. He has two daughters, Alka and Namita, two granddaughters, Jyotica and Sonali, and two grandsons, Ananth and Niguel.
Plenary Speakers

Jacqueline Vaissière
Professor Emeritus, Université Sorbonne Nouvelle, France
http://www.univ-paris3.fr/vaissiere-jacqueline-29931.kjsp

Universal Tendencies for Cross-Linguistic Prosodic Tendencies: A Review and Some New Proposals

Abstract
The present talk aims first to review the literature on similar tendencies regularly observed in typologically unrelated languages. The tendencies concern the use of fundamental frequency (F0, including declination line as the reference line, the top-line, up-stepping, down-stepping, register change and range widening-reducing), lengthening-shortening maneuvers and strengthening-weakening phenomena at the glottal and supraglottic levels, for instantiating acoustically the syllable, the word, the minor and major phrases, and the utterance. Our presentation concerns only attitudinally and emotionally neutral utterances. The second part of the talk will present particular aspects: 1) the different centers of articulatory “effort” at the syllable level; 2) the suggestion of the existence of an unmarked strong-long pattern, neither trochaic nor iambic, at the word level in languages where natives don’t have the consciousness of a “lexical stress,” or don’t agree on its existence or position; 3) the regrouping of one or more words into a prosodic phrase by the application of two established principles: a) the “hat-pattern” principle (t’Hart) favoring initial high-rising and final low-falling F0, and b) the intensive or the temporal rhythmic basic tendencies (Woodrow, Fraisse) favoring a more intense, stronger, more precisely articulated beginning and a lengthened ending; 4) the existence of a multilayer rhythm at the utterance level composed by the repetition/alternation of integrated Gestalts at the levels of the syllable, word, and phrases. One or two Gestalts will prevail perceptually depending on a) the language, b) the style, and c) the rate of speech. The impressionistic evidence of a particular type of language-dependent “rhythm” depends on the listener’s expectations, related to his maternal language and the languages he already masters, and up to a certain extent, to his pre-existing theoretical beliefs.

Biography
After a thesis in 1970 on French prosody synthesis at the IBM Research Center, La Gaude (France), and the Centre d’études pour la Traduction Automatique, Grenoble, Jacqueline Vaissière joined the Speech Communication Group at MIT, directed by Ken Stevens, as a visiting scientist, where she acquired a specialization in acoustic phonetics. In 1975, she joined the Centre National d’Études des Télécommunications (France), where she worked for 15 years on automatic speech recognition and automatic directory services. When the speech processing community moved towards black-box models for recognition and synthesis, she chose to become a professor at the Université Sorbonne Nouvelle in 1990 and became the director of Laboratoire de phonétique
et de Phonologie, associated with the Centre National de la Recherche Scientifique (CNRS). She was the director of 125 masters and 34 doctoral theses, with students of different backgrounds (medical doctors, engineers, and linguistics native of a large variety of languages). She was awarded a CNRS silver medal in 2009. Since 2010, she has been the principal coordinator of the 10-year project « Laboratoire d'Excellence « Empirical Foundations of Linguistics ». She is currently developing methods and applications for acquiring or improving pronunciations, based on visualization of spectrograms, and F0 curves (CleanAccent) and give courses decoding segmental and suprasegmental cues from spectrograms, F0 and intensity curves in different languages. Jacqueline Vaissière is a Fellow of ISCA.
Evolution of Neural Network Architectures for Speech Recognition

Abstract
Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. While further boosting the state-of-the-art in Automatic Speech Recognition (ASR), recent progresses in the field have also allowed for more flexible and faster developments in emerging markets and multilingual societies (e.g., under-resourced languages).

In this talk, we will provide a historical account of ANN architectures used for ASR since the mid-1980’s, and now used in most ASR and spoken language understanding applications. We will start by recalling/revisiting key links between ANNs and statistical inference, discriminant analysis, and linear/nonlinear algebra. Finally, we will briefly discuss more recent trends towards novel DNN-based ASR approaches, including complex hierarchical systems, sparse recovery modeling, and “end-to-end systems.”

However, and in spite of the recent progress in the area, we still lack basic understanding of the problems in hands. Although more and more tools are now available, in association with basically “unlimited” processing and data resources, we still fail in building principled ASR models and theories. Alternatively, we are still relying on “ignorance-based” models, often exposing limitations of our understanding, rather than enriching the field of ASR. Discussion of these limitations will underpin all of our overview.

Biography
Hervé Bourlard is Director of the Idiap Research Institute, Full Professor at the Swiss Federal Institute of Technology Lausanne (EPFL), and Founding Director of the Swiss NSF National Centre of Competence in Research on “Interactive Multimodal Information Management (IM2)” (2001-2013). He is also an External Fellow of the International Computer Science Institute (ICSI), Berkeley, CA.

His research interests mainly include statistical pattern classification, signal processing, multi-channel processing, artificial neural networks, and applied mathematics, with applications to a wide range of Information and Communication Technologies, including spoken language processing, speech and speaker recognition, language modeling, multimodal interaction, and augmented multi-party interaction.

H. Bourlard is the author/co-author/editor of 8 books, and over 330 reviewed papers (including one IEEE paper award). He is a Fellow of IEEE and ISCA, and a Senior Member and Member of the European Council of ACM. He is the recipient of several scientific and entrepreneurship awards.
Speech and Language Processing for Learning and Wellbeing

Abstract
Spoken language is a primary form of human communication. Spoken language processing techniques must incorporate knowledge of acoustics, phonetics and linguistics in analyzing speech. While great strides have been made in the community in general speech recognition, reaching human parity in performance, our team has been focusing on the problems of recognizing and analyzing non-native, learners’ speech for the purpose of mispronunciation detection and diagnosis in computer-aided pronunciation training. In order to generate personalized, corrective feedback, we have also developed an approach that uses phonetic posterior-grams (PPGs) for personalized, cross-lingual text-to-speech synthesis given arbitrary textual input, based on voice conversion techniques. We have also extended our work to disordered speech, focusing on automated distinctive feature (DF)-based analyses of dysarthric recordings. The analyses are intended to inform intervention strategies. Additionally, voice conversion is further developed to restore disordered speech to normal speech. This talk will present the challenges in these problems, our approaches and solutions, as well as our ongoing work.

Biography
Helen Meng is Patrick Huen Wing Ming Professor and Chairman of the Department of Systems Engineering & Engineering Management, Chinese University of Hong Kong (CUHK). She is the Founding Director of the CUHK Ministry of Education (MoE)-Microsoft Key Laboratory for Human-Centric Computing and Interface Technologies, Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, and CUHK Stanley Ho Big Data Decision Analytics Research Center. She has also established the CAS-CUHK Shenzhen Institute of Advanced Technology Ambient Intelligence and Multimodal Systems Laboratory and served as its Director between 2007 and 2011. Previously, she has served as CUHK Faculty of Engineering’s Associate Dean (Research), Editor-in-Chief of the IEEE Transactions on Audio, Speech and Language Processing, ISCA Board Member, Member of the IEEE SPS Board of Governors and Hong Kong-Guangdong ICT Expert Group member. Presently, she is serving as ISCA International Advisory Council Member, elected Chairperson of ISCA’s Special Interest Group on Chinese Spoken Language Processing (since 2014) and elected Standing Committee Member of the China Computer Federation Task Force on Speech, Dialogue and Auditory Processing. Her appointments by the Hong Kong SAR Government (HKSARG) include Research Grants Council Member, eHealth Record Sharing Steering Committee Member, and Chairlady of the Working Party for the Manpower Survey of the Innovation & Technology Sector. She was APSIPA’s inaugural Distinguished Lecturer 2012-2013 and ISCA Distinguished Lecturer 2015-2016. Her awards include the Ministry of Education Higher Education Outstanding Scientific Research Output Award 2009, Hong Kong Computer Society’s inaugural Outstanding ICT Woman Professional Award 2015, Microsoft Research Outstanding Collaborator Award 2016, IEEE ICME 2016 Best Paper Award, IBM Faculty Award 2016, HKPWE Outstanding Women Professionals and Entrepreneurs Award 2017 and Hong Kong ICT Award 2018 Silver Award for Smart Inclusion. Helen received all her degrees from MIT and is a Fellow of HKCS, HKIE, IEEE and ISCA.
Speech Processing in the Human Brain Meets Deep Learning

Abstract
Speech processing technologies have seen tremendous progress since the advent of deep learning, where the most challenging problems no longer seem out of reach. In parallel, deep learning has advanced the state-of-the-art in processing the neural signals to speech in the human brain. This talk reports progress in three important areas of research: I) Decoding (reconstructing) speech from the human auditory cortex to establish a direct interface with the brain. Such an interface not only can restore communication for paralyzed patients, but also has the potential to transform human-computer interaction technologies, II) Auditory Attention Decoding, which aims to create a mind-controlled hearing aid that can track the brain-waves of a listener to identify and amplify the voice of the attended speaker in a crowd. Such a device could help hearing-impaired listeners communicate more effortlessly with others in noisy environments, and III) More accurate models of the transformations that the brain applies to speech at different stages of the human auditory pathway. This is achieved by training deep neural networks to learn the mapping from sound to the neural responses. Using a novel method to study the exact function learned by these neural networks has led to new insights on how the human brain processes speech. On the other hand, these new insights motivate distinct computational properties that can be incorporated into the neural network models to better capture the properties of speech processing in the human auditory cortex.

Biography
Nima Mesgarani is an associate professor at Electrical Engineering Department and Mind-Brain-Behavior Institute of Columbia University in the City of New York. He received his Ph.D. from the University of Maryland and was a postdoctoral scholar in Center for Language and Speech Processing at Johns Hopkins University and the Neurosurgery Department of University of California San Francisco. He has been named a Pew Scholar for Innovative Biomedical Research, and has received several distinctions including the National Science Foundation Early Career Award and Kavli Institute for Brain Science Award. His interdisciplinary research combines theoretical and experimental techniques to model the neural mechanisms involved in human speech communication which critically impacts research in modeling speech processing and speech brain-computer interface technologies.
Deep Learning Based Situated Goal-oriented Dialogue Systems

Abstract
Interacting with machines in natural language has been a holy grail since the beginning of computers. Given the difficulty of understanding natural language, only in the past couple of decades, we started seeing real user applications for targeted/limited domains. More recently, advances in deep learning based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational systems. In this talk, I’ll review end-to-end dialogue systems research, with components for situated language understanding, dialogue state tracking, policy, and language generation. The talk will highlight novel approaches where dialogue is viewed as a collaborative game between a user and an agent in the presence of visual information, and will aim to summarize challenges for future research.

Biography
Dilek is a research scientist at Amazon and has previously held research scientist positions at Google, Microsoft Research, ICSI, and AT&T Labs – Research. She is a fellow of the IEEE and of ISCA. Her research interests include conversational AI, natural language and speech processing, spoken dialogue systems, and machine learning for language processing.
Speaker and Language Recognition – From Laboratory Technologies to the Wild

Abstract
Detecting the paralinguistic components of speech like speaker and language is of substantial interest for many commercial, surveillance and security applications. The problem is at least three decades old with some of the early techniques based on simple Gaussian mixture models. A significant advancement in this area came about a decade ago with the advent of joint factor analysis and i-vector models. The last couple of years have seen further breakthroughs with deep embeddings and end-to-end models based on deep learning. With these improvements in modeling speaker and language, the application of the technology has also moved from clean controlled speech data to telephone channel recordings, far-field microphones and more recently to multi-speaker conversations in the wild. In the talk, I will provide a prospective view of the broad research directions in the field of speaker and language recognition. I will also highlight some of the recent advancements from our work on hierarchical end-to-end approaches with relevance modeling.

Biography
Sriram Ganapathy is a faculty member at the Department of Electrical Engineering, Indian Institute of Science Bangalore. Previously, he was a research staff member at the IBM Watson Research Center. He received his PhD from the Center of Language and Speech Processing, Johns Hopkins University. His research interests include signal processing and machine learning applied to speech recognition, speaker recognition and auditory neuroscience. He is a member of the ISCA and a senior member of the IEEE.
Open Problems in Speech Recognition

Abstract

In this talk, I will focus on the evolution of ideas in speech recognition over the last couple of decades, with emphasis on the key breakthroughs over the last ten years, its impact across spoken language processing in several languages, recent trends and open challenges that remain to be addressed. One such breakthrough is the use of several neural network model variants, which has had an enormous impact on the performance of state-of-the-art large vocabulary speech recognition systems. They have also had impact on keyword search which is the task of localizing an orthographic query in a speech corpus, and is typically performed through analysis of automatic speech recognition (ASR). Using the recently concluded IARPA funded Babel program as an example of a well-benchmarked task that focussed on the rapid development of speech recognition capability for keyword search in a previously unstudied language, I will present the successes and challenges that persist with limited amounts of transcription. Interpreting and understanding the hidden representations of various models remains a challenge today. I will also discuss current research taking advantage of such interpretations to improve robustness to noisy environments, speaker/domain adaptation algorithms, and dialects/accents. I will conclude with relevant metrics to measure speech recognition performance today that include and ignore the bigger picture of end-to-end user experience.

Biography

Bhuvana Ramabhadran (IEEE Fellow, 2017, ISCA Fellow 2017) currently leads a team of researchers at Google, focussing on multilingual speech recognition and synthesis. Previously, she was a Distinguished Research Staff Member and Manager in IBM Research AI, at the IBM T. J. Watson Research Center, Yorktown Heights, NY, USA, where she led a team of researchers in the Speech Technologies Group and coordinated activities across IBM's worldwide laboratories in the areas of speech recognition, synthesis, and spoken term detection. She was the elected Chair of the IEEE SLTC (2014–2016), Area Chair for ICASSP (2011–2018) and Interspeech (2012–2016), was on the editorial board of the IEEE Transactions on Audio, Speech, and Language Processing (2011–2015), and is currently an ISCA board member. She has served on the editorial board of T-ASLP (2012-2016), technical area chair for ICASSP (2011-2017), Interspeech (2012, 2014-2016), and was one of the lead organizers and technical chair of IEEE ASRU 2011. She has given tutorial and keynote presentations at several international conferences and served as an adjunct professor in Columbia University, where she co-taught a course in speech recognition. She has published over 150 papers and been granted over 40 U.S. patents. She was named a Master Inventor twice by IBM. She is a reviewer for ICASSP, Interspeech, NAACL, ACL, EMNLP and serves on student dissertation committees and NSF review panels. Her research interests include speech recognition and synthesis algorithms, statistical modeling, signal processing, and machine learning.
Special Sessions

1. INTERSPEECH 2018 Computational Paralinguistics ChallengE (ComParE): Atypical and Self-Assessed Affect, Crying & Heart Beats
September 3, 2018, 14:00-16:00 and 16:30-18:30, MR 1.01-1.02, HICC, Hyderabad

Organizers
Björn Schuller (bjoern.schuller@imperial.ac.uk)
Stefan Steidl (stefan.steidl@fau.de)
Anton Batliner (batliner@cs.fau.de)
Peter Marschik (peter.marschik@medunigraz.at)
Harald Baumeister (harald.baumeister@uni-ulm.de)
Fengquan Dong (fengquan.dong@foxmail.com)

The Interspeech 2018 Computational Paralinguistics ChallengE (ComParE) is an open Challenge dealing with states and traits of speakers as manifested in their speech signal’s acoustic properties. There have so far been nine consecutive Challenges at INTERSPEECH since 2009 (cf. the Challenge series’ repository at http://www.compare.openaudio.eu), but there still exists a multiplicity of not yet covered, but highly relevant paralinguistic phenomena. Thus, in this year’s 10th anniversary edition, we introduce four new tasks. The following Sub-Challenges are addressed:

- In the Atypical Affect Sub-Challenge, emotion of disabled speakers is to be recognised.
- In the Self-Assessed Affect Sub-Challenge, self-assessed affect shall be determined.
- In the Crying Sub-Challenge, mood-related types of infant vocalisation have to be classified.
- In the Heart Beats Sub-Challenge, types of Heart Beat Sounds need to be distinguished.

All Sub-Challenges allow contributors to find their own features with their own machine learning algorithm. However, a standard feature set and tools will be provided that may be used. Participants will have to stick to the definition of training, development, and test sets as given. They may report results obtained on the development sets, but have only five trials to upload their results on the test set per Sub-Challenge, whose labels are unknown to them. Each participation has to be accompanied by a paper presenting the results that undergoes the normal Interspeech peer-review and has to be accepted for the conference in order to participate in the Challenge. The organisers preserve the right to re-evaluate the findings, but will not participate themselves in the Challenge.

In these respects, the INTERSPEECH 2018 Computational Paralinguistics challengE (ComParE) shall help bridging the gap between excellent research on paralinguistic information in spoken language and low compatibility of results. We encourage both – contributions aiming at highest performance w.r.t. the baselines provided by the organisers, and contributions aiming at finding new and interesting insights w.r.t. these data. Overall, contributions using the provided or equivalent data are sought for (but not limited to):
· Participation in a Sub-Challenge
· Contributions focussing on Computational Paralinguistics centred around the Challenge topics
The results of the Challenge will be presented at Interspeech 2018 in Hyderabad, India. Prizes will be awarded to the Sub-Challenge winners. If you are interested and planning to participate in INTERSPEECH 2018 ComParE, or if you want to be kept informed about the Challenge, please send the organisers an e-mail (steidl@xxxxxxxxx) to indicate your interest and visit the homepage: http://emotion-research.net/sigs/speech-sig/is18-compare

2. The First DIHARD Speech Diarization Challenge
September 5, 2018, 17:00-19:00, MR 1.01-1.02, HICC, Hyderabad

Organizers
Kenneth Church (kenneth.ward.church@gmail.com)
Christopher Cieri (ccieri@ldc.upenn.edu)
Alejandrina Cristia (alecristia@gmail.com)
Jun Du (jundu@ustc.edu.cn)
Sriram Ganapathy (sriram.iisc@gmail.com)
Mark Liberman (markylberman@gmail.com)
Neville Ryant (nryant@ldc.upenn.edu)

DIHARD is a new annual challenge focusing on “hard” diarization; that is, speech diarization for challenging corpora where there is an expectation that the current state-of-the-art will fare poorly, including, but not limited to:
• clinical interviews
• extended child language acquisition recordings
• web videos
• “speech in the wild” (e.g., recordings in restaurants)

Because performance of diarization is highly dependent on the quality of the speech activity detection (SAD) system used, the challenge will have two tracks:
Track 1: diarization beginning from gold speech segmentation
Track 2: diarization from scratch

For more details, please see the challenge site at https://coml.lscp.ens.fr/dihard/index.html

3. Novel Paradigms for Direct Synthesis based on Speech-Related Biosignals
September 6, 2018, 10:00-12:00, MR G.03-G.04, HICC, Hyderabad

Organizers:
Lorenz Diener (lorenz.diener@uni-bremen.de)
Jose Gonzalez (jgonzalez@lcc.uma.es)
Tanja Schultz (tanja.schultz@uni-bremen.de)

Speech is a very rich and complex process, the acoustic signal being just one of the biosignals resulting from it. In the last few years, the automatic processing of these speech-related biosignals
has become an active area of research within the speech community. This special session aims to foster research on one emerging area that is growing within the field of silent speech: Direct synthesis. Direct synthesis refers to the generation of speech directly from speech-related biosignals (e.g. ultrasound, EMG, EMA, PMA, lip reading video, BCI) without an intermediate recognition step. This has been made possible by recent developments in supervised machine learning techniques and the availability of high-resolution biosensors. Furthermore, the availability of low-cost computing devices has made something possible that was unthinkable 20 years ago: the generation of audible speech from speech-related biosignals in real time. With this special session, we aim at bringing together researchers working on direct synthesis and related topics to foster work towards direct synthesis toolkits and datasets and to highlight and discuss common challenges and solutions in this emerging research area.

4. Speech Recognition for Indian Languages
September 4, 2018, 10:00-12:00, MR 1.01-1.02, HICC, Hyderabad

Organizers:
Pedro Moreno (pedro@google.com)
Eugene Weinstein (weinstein@google.com)
Sarah Abu Sharkh (sarah@google.com)
Haruko Ishikawa (ishikawa@google.com)
Daan van Esch (dvanesch@google.com)
Rita Singh (rsingh@cs.cmu.edu)
Preethi Jyothi (pjyothi@cse.iitb.ac.in)

Indian languages offer a multitude of challenges that are not observed as widely in languages elsewhere, e.g. code-switching (“Hinglish”). However, research on ASR for Indian languages remains relatively scarce compared to English, European languages, and East-Asian languages. We will invite participants of this Special Session to build their own ASR systems for Indian languages, in the broad sense of the term. You may choose which Indian languages to build systems for, and what data sets to use. In addition to the challenge around building ASR systems, we will also allocate time in the schedule for a show-and-tell: some participants may prefer using an existing ASR system and then building a voice-enabled app. We believe that this Special Session would provide an important boost to academic research on building ASR for Indian languages

Web-site: https://sites.google.com/view/interspeech2018-ss1

5. Deep Neural Networks: How Can We Interpret What They Learned?
September 4, 2018, 14:30-16:30, MR 1.01-1.02, HICC, Hyderabad

Organizers:
Louis ten Bosch (l.tenbosch@let.ru.nl)
Hugo Van hamme (hugo.vanhamme@esat.kuleuven.be)
Lou Boves (l.boves@ru.nl)
Everybody active in the speech technology area witnesses the advent of deep learning techniques, in particular the use of Deep Neural Nets. DNNs are now being applied in many types of automatic speech recognition systems. The success of DNNs strongly suggests that the parameter set of a trained DNN reflects relevant structure in the training data, but it is not clear how one can reveal this structure. In this session we want to address this issue.

We welcome papers that specifically address one or more of the leading questions listed below, e.g. by aiming at (phonetic or linguistic) interpretations of the representations at the layers of DNNs, or by attempting to use phonetic/linguistic knowledge to guide the design and training of DNNs.

For papers in this special session, leading questions are:
[1] How does a trained DNN encapsulate the structure that exists in a data set?
[2] How can we visualize this information?
[3] How can we learn from a DNN, i.e., how can the information in a DNN be used to sharpen our insights?
[4] What type of knowledge can be encoded in a DNN?
[5] Can understanding the information encoded in a DNN be used as a guidance in designing and training more powerful networks?
[6] What architectures and training techniques are most amenable to interpretations?

For more information please contact the organizers. http://cls.ru.nl/interspeech2018

6. Low Resource Speech Recognition Challenge For Indian Languages
September 6, 2018, 10:00-12:00, MR 1.01-1.02, HICC, Hyderabad

Organizers:
Kalika Bali (kalikab@microsoft.com)
Krishna Doss Mohan (krishna.doss@microsoft.com)
Rupesh Kumar Mehta (rupesh.mehta@microsoft.com)
Niranjan Nayak (niranjan@microsoft.com)
Sunayana Sitaram (t-susita@microsoft.com)
Radhakrishnan Srikanth (rsrikan@microsoft.com)

Most languages in the world lack the amount of text, speech and linguistic resources required to build large Deep Neural Network (DNN) based models. However, there have been many advances in DNN architectures, cross-lingual and multilingual speech processing techniques, and approaches incorporating linguistic knowledge into machine-learning based models, that can help in building systems for low resource languages. In this challenge, we would like to focus on building Automatic Speech Recognition (ASR) systems for Indian languages with constraints on the data available for Acoustic Modeling and Language Modeling. For more details on the challenge and registration please visit the web site.

7. Integrating Speech Science and Technology for Clinical Applications
September 4, 2018, 14:30-16:30 Hall 4-6: PosterArea 4, HICC, Hyderabad
September 5, 2018, 10:00-12:00, MR G.03-G.04, HICC, Hyderabad

Organizers:
Christina Hagedorn (christina.hagedorn@csi.cuny.edu)
Shrikanth Narayanan (shri@ee.usc.edu)
Uttam Sinha (sinha@med.usc.edu)

The broad objectives of this session are to (i) address the current communication and collaboration gaps that exist between the fields of speech science, engineering and technological development, and communication disorders, and (ii) serve as a bridge to unify members of these distinct fields through interactive and dynamic exchanging of experimental findings and ideas for future collaboration. The organizers encourage submissions focused on, though not limited to: characterizing disordered speech using novel imaging techniques and analytical methods, (semi-) automatic detection of speech disorder characteristics, and the efficacy of biofeedback intervention for speech disorders.

8. Speech Technologies for Code-Switching in Multilingual Communities
September 5, 2018, 10:00-12:00, MR 1.01-1.02, HICC, Hyderabad

Organizers:
Kalika Bali (kalikab@microsoft.com)
Alan Black (awb@cs.cmu.edu)
Mona Diab (mtdiab@gwu.edu)
Julia Hirschberg (julia@cs.columbia.edu)
Sunayana Sitaram (t-susita@microsoft.com)
Thamar Solorio (solorio@cs.uh.edu)

Speech technologies exist for many high resource languages, and attempts are being made to reach the next billion users by building resources and systems for many more languages. Multilingual communities pose many challenges for the design and development of speech processing systems. One of these challenges is code-switching, which is the switching of two or more languages at the conversation, utterance and sometimes even word level.

Code-switching is now found in text in social media, instant messaging and blogs in multilingual communities in addition to conversational speech. Monolingual natural language and speech systems fail when they encounter code-switched speech and text. There is a lack of linguistic data and resources for code-switched speech and text, although one or more of the languages being mixed could be high-resource. Code-switching provides various interesting challenges to the speech community, such as language modeling for mixed languages, acoustic modeling of mixed language speech, pronunciation modeling and language identification from speech.

We conducted the inaugural special session on code-switching at Interspeech 2017, which was organized as a double session spanning four hours. We received several high-quality submissions from research groups all over the world, out of which nine papers were selected.
as oral presentations. At the end of the oral presentations, we conducted a panel discussion between researchers in academia and industry about challenges in research, building systems and collecting code-switched data. Our special session was attended by several researchers from academia and industry working on linguistics, NLP and speech technologies.

9. Spoken CALL Shared Task, Second Edition
September 5, 2018, 14:30-16:30, MR 1.01-1.02, HICC, Hyderabad

Organizers:
Johanna Gerlach (Johanna.Gerlach@unige.ch)
Manny Rayner (Emmanuel.Rayner@unige.ch)
Martin Russell (m.j.russell@bham.ac.uk)
Helmer Strik (w.strik@let.ru.nl)

The Spoken CALL Shared Task is an initiative to create an open challenge dataset for speech-enabled CALL systems, jointly organised by the University of Geneva, the University of Birmingham, Radboud University and Cambridge University. The task is based on data collected from a speech-enabled online tool which has been used to help young Swiss German teens practise skills in English conversation. Items are prompt-response pairs, where the prompt is a piece of German text and the response is a recorded English audio file. The task is to label pairs as “accept” or “reject”, accepting responses which are grammatically and linguistically correct to match a set of hidden gold standard answers as closely as possible. Resources are provided so that a scratch system can be constructed with a minimal investment of effort, and in particular without necessarily using a speech recogniser.

The first edition of the task was announced at LREC 2016, with training data released in July 2016 and test data in March 2017, and attracted 20 entries from 9 groups. Results, including seven papers, were presented at the SLaTE workshop in August 2017. Full details, including links to resources, results and papers, can be found on the Shared Task home page.

Following the success of the original task, we are organising a second edition. We have approximately doubled the amount of training data, will provide new test data, and have released improved versions of the accompanying resources. In particular, we have made generally available the open source Kaldi recogniser developed by the University of Birmingham, which achieved the best performance on the original task, together with versions of the training and test data pre-processed through this recogniser.

Web-site: https://regulus.unige.ch/spokencallsharedtask_2ndedition/
Show & Tell

Session S&T-1: September 3, 2018, 14:00-16:00, MR G.05-G.06
Session S&T-2: September 3, 2018, 16:30-18:30, MR G.05-G.06
Session S&T-3: September 4, 2018, 10:00-12:00, MR G.05-G.06
Session S&T-4: September 4, 2018, 14:30-16:30, MR G.05-G.06
Session S&T-5: September 5, 2018, 10:00-12:00, MR G.05-G.06
Session S&T-6: September 5, 2018, 14:30-16:30, MR G.05-G.06
Session S&T-7: September 6, 2018, 10:00-12:00, MR G.05-G.06

Show & Tell is a special event organized during the conference. Participants are given the opportunity to demonstrate their most recent progress or developments, and interact with the conference attendees in an informal way, such as poster, a mock-up, a demo, or any adapted format of their own choice. These contributions must highlight the innovative side of the concept and may relate to a regular paper. While the emphasis of Show & Tell is on the actual demonstration during the conference, all contributions are allocated two pages in the conference proceedings. Each submission has been peer-reviewed. Reviewers have judged the originality, significance, quality and clarity of the proposed demonstration.
Special Events

1. Workshop for Young Female Researchers in Speech Science & Technology 2018
September 1, 2018
09:00 to 17:00
Venue: Fourth Floor Auditorium, Kohli Research Block,
International Institute of Information Technology (IIIT), Gachibowli, Hyderabad
url: https://www.iiit.ac.in/

Organizers:
Amber Afshan (UCLA)
Kay Berkling (Karlsruhe University)
Heidi Christensen (University of Sheffield)
Maxine Eskenazi (CMU)
Milica Gasic (Cambridge University)
Dilek Hakkani-Tür (Google Inc)
Preethi Jyothi (IIT Bombay)
Esther Klabbers (ReadSpeaker)
Lori Lamel (LIMSI CNRS)
Yang Liu (University of Texas Dallas)
Karen Livescu (Toyota Technological Institute at Chicago)
Pratibha Moogi (Toyota Technological Institute at Chicago)
Emily Mower Provost (University of Michigan)
Catharine Oertel (EPFL)
Bhuvana Ramabhadran (Google Inc)
Odette Scharenborg (M*Modal)
Elizabeth Shriberg (Ellipsis Health Inc)
Isabel Trancoso (INESC-ID / Instituto Superior Técnico)

A workshop for women undergraduate and masters students who are currently working in speech science and technology is to be held at Interspeech 2018 on September 1, 2018, from 9 am to 5 pm followed by a dinner with invited senior members of the Interspeech community. It will feature panel discussions with senior female researchers in the field, student poster presentations and a mentoring session.

The workshop is the third of its kind, after a successful inaugural event YFRSW 2016, at Interspeech 2016 in San Francisco and YFRSW 2017 at Interspeech 2017 in Stockholm. It is designed to foster interest in research in our field in women at the undergraduate or master level who have not yet committed to getting a PhD in speech science or technology areas, but who have had some research experience in their college and universities via individual or group projects.

Please direct any questions to: yfrs.workshop@gmail.com
2. Women in Science (WiS) 2018 – Challenges & Opportunities

September 2, 2018
Time: 17:30-18:30
Venue: MR 1.05-1.06, HICC Hyderabad

Organizing committee
- Sharmistha Gray (Nuance)
- Preethi Jyothi (IIT Bombay)
- Pratibha Moogi (Industry)
- Hema Murthy (IIT, Madras)
- Emily Mower Provost (University of Michigan)
- Catharine Oertel (EPFL)
- Bhuvana Ramabhadran (Google Inc)
- Odette Scharenborg (Delft University of Technology)
- Isabel Trancoso (INESC-ID / Instituto Superior Técnico)

A panel discussion by invited members of men and women in speech science and technology with a focus on issues and hurdles women face in academic setup and work places, is to be held at Interspeech 2018 on September 2, 2018, from 5:30 pm to 6:30 pm, accompanied by a light snack.

The panel discussions will touch upon some of these crucial points such as challenges faced by women scientists, how can encouraging work and research environment be built around women who want to pursue their career in research and technology development. Panelist members include experienced researchers, executive members from Industry, will share their rich experiences on current challenges & opportunities that exist currently at work place.

Please direct any questions to: yfrs.workshop@gmail.com
ISCA Meetings

1. ISCA Board 1
(Participation by invitation only)
Chair: John H.L. Hansen
Date: September 2, 2018 (Sunday)
Time: 09:00 - 16:00
Venue: MR 2.06, HICC, Hyderabad

2. Student Paper Meeting
(Participation by invitation only)
Chair: Torbjørn Svendsen
Date: September 2, 2018 (Sunday)
Time: 16:00 - 20:00
Venue: MR 2.06, HICC, Hyderabad

3. IS 2019 Preparation Meeting
(Graz Team only)
Chair: Gernot Kubin
Date: September 3, 2018 (Monday)
Time: 12:00 - 13:30
Venue: MR 2.05, HICC, Hyderabad

4. IAC Lunch Meeting (Advisory Committee)
(Participation by invitation only)
Chair: John H.L. Hansen
Date: September 3, 2018 (Monday)
Time: 12:15 - 13:45
Venue: MR 2.06, HICC, Hyderabad

5. ISCA Technical Committee Breakfast
(Participation by invitation only)
Chair: Lori Lamel
Date: September 4, 2018 (Tuesday)
Time: 07:30 - 08:30
Venue: MR 2.06, HICC, Hyderabad

6. Interspeech Steering Committee Lunch
(Participation by invitation only)
Chair: Sebastian Möller, Odette Scharenborg and Lori Lamel
Date: September 4, 2018 (Tuesday)
Time: 13:00 - 14:00
Venue: MR 2.05, HICC, Hyderabad

7. ISCA SIG Topic Lunch
(Participation by invitation only)
Chair: Gérard Bailly
Date: September 4, 2018 (Tuesday)
Time: 13:15 - 14:15
Venue: MR 2.06, HICC, Hyderabad

8. Industry Lunch
(Participation by invitation only)
Chair: Bhuvana Ramabhadran
Date: September 4, 2018 (Tuesday)
Time: 13:30 - 14:30
Venue: MR 1.06, HICC, Hyderabad
9. Joint Int’l & Language SIG Breakfast
(Participation by invitation only)
Chair: Satoshi Nakamura
Date: September 5, 2018 (Wednesday)
Time: 07:30 - 08:30
Venue: MR 2.06, HICC, Hyderabad

10. ISCA - IS 2020, China Preparation Meeting
(Participation by invitation only)
Chair: Sebastian Möller and Odette Scharenborg
Date: September 5, 2018 (Wednesday)
Time: 07:30 - 08:30
Venue: MR 2.05, HICC, Hyderabad

11. ISCA - IS 2019, Graz Preparation Meeting
(Participation by invitation only)
Chair: Sebastian Möller and Odette Scharenborg
Date: September 5, 2018 (Wednesday)
Time: 13:00 - 14:00
Venue: MR 2.06, HICC, Hyderabad

12. ISCA Fellows Reception
(Participation by invitation only)
Chair: Phil Green
Date: September 5, 2018 (Wednesday)
Time: 18:00 - 18:45
Venue: MR 2.05, HICC, Hyderabad

13. SAC Lunch Meeting (students)
(Participation by invitation only)
Chair: Lori Lamel
Date: September 6, 2018 (Thursday)
Time: 13:30 - 14:30
Venue: MR 2.05, HICC, Hyderabad

14. CSL Lunch (Elsevier)
(Participation by invitation only)
Chair: Emmanuelle FOXONET
Date: September 6, 2018 (Thursday)
Time: 13:00 - 14:00
Venue: MR 2.06, HICC, Hyderabad

15. ISCA Board 2
(Participation by invitation only)
Chair: John H.L. Hansen
Date: September 7, 2018 (Friday)
Time: 08:30 - 13:00
Venue: MR 2.06, HICC, Hyderabad
ISCA-SAC Events

1. Fourth Doctoral Consortium at INTERSPEECH 2018

Date: September 1, 2018; 10.00 - 17.00
Location: International Institute of Information Technology (IIIT) Hyderabad

The Student Advisory Committee of the International Speech Communication Association (ISCA-SAC) is pleased to call for applications for the 4th Doctoral Consortium. This event extends an opportunity for doctoral candidates to present and discuss their research with a panel of experts. The discussion would include a feedback on the evolution and progress of their research. It also helps them to identify the roadmap and additional studies, which could help refine the shape of their thesis.

The doctoral consortium will be a one-day event (including lunch and coffee breaks) being organised on Saturday, September 1, 2018, at the International Institute of Information Technology (IIIT) Hyderabad, Gachibowli. The applicants are required to submit a two-page extended abstract of their PhD research work. The shortlisted candidates would be invited to the consortium where they are required to present a summary of their research. Each candidate will be given 30 minutes for the presentation, which will be followed by a discussion of 15 minutes, led by a panel of experts.

Panel of Experts
- Mathew Magimai Doss (IDIAP Research Institute)
- Isabel Trancoso (INESC ID Lisbon)
- Vikramjit Mitra (SRI International)
- Bhuvana Ramabhadran (Google Inc., NY, USA)
- Richard Stern (CMU, Pittsburgh)
- Prasanta Kumar Ghosh (IISc, Bangalore)
- Chandra Sekhar Seelamantula (IISc, Bangalore)
- Mariapaola D’Imperio (Aix Marseille University, Italy)

Contact
Ravi Shankar Prasad; Email: ravi.rythem@gmail.com
2. INTERSPEECH 2018: Open Doors

Date: September 3, 2018; 14.00 - 16.00
Location: Genesys and Microsoft India Development Center

International Speech Communication Association (ISCA) - Student Advisory Committee (SAC) is back with the Open Doors event. This year we are hosted by Genesys and Microsoft India Development Center. The Open Doors event is focused to bring industrial research and academia together.

Participants will have the opportunity to visit one of the companies and engage with their speech application team. The industry professionals will demonstrate their products and related technology, followed by an open discussion, and networking opportunities. The event aims to bring students and researchers together discussing state-of-the-art technologies, potential collaboration, and even possible hiring opportunities.

ISCA-SAC will provide transportation from the conference center. Group sizes will be limited.

Contact
Berrak Sisman; Email: berraksisman@u.nus.edu
3. INTERSPEECH 2018: Students Meet Experts

Date: September 5, 2018; 14.00 - 16.00
Location: Hyderabad International Convention Centre

The Student Advisory Committee of the International Speech Communication Association (ISCA-SAC) is happy to announce this year’s edition of the Students meet Experts event. After successful editions in Lyon (2013), Singapore (2014), San Francisco (2016), and Stockholm (2017), the Students meet Experts event is now coming to Interspeech 2018 in Hyderabad. We will have a panel discussion with experts from academia and industry, followed by an informal opportunity to mingle and ask more in depth questions at the SME coffee break.

Panel of Experts
- Sharmistha Gray (Nuance Research)
- Dilek Hakkani-Tür (Google Research)
- John H. L. Hansen (The University of Texas at Dallas)
- Haizhou Li (National University of Singapore)
- Satoshi Nakamura (Nara Institute of Science and Technology)
- Shrikanth Narayanan (University of Southern California)
- Vikram Ramanarayanan (ETS Research)
- Odette Scharenborg (Delft University of Technology)

Contact
Iona Gessinger; Email: gessinger@coli.uni-saarland.de
Awards

ISCA Medal for Scientific Achievement

The ISCA Medal for Scientific Achievement 2018 will be awarded to Professor Bishnu S. Atal by the President of ISCA during the opening ceremony.

ISCA Best Student Paper Award Finalists

2572 **Automatic Glottis Localization and Segmentation in Stroboscopic Videos Using Deep Neural Network**
Wed-P-3-4-7: Source and Supra-segmentals
September 5, 17:00, Hall 4-6, PosterArea 4
Achuth Rao M V, Rahul Krishnamurthy, Pebbili Gopikishore, Veeramani Priyadharshini and Prasanta Kumar Ghosh

0063 **Effects of User Controlled Speech Rate on Intelligibility in Noisy Environments**
Wed-O-1-3-6: Production of Prosody
September 5, 11:40, Hall 2
John S. Novak, III, Robert V. Kenyon

1288 **An Interlocutor-Modulated Attentional LSTM for Differentiating between Subgroups of Autism Spectrum Disorder**
Wed-O-2-5-2: Speech and Language Analytics for Mental Health
September 5, 14:50, MR G.03-G.04
Yun-Shao Lin, Susan Shur-Fen Ga, Chi-Chun Lee

1515 **An Improved Deep Embedding Learning Method for Short Duration Speaker Verification**
Thu-P-2-1-4: Speaker Verification Using Neural Network Methods II
September 6, 14:30, Hall 4-6, PosterArea 1
Zhifu Gao, Yan Song, Ian McLoughlin, Wu Guo, Lirong Dai

1269 **Joint Localization and Classification of Multiple Sound Sources Using a Multi-task Neural Network**
Mon-P-1-3-3: Deep Learning for Source Separation and Pitch Tracking
September 3, 14:00, Hall 4-6, PosterArea 3
Weipeng He, Petr Motlicek and Jean-Marc Odobez

2423 **A Priori SNR Estimation Based on a Recurrent Neural Network for Robust Speech Enhancement**
Thu-P-1-1-12: Deep Enhancement
September 6, 10:00, Hall 4-6, PosterArea 1
Yangyang Xia and Richard M. Stern
Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations
Mon-O-2-4-6: Voice Conversion
September 3, 18:10, MR G.03 - G.04
Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee and Lin-shan Lee

Multi-Modal Data Augmentation for End-to-end ASR
Wed-P-2-1-1: Adjusting to Speaker, Accent, and Domain
September 5, 14:30, Hall 4
Adithya Renduchintala, Shuoyang Ding, Matthew Wiesner and Shinji Watanabe

A GPU-based WFST Decoder with Exact Lattice Generation
Wed-O-2-1-2: Recurrent Neural Models for ASR
September 5, 14:50, Hall 3
Zhehuai Chen, Justin Luitjens, Hainan Xu, Yiming Wang, Daniel Povey and Sanjeev Khudanpur

User-centric Evaluation of Automatic Punctuation in ASR Closed Captioning
Wed-P-2-4-7: Topics in Speech Recognition
September 5, 14:30, Hall 4-6, Poster Area 4
Ákos Máté Tündik, György Szaszák, Gábor Gosztolya and András Bek

Detecting Depression with Audio/Text Sequence Modeling of Interviews
Tue-SS-2-2-10: Integrating Speech Science and Technology for Clinical Applications
September 4, 14:30, Hall 4-6, Poster Area 4
Tuka Alhanai, Mohammad Ghassemi and James Glass

Joint Learning of Interactive Spoken Content Retrieval and Trainable User Simulator
Wed-P-1-2-1: Extracting Information from Audio
September 5, 10:00, Hall 4-6, Poster Area 2
Pei-Hung Chung, Kuan Tung, Ching-Lun Tai and Hung-Yi Lee
Travel Grants

Amber Afshan
Haque Albert
Guozhen An
Rohit Ananthanarayana
Vikram C M
Valliappan CA
Li Chai
Oscar Chen
Gaofeng Cheng
Ju-Chieh Chou
Pei Hung Chung
Nikolaos Flemotomos
Tom Francis
Szu-Wei Fu
Zhifu Gao
Saurabh Garg
Deepanway Ghosal
Debayan Ghosh
Yuan Gong
Jing Han
Nils Holzenberger
Kusha Sridhar Huliyar Sridhara Murthy
Marc Antony Hullebus
Ahmed Imtiaz Humayun
Yusuke Inoue
Abhinav Jain
Jesin James
Sebastian Jilt
Bhavya Karki
Matthew Kelley
Manoj Kumar
Yun-Shao Lin
Karttikeya Mangalam
Ateeq Mohammad
Verkholjak Oxana
Laxmi Pandey
Tanmay Parekh
Yu-Huai Peng
Mengjie Qian
Achuth Rao M V
Rachid Riad
Hardik Sailor
Lena Reed
Latif Siddique
Berrak Sisman
Zhihua Su
Parth Suresh
Gajan Suthokumar
Shuai Wang
Ke Wang
Tifani Warnita
Li Wenjie
Huiyi Wu
Yangyang Xia
Yijia Xu
Özkanca Yasin
Zheng Yibin
Jenny Yu
Yixin Zhang
Haris Bin Zia

In addition, Jinyu Li (Microsoft) and Florian Metze (CMU) set up the “Yajie Miao Memorial Student Travel Fund” to remember and to honor the work of Yajie Miao.

Yajie successfully defended his thesis on “Incorporating Context Information into Deep Neural Network Acoustic Models” at Carnegie Mellon University, and was awarded the PhD degree in August 2016. He had accepted a position at Microsoft in Redmond, and was set to start work there in October 2016. Unfortunately, he died tragically, while visiting his family in China, before he was able to do so.

The “Yajie Miao Memorial Student Travel Fund” supports additional ISCA student travel grants to speech conferences. Depending on the availability of funds, one or more recipients will be selected by ISCA and the organizers. More information about the fund and the background can be found at https://www.youcaring.com/iscainternationalspeechcommunicationassociation815026.

This year, the recipients are:

Kayokwa Nick Chibuye
Trinh Viet Anh
Thomas Zenkel
Session Index

September 3, 2018, Monday

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon-Medal-1</td>
<td>ISCA Medal Talk</td>
<td>104</td>
</tr>
<tr>
<td>Mon-O-1-1</td>
<td>End-to-End Speech Recognition</td>
<td>104</td>
</tr>
<tr>
<td>Mon-O-1-2</td>
<td>Prosody Modeling and Generation</td>
<td>105</td>
</tr>
<tr>
<td>Mon-O-1-3</td>
<td>Speaker Verification I</td>
<td>106</td>
</tr>
<tr>
<td>Mon-O-1-4</td>
<td>Spoken Term Detection</td>
<td>107</td>
</tr>
<tr>
<td>Mon-SS-1-1</td>
<td>Special Session: The INTERSPEECH 2018 Computational Paralinguistics ChallengE (ComParE): Atypical & Self-Assessed Affect, Crying & Heart Beats 1</td>
<td>109</td>
</tr>
<tr>
<td>Mon-S&T-1-1</td>
<td>Show and Tell 1</td>
<td>111</td>
</tr>
<tr>
<td>Mon-P-1-1</td>
<td>Speech Segments and Voice Quality</td>
<td>112</td>
</tr>
<tr>
<td>Mon-P-1-2</td>
<td>Speaker State and Trait</td>
<td>115</td>
</tr>
<tr>
<td>Mon-P-1-3</td>
<td>Deep Learning for Source Separation and Pitch Tracking</td>
<td>117</td>
</tr>
<tr>
<td>Mon-P-1-4</td>
<td>Acoustic Analysis-Synthesis of Speech Disorders</td>
<td>119</td>
</tr>
<tr>
<td>Mon-O-2-1</td>
<td>ASR Systems and Technologies</td>
<td>120</td>
</tr>
<tr>
<td>Mon-O-2-2</td>
<td>Deception, Personality, and Culture Attribute</td>
<td>121</td>
</tr>
<tr>
<td>Mon-O-2-3</td>
<td>Automatic Detection and Recognition of Voice and Speech Disorders</td>
<td>122</td>
</tr>
<tr>
<td>Mon-O-2-4</td>
<td>Voice Conversion</td>
<td>124</td>
</tr>
<tr>
<td>Mon-SS-2-1</td>
<td>Special Session: The INTERSPEECH 2018 Computational Paralinguistics ChallengE (ComParE): Atypical & Self-Assessed Affect, Crying & Heart Beats 2</td>
<td>125</td>
</tr>
<tr>
<td>Mon-S&T-2-1</td>
<td>Show and Tell 2</td>
<td>127</td>
</tr>
<tr>
<td>Mon-P-2-1</td>
<td>Spoken Dialogue Systems and Conversational Analysis</td>
<td>128</td>
</tr>
<tr>
<td>Mon-P-2-2</td>
<td>Spoofing Detection</td>
<td>130</td>
</tr>
<tr>
<td>Mon-P-2-3</td>
<td>Speech Analysis and Representation</td>
<td>133</td>
</tr>
<tr>
<td>Mon-P-2-4</td>
<td>Sequence Models for ASR</td>
<td>136</td>
</tr>
<tr>
<td>Mon-P-2-5</td>
<td>Source Separation and Spatial Analysis</td>
<td>138</td>
</tr>
</tbody>
</table>

September 4, 2018, Tuesday

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue-Plenary-1</td>
<td>Plenary Talk-1</td>
<td>140</td>
</tr>
<tr>
<td>Tue-O-1-1</td>
<td>Acoustic Model Adaptation</td>
<td>140</td>
</tr>
<tr>
<td>Tue-O-1-2</td>
<td>Statistical Parametric Speech Synthesis</td>
<td>141</td>
</tr>
<tr>
<td>Tue-O-1-3</td>
<td>Emotion Modeling</td>
<td>142</td>
</tr>
<tr>
<td>Tue-O-1-4</td>
<td>Models of Speech Perception</td>
<td>143</td>
</tr>
<tr>
<td>Tue-O-1-5</td>
<td>Multimodal Dialogue Systems</td>
<td>145</td>
</tr>
<tr>
<td>Tue-SS-1-1</td>
<td>Special Session: Speech Recognition for Indian Languages</td>
<td>146</td>
</tr>
<tr>
<td>Tue-S&T-1-1</td>
<td>Show and Tell 3</td>
<td>148</td>
</tr>
<tr>
<td>Tue-P-1-1</td>
<td>Speaker Verification II</td>
<td>148</td>
</tr>
<tr>
<td>Tue-P-1-2</td>
<td>Novel Approaches to Enhancement</td>
<td>151</td>
</tr>
<tr>
<td>Tue-P-1-3</td>
<td>Syllabification, Rhythm, and Voice Activity Detection</td>
<td>153</td>
</tr>
<tr>
<td>Tue-P-1-4</td>
<td>Selected Topics in Neural Speech Processing</td>
<td>156</td>
</tr>
<tr>
<td>Tue-Perspective-1</td>
<td>Perspective Talk-1</td>
<td>158</td>
</tr>
<tr>
<td>Tue-IP-1</td>
<td>Industry Presentation-1</td>
<td>158</td>
</tr>
<tr>
<td>Tue-IP-2</td>
<td>Industry Presentation-2</td>
<td>158</td>
</tr>
</tbody>
</table>
September 5, 2018, Wednesday

Wed-Plenary-2 Plenary Talk-2...177
Wed-O-1-1 Novel Neural Network Architectures for Acoustic Modelling.................................177
Wed-O-1-2 Language Identification...178
Wed-O-1-3 Production of Prosody..180
Wed-O-1-4 Speech Intelligibility and Quality..181
Wed-SS-1-1 Special Session: Integrating Speech Science and Technology for Clinical Applications..........................182
Wed-SS-1-2 Special Session: Speech Technologies for Code-Switching in Multilingual Communities...183
Wed-S&T-1-1 Show and Tell 5..185
Wed-P-1-1 Voice Conversion and Speech Synthesis...186
Wed-P-1-2 Extracting Information from Audio..188
Wed-P-1-3 Signal Analysis for the Natural, Biological and Social Sciences....................................191
Wed-P-1-4 Speech Prosody...193
Wed-Perspective-3 Perspective Talk-3..195
Wed-IP-4 Industry Presentation-4 ..195
Wed-IP-5 Industry Presentation-5..195
Wed-IP-6 Industry Presentation-6..195
Wed-O-2-1 Recurrent Neural Models for ASR..195
Wed-O-2-2 Speaker Verification Using Neural Network Methods I..197
Wed-O-2-3 Speech Perception in Adverse Conditions..198
Wed-O-2-4 Measuring Pitch and Articulation..199
Wed-O-2-5 Speech and Language Analytics for Mental Health..200
Wed-SS-2-1 Special Session: Spoken CALL Shared Task, Second Edition...201
Wed-S&T-2-1 Show and Tell 6..203
Wed-P-2-1 Adjusting to Speaker, Accent, and Domain..204
Wed-P-2-2 Speech Synthesis Paradigms and Methods...206
Wed-P-2-3 Second Language Acquisition and Code-switching..209
September 6, 2018, Thursday

Thu-Plenary-3 Plenary Talk-3.. 228
Thu-O-1-1 Distant ASR.. 229
Thu-O-1-2 Expressive Speech Synthesis.. 230
Thu-O-1-3 Representation Learning for Emotion.. 231
Thu-O-1-4 Articulatory Information, Modeling and Inversion... 232
Thu-SS-1-1 Special Session: Novel Paradigms for Direct Synthesis Based on Speech-Related Biosignals... 233
Thu-SS-1-2 Special Session: Low Resource Speech Recognition Challenge for Indian Languages... 235
Thu-S&T-1-1 Show and Tell 7.. 236
Thu-P-1-1 Deep Enhancement... 237
Thu-P-1-2 Acoustic Scenes and Rare Events... 239
Thu-P-1-3 Language Modeling.. 241
Thu-P-1-4 Speech Pathology, Depression, and Medical Applications... 243
Thu-Perspective-4 Perspective Talk-4... 246
Thu-IP-7 Industry Presentation-7... 246
Thu-IP-8 Industry Presentation-8.. 246
Thu-IP-9 Industry Presentation-9.. 246
Thu-O-2-1 Spoken Language Understanding... 246
Thu-O-2-2 Source Separation from Monaural Input... 247
Thu-O-2-3 Multimodal Systems... 249
Thu-O-2-4 Coding.. 250
Thu-P-2-1 Speaker Verification Using Neural Network Methods II... 251
Thu-P-2-2 Emotion Recognition and Analysis... 254
Thu-P-2-3 Acoustic Modelling... 257
Thu-P-2-4 Speech and Speaker Perception.. 259
Abstracts
From Vocoder to Code-Excited Linear Prediction: Learning How We Hear What We Hear
Bishnu S. Atal
Department of Electrical Engineering, University of Washington, Seattle, WA 98195

Mon-Medal-1, Time: 11:00-12:00
It all started almost a century ago, in 1920s. A new undersea transatlantic telegraph cable had been laid. The idea of transmitting speech over the new telegraph cable caught the fancy of Homer Dudley, a young engineer who had just joined Bell Telephone Laboratories. This led to the invention of Vocoder - its close relative Voder was showcased as the first machine to create human speech at the 1939 New York World’s Fair. However, the voice quality of vocoders was not good enough for use in commercial telephony. During the time speech scientists were busy with vocoders, several major developments took place outside speech research. Norbert Wiener developed a mathematical theory for calculating the best filters and predictors for detecting signals hidden in noise. Linear Prediction or Linear Predictive Coding became a major tool for speech processing. Claude Shannon established that the highest bit rate in a communication channel in presence of noise is achieved when the transmitted signal resembles random white Gaussian noise. Shannon’s theory led to the invention of Code-Excited Linear Prediction (CELP). Nearly all digital cellular standards as well as standards for digital voice communication over the Internet use CELP coders. The success in speech coding came with understanding of what we hear and what we do not. Speech encoding at low bit rates introduce errors and these errors must be hidden under the speech signal to become inaudible. More and more, speech technologies are being used in different acoustic environments raising questions about the robustness of the technology. Human listeners handle situations well when the signal at our ears is not just one signal, but also a superposition of many acoustic signals. We need new research to develop signal-processing methods that can separate the mixed acoustic signal into individual components and provide performance similar or superior to that of human listeners.

Mon-O-1-1: End-to-End Speech Recognition
Hall 3; 14:00-16:00; Monday, 3 September, 2018
Chairs: Dong Yu and Zoltán Tuske

Semi-Supervised End-to-End Speech Recognition
Shigeki Karita1, Shinji Watanabe2, Tomoharu Iwata3, Atsunori Ogawa1 and Marc Delcroix1
1NTT Communication Science Laboratories
2Center for Language and Speech Processing, Johns Hopkins University
3Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Mon-O-1-1-1, Time: 14:00-14:20
We propose a novel semi-supervised method for end-to-end automatic speech recognition (ASR). It can exploit large unpaired speech and text datasets, which require much less human effort to create paired speech-to-text datasets. Our semi-supervised method targets the extraction of an intermediate representation between speech and text data using a shared encoder network. Autoencoding of text data with this shared encoder improves the feature extraction of text data as well as that of speech data when the intermediate representations of speech and text are similar to each other as an inter-domain feature. In other words, by combining speech-to-text and text-to-text mappings through the shared network, we can improve speech-to-text mapping by learning to reconstruct the unpaired text data in a semi-supervised end-to-end manner. We investigate how to design suitable inter-domain loss, which minimizes the dissimilarity between the encoded speech and text sequences, which originally belong to quite different domains. The experimental results we obtained with our proposed semi-supervised training shows a larger character error rate reduction from 15.8% to 14.4% than a conventional language model integration on the Wall Street Journal dataset.

Improved Training of End-to-End Attention Models for Speech Recognition
Albert Zeyer1,2, Kazuki Irie3, Ralf Schlüter1 and Hermann Ney1,2
1Human Language Technology and Pattern Recognition, Computer Science Department
RWTH Aachen University, 52062 Aachen, Germany
2AppTek, USA, http://www.apptek.com/
3NNAISENSE, Switzerland, https://nnaisense.com

Mon-O-1-1-2, Time: 14:20-14:40
Sequence-to-sequence attention-based models on subword units allow simple open-vocabulary end-to-end speech recognition. In this work, we show that such models can achieve competitive results on the Switchboard 300h and LibriSpeech 1000h tasks. In particular, we report the state-of-the-art word error rates (WER) of 3.54% on the dev-clean and 3.82% on the test-clean evaluation subsets of LibriSpeech.

We introduce a new pretraining scheme by starting with a high time reduction factor and lowering it during training, which is crucial both for convergence and final performance. In some experiments, we also use an auxiliary CTC loss function to help the convergence. In addition, we train long short-term memory (LSTM) language models on subword unit. By shallow fusion, we report up to 27% relative improvements in WER over the attention baseline without a language model.

End-to-End Speech Recognition Using Lattice-free MMI
Hossein Hadian1,2, Hossein Sameti1, Daniel Povey2,3 and Sanjeev Khudanpur1,3
1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
2Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
3Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, USA

Mon-O-1-1-3, Time: 14:40-15:00
We present our work on end-to-end training of acoustic models using the lattice-free maximum mutual information (LF-MMI) objective function in the context of hidden Markov models.

By end-to-end training, we mean flat-start training of a single DNN in one stage without using any previously trained models, forced alignments, or building state-tying decision trees. We use full biphones to enable context-dependent modeling without trees and show that our end-to-end LF-MMI approach can achieve comparable results to regular LF-MMI on well-known large vocabulary tasks.

We also compare with other end-to-end methods such as CTC in character-based and lexicon-free settings and show 5 to 25 percent relative reduction in word error rates on different large vocabulary tasks while using significantly smaller models.

Multi-channel Attention for End-to-End Speech Recognition
Stefan Braun, Daniel Neil, Jithendar Anumulla, Enea Ceiolini and Shih-Chii Liu

Notes
Recent end-to-end models for automatic speech recognition use sensory attention to integrate multiple input channels within a single neural network. However, these attention models are sensitive to the ordering of the channels used during training. This work proposes a sensory attention mechanism that is invariant to the channel ordering and only increases the overall parameter count by 0.09%. We demonstrate that even without re-training, our attention-equipped end-to-end model is able to deal with arbitrary numbers of input channels during inference. In comparison to a recent related model with sensory attention, our model when tested on the real noisy recordings from the multi-channel CHiME-4 dataset, achieves a relative character error rate (CER) improvement of 40.3% to 42.9%. In a two-channel configuration experiment, the attention signal allows the lower signal-to-noise ratio (SNR) sensor to be identified with 97.7% accuracy.

Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition

Titouan Parcollet1,4, **Ying Zhang**1,3, **Mohamed Mochrid**, **Chiheb Trabelsi**2, **Georges Linarès**3, **Renato de Mori**1,4 and **Yoshua Bengio**2

1Université d’Avignon, LIA, France
2Université de Montréal, MILA, Canada
3McGill University, Montréal, Canada
4Orkis, Aix en provence, France
5Element AI, Montréal, Canada

Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time frame components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.

Compression of End-to-End Models

Ruoming Pang, **Tara Sainath**, **Rohit Prabhavalkar**, **Suyog Gupta**, **Yonghui Wu**, **Shuyuan Zhang** and **Chung-Cheng Chiu**

Google Inc., U.S.A

End-to-end models, which output text directly given speech using a single neural network, have been shown to be competitive with conventional speech recognition models containing separate acoustic, pronunciation and language model components. Such models do not require additional resources for decoding and are typically much smaller than conventional models. This makes them particularly attractive in the context of on-device speech recognition where both small memory footprint and low power consumption are critical. This work explores the problem of compressing end-to-end models with the goal of satisfying device constraints without sacrificing model accuracy. We evaluate matrix factorization, knowledge distillation and parameter sparsity to determine the most effective methods given constraints such as a fixed parameter budget.

Learning Interpretable Control Dimensions for Speech Synthesis by Using External Data

Zack Hodari, **Oliver Watts**, **Srikanth Ronanki** and **Simon King**

The Centre for Speech Technology Research, University of Edinburgh, United Kingdom

There are many aspects of speech that we might want to control when creating text-to-speech (TTS) systems. We present a general method that enables control of arbitrary aspects of speech, which we demonstrate on the task of emotion control. Current TTS systems use supervised machine learning and are therefore heavily reliant on labelled data. If no labels are available for a desired control dimension, then creating interpretable control becomes challenging. We introduce a method that uses external, labelled data (i.e. the natural real data used to train the acoustic model) to enable the control of dimensions that are not labelled in the original data. Adding interpretable control allows the voice to be manually controlled to produce more engaging speech, for applications such as audiobooks. We evaluate our method using a listening test.

Investigating Accuracy of Pitch-accent Annotations in Neural Network-based Speech Synthesis and Denoising Effects

Hieu-Thi Luong1, **Xin Wang**1, **Junichi Yamagishi**1 and **Nobuyuki Nishizawa**2

1National Institute of Informatics, Tokyo, Japan
2KDDI Research Inc., Saitama, Japan

We investigated the impact of noisy linguistic features on the performance of a Japanese speech synthesis system based on neural network that uses WaveNet vocoder. We compared an ideal system that uses manually corrected linguistic features including phoneme and prosodic information in training and test sets against a few other systems that use corrupted linguistic features. Both subjective and objective results demonstrate that corrupted linguistic features, especially those in the test set, affected the system’s performance significantly in a statistical sense due to a mismatched condition between the training and test sets. Interestingly, while an utterance-level Turing test showed that listeners had a difficult time differentiating synthetic speech from natural speech, it further indicated that adding noise to the linguistic features in the training set can partially reduce the effect of the mismatch, regularize the model and help the system perform better when linguistic features of the test set are noisy.

An Exploration of Local Speaking Rate Variations in Mandarin Read Speech

Guan-Ting Liu1, **Chen-Yu Chiang**2, **Yih-Ru Wang**1 and **Sin-Horng Chen**1

1Dept. of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
2Dept. of Communication Engineering, National Taipei University, New Taipei City, Taiwan

This paper explores speaking rate variation in Mandarin read speech. In contrast to assuming that each utterance is generated in a constant or global speaking rate, this study seeks to estimate local speaking rate for each prosodic unit in an utterance. The exploration is based on the existing speaking rate-dependent hierarchical prosodic model (SR-HPM), which results in improved speech quality and intelligibility.
Improving Mongolian Phrase Break Prediction by Using Syllable and Morphological Embeddings with BiLSTM Model

Rui Liu, Feilong Bao, Guanglai Gao, Hui Zhang and Yonghe Wang

Mon-0-1-2-6, Time: 15:40-16:00

In the speech synthesis systems, the phrase break (PB) prediction is the first and most important step. Recently, the state-of-the-art PB prediction systems mainly rely on word embeddings. However, this method is not fully applicable to Mongolian language, because its word embeddings are inadequate trained, owing to the lack of resources. In this paper, we introduce a bidirectional Long Short Term Memory (BiLSTM) model which combined word embeddings with syllable and morphological embedding representations to provide richer and multi-view information which leverages the agglutinative property. Experimental results show the proposed method outperforms compared systems which only used the word embeddings. In addition, further analysis shows that it is quite robust to the Out-of-Vocabulary (OOV) problem owe to the refined word embedding. The proposed method achieves the state-of-the-art performance in the Mongolian PB prediction.

Notes
Fast Variational Bayes for Heavy-tailed PLDA
Applied to i-vectors and x-vectors
Anna Silnova1, Niko Brummer2, Daniel Garcia-Romero3, David Snyder1 and Lukáš Burget1
1Brno University of Technology, Czech Republic
2Nuance Communications, South Africa
3Johns Hopkins HLT/COE, USA
Mon-O-1-3-3, Time: 14:40-15:00
The standard state-of-the-art backend for text-independent speaker
recognizers that use i-vectors or x-vectors is Gaussian PLDA (G-PLDA),
assisted by a Gaussianization step involving length normalization.
G-PLDA can be trained with both generative or discriminative methods.
It has long been known that heavy-tailed PLDA (HT-PLDA), applied without
length normalization, gives similar accuracy, but at considerable
extra computational cost. We have recently introduced a fast scoring
algorithm for a discriminatively trained HT-PLDA backend. This paper
extends that work by introducing a fast, variational Bayes, generative
training algorithm. We compare old and new backends, with and without
length-normalization, with i-vectors and x-vectors, on SRE'10, SRE'16 and SiT.

Integrated Presentation Attack Detection and
Automatic Speaker Verification: Common Features
and Gaussian Back-end Fusion
Massimiliano Todisco1, Héctor Delgado1, Kong Aik Lee1, Md
Sahidullah2, Nicholas Evans2, Tomi Kinnunen3 and Junichi
Yamagishi4,5
1Department of Digital Security, EURECOM, France
2Data Science Research Laboratories, NEC Corporation, Japan
3MULTISPEECH, Inria, France
4School of Computing, University of Eastern Finland, Finland
5Digital Content and Media Sciences Research Division, National
Institute of Informatics, Japan
6Centre of Speech Technology Research, University of
Edinburgh, UK
Mon-O-1-3-4, Time: 15:00-15:20
The vulnerability of automatic speaker verification (ASV) systems
to spoofing is widely acknowledged. Recent years have seen an
enormous interest in research efforts to develop spoofing countermeasures,
also known as presentation attack detection (PAD) systems. Much of this
work has involved the exploration of features that discriminate reliably
between bona fide and spoofed speech. While there are grounds to use
different front-ends for ASV and PAD systems (they are different tasks)
the use of a single front-end has obvious benefits, not least convenience
and computational efficiency, especially when ASV and PAD are combined.
This paper investigates the performance of a variety of different features
used previously for both ASV and PAD and assesses their performance
when combined for both tasks. This paper also presents a Gaussian back-
end fusion approach to system combination. In contrast to cascaded
architectures, it relies on the application of the two-dimensional score
distribution stemming from the combination of ASV and PAD in parallel.
This approach to combination is shown to generalise particularly well
across independent ASVspoof 2017 v2.0 development and evaluation
datasets.

A Generalization of PLDA for Joint Modeling of
Speaker Identity and Multiple Nuisance Conditions
Luciana Ferrer1 and Mitchell McLaren2
1Instituto de Investigación en Ciencias de la Computación,
CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
2Speech Technology and Research Lab, SRI International, Menlo
Park, USA
Mon-O-1-3-5, Time: 15:20-15:40
Probabilistic linear discriminant analysis (PLDA) is the leading method for
calculating scores in speaker recognition systems. The method models
the vectors representing each audio sample as a sum of three terms: one
that depends on the speaker identity, one that models the within-speaker
variability and one that models any remaining variability. The last two terms
are assumed to be independent across samples. We recently proposed
an extension of the PLDA method, which we termed Joint PLDA (JPLDA),
where the second term is considered dependent on the type of nuisance
condition present in the data (e.g., the language or channel). The proposed
method led to significant gains for multilingual speaker recognition
when taking language as the nuisance condition. In this paper, we present a
generalization of this approach that allows for multiple nuisance terms. We
show results using language and several nuisance conditions describing
the acoustic characteristics of the sample and demonstrate that jointly
including all these factors in the model leads to better results than including
only language or acoustic condition factors. Overall, we obtain relative
improvements in detection cost function between 5% and 47% for various
systems and test conditions with respect to standard PLDA approaches.

An Investigation of Non-linear i-vectors for Speaker
Verification
Nanxin Chen, Jesús Villaiba and Najim Dehak
Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD
Mon-O-1-3-6, Time: 15:40-16:00
Speaker verification becomes increasingly important due to the popularity
of speech assistants and smart home. i-vectors are used broadly for this
topic, which use factor analysis to model the shift of average parameter
in Gaussian Mixture Models. Recently by the progress of deep learning,
high-level non-linearity improves results in many areas. In this paper we
propose a new framework of i-vectors which uses stochastic gradient
descent to solve the problem of i-vectors. From our preliminary results
stochastic gradient descent can get same performance as expectation-
maximization algorithm. However, by backpropagation the assumption can
be more flexible, so both linear and non-linear assumption is possible in
our framework. From our result, both maximum a posteriori estimation
and maximum likelihood lead to slightly better result than conventional
i-vectors and both linear and non-linear system has similar performance.

Mon-O-1-4: Spoken Term Detection
MR G.01-G.02; 14:00-16:00; Monday, 3 September, 2018
Chairs: Xiaodong Cui and Thiago Fraga da Silva

CNN Based Query by Example Spoken
Term Detection
Dhananjay Ram, Lesly Miculicich and Hervé Bourlard
Idiap Research Institute, Martigny, Switzerland
École polytechnique fédérale de Lausanne, Switzerland
Mon-O-1-4-1, Time: 14:00-14:20
In this work, we address the problem of query by example spoken term
detection (QBET-STD) in zero-resource scenario. State of the art solutions
usually rely on dynamic time warping (DTW) based template matching.
Instead, we propose here to tackle the problem as a binary classification
of images. Similar to the DTW approach, we rely on deep neural network
(DNN) based posterior probabilities as feature vectors. The posteriors
from a spoken query and a test utterance are used to compute frame-level
similarities in a matrix form. This matrix contains somewhere a quasi-

Learning Acoustic Word Embeddings with Temporal Context for Query-by-Example Speech Search
Yugen Yuan1, Cheung-Chi Leung1, Lei Xie1, Hongjie Chen1, Bin Ma1 and Haizhou Li1
1 School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2 Alibaba Inc., Singapore
3 Department of Electrical and Computer Engineering, National University of Singapore, Singapore
Mon-0-1-4-2, Time: 14:20-14:40

We propose to learn acoustic word embeddings with temporal context for query-by-example (QbE) speech search. The temporal context includes the leading and trailing word sequences of a word. We assume that there exist spoken word pairs in the training database. We pad the word pairs with their original temporal context to form fixed-length speech segment pairs. We obtain the acoustic word embeddings through a deep convolutional neural network (CNN) which is trained on the speech segment pairs with a triplet loss. By shifting a fixed-length analysis window through the search content, we obtain a running sequence of embeddings. In this way, searching for the spoken query is equivalent to the matching of acoustic word embeddings. The experiments show that our proposed acoustic word embeddings learned with temporal context are effective in QbE speech search. They outperform the state-of-the-art frame-level feature representations and reduce run-time computation since no dynamic time warping is required in QbE speech search. We also find that it is important to have sufficient speech segment pairs to train the deep CNN for effective acoustic word embeddings.

Siamese Recurrent Auto-Encoder Representation for Query-by-Example Spoken Term Detection
Ziwei Zhu1, Zhiyang Wu1,2, Runnan Li1, Helen Meng1,2 and Lianhong Cai1
1 Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University, China
2 Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, China
Mon-0-1-4-3, Time: 14:40-15:00

With the explosive development of human-computer speech interaction, spoken term detection is widely required and has attracted increasing interest. In this paper, we propose a weak supervised approach using Siamese recurrent auto-encoder (RAE) to represent speech segments for query-by-example spoken term detection (QbE-STD). The proposed approach exploits word pairs that contain different instances of the same/ different word content as input to train the Siamese RAE. The encoder last hidden state vector of Siamese RAE is used as the feature for QbE-STD, which is a fixed dimensional embedding feature containing mostly semantic content related information. The advantages of the proposed approach are: 1) extracting more compact feature with fixed dimension while keeping the semantic information for STD; 2) the extracted feature can describe the sequential phonetic structure of similar sounds to degree, which can be applied for zero-resource QbE-STD. Evaluations on real scene Chinese speech interaction data and TIMIT confirm the effectiveness and efficiency of the proposed approach compared to the conventional ones.

Fast Derivation of Cross-lingual Document Vectors from Self-attentive Neural Machine Translation Model
Wei Li and Brian Mak
Department of Computer Science and Engineering, The Hong Kong University of Science and Technology
Mon-0-1-4-4, Time: 15:00-15:20

A universal cross-lingual representation of documents, which can capture the underlying semantics is very useful in many natural language processing tasks. In this paper, we develop a new document vectorization method which effectively selects the most salient sequential patterns from the inputs to create document vectors via a self-attention mechanism using a neural machine translation (NMT) model. The model used by our method can be trained with parallel corpora that are unrelated to the task at hand. During testing, our method will take a monolingual document and convert it into a “Neural Machine Translation framework based cross-lingual Document Vector” (NTDV). NTDV has two comparative advantages. Firstly, the NTDV can be produced by the forward pass of the encoder in the NMT and the process is very fast and does not require any training/optimization. Secondly, our model can be conveniently adapted from a pair of existing attention based NMT models and the training requirement on parallel corpus can be reduced significantly. In a cross-lingual document classification task, our NTDV embeddings surpass the previous state-of-the-art performance in the English-to-German classification test and, to our best knowledge, it also achieves the best performance among the fast decoding methods in the German-to-English classification test.

LSTM Based Attentive Fusion of Spectral and Prosodic Information for Keyword Spotting in Hindi Language
Laxmi Pandey1 and Karan Nathwani2
1 Indian Institute of Technology, Kanpur, India
2 Indian Institute of Technology, Jammu, India
Mon-0-1-4-5, Time: 15:20-15:40

In this paper, a DNN based keyword spotting framework, that utilizes both spectral as well as prosodic information present in the speech signal, is proposed. A DNN is first trained to learn a set of hierarchical non-linear transformation parameters that project the original spectral and prosodic feature vectors onto a feature space where the distance between similar syllable pairs is small and between dissimilar syllable pairs is large. These transformed features are then fused using an attention-based long short-term memory (LSTM) network. As a side result, a deep denoising autoencoder based fine-tuning technique is used to improve the performance of sequence predictions. A sequence matching method called the sliding syllable protocol is also developed for keyword spotting. Syllable recognition and keyword spotting (KWS) experiments are conducted specifically for the Hindi language which is one of the widely spoken languages across the globe but is not addressed significantly by the speech processing community. The proposed framework indicates reasonable improvements when compared to baseline methods available in the literature.

Spoken Keyword Detection Using Joint DTW-CNN
Ravi Shankar1, Vikram C M2 and S R Mahadeva Prasanna1,2
1 Johns Hopkins University, Baltimore
2 Indian Institute of Technology Guwahati
3 Indian Institute of Technology Dharwad
Mon-0-1-4-6, Time: 15:40-16:00

A method to detect spoken keywords in a given speech utterance is proposed, called as joint Dynamic Time Warping (DTW)-Convolution Neural Network (CNN). It is a combination of DTW approach with a strong classifier like CNN. Both these methods have independently shown significant results in solving problems related to optimal sequence alignment and object recognition, respectively. The proposed method modifies the original DTW formulation and converts the warping matrix into a gray scale image. A CNN is trained on these images to classify the presence
Three different types of heartbeats have to be determined. We describe vocalisations have to be told apart; and in the Heart Beats Sub-Challenge, classification problem; in the Crying Sub-Challenge, three types of infant valence scores given by the speakers themselves are used for a three-class subjects have to be classified; in the Self-Assessed Affect Sub-Challenge, addresses four different problems for the first time in a research competition under well-defined conditions: In the Atypical Affect Sub-Challenge, four basic emotions annotated in the speech of handicapped

The INTERSPEECH 2018 Computational Paralinguistics Challenge: Atypical & Self-Assessed Affect, Crying & Heart Beats

Björn Schuller, *Stefan Steidl*, *Anton Batliner*, *Peter B. Marschik*, *Harald Baumeister*, *Fengquan Dong*, *Simone Hantke*, *Florian B. Pokorny*, *Eva-Maria Rathner*, *Katrin D. Bartl-Pokorny*, *Christa Einspieler*, *Dajie Zhang*, *Alice Baird*, *Shahin Amiriparian*, *Kun Qian*, *Zhao Ren*, *Maximilian Schmitt*, *Panagiotis Tzirakis* and *Stefanos Zafeiriou*

1 GLAM – Group on Language, Audio & Music, Imperial College London, UK
2 ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3 audEERING GmbH, Gilching, Germany
4 Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany
5 iDN – interdisciplinary Developmental Neuroscience, Medical University of Graz, Austria
6 University Medical Center Göttingen, Germany
7 Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
8 Department of Clinical Psychology and Psychotherapy, University of Ulm, Germany
9 Shenzhen University General Hospital, Shenzhen, P.R. China
10 Machine Intelligence & Signal Processing Group, Technische Universität München, Germany
11 University of Oulu, Finland

Mon-SS-1-1, Time: 14:00-14:10

Heart Beat Sub-Challenge

Björn Schuller, *Stefan Steidl*, *Anton Batliner*, *Peter B. Marschik*, *Harald Baumeister*, *Fengquan Dong*, *Simone Hantke*, *Florian B. Pokorny*, *Eva-Maria Rathner*, *Katrin D. Bartl-Pokorny*, *Christa Einspieler*, *Dajie Zhang*, *Alice Baird*, *Shahin Amiriparian*, *Kun Qian*, *Zhao Ren*, *Maximilian Schmitt*, *Panagiotis Tzirakis* and *Stefanos Zafeiriou*

GLAM – Group on Language, Audio & Music, Imperial College London, UK

ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany

AudEERING GmbH, Gilching, Germany

Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany

iDN – interdisciplinary Developmental Neuroscience, Medical University of Graz, Austria

University Medical Center Göttingen, Germany

Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden

Department of Clinical Psychology and Psychotherapy, University of Ulm, Germany

Shenzhen University General Hospital, Shenzhen, P.R. China

Machine Intelligence & Signal Processing Group, Technische Universität München, Germany

University of Oulu, Finland

Mon-SS-1-1-1, Time: 14:00-14:10

The INTERSPEECH 2018 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Atypical Affect Sub-Challenge, four basic emotions annotated in the speech of handicapped subjects have to be classified; in the Self-Assessed Affect Sub-Challenge, valence scores given by the speakers themselves are used for a three-class classification problem; in the Crying Sub-Challenge, three types of infant vocalisations have to be told apart; and in the Heart Beats Sub-Challenge, three different types of heartbeats have to be determined. We describe the Sub-Challenges, their conditions and baseline feature extraction and classifiers, which include data-learned (supervised) feature representations by end-to-end learning, the ‘usual’ ComParE and BoAW features and deep unsupervised representation learning using the AUDEEP toolkit for the first time in the challenge series.

Mon-SS-1-1-2, Time: 14:10-14:20

An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods for Pathological Heart Sound Classification

Ahmed Imtiaz Humayun, *Md. Tuhiduzzaman Khan*, *Shabnam Ghaftarzadegan*, *Zhe Feng* and *Taufiq Hasan*

1 Health Lab, Dept. of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Bangladesh

2 Human Machine Interaction Group-2, Robert Bosch Research and Technology Center (RTC), Sunnyvale, CA

Mon-SS-1-1-3, Time: 14:20-14:30

In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computational Paralinguistics (ComParE) Heart Beats Sub-Challenge. Our primary classification framework constitutes a convolutional neural network with 1D-CNN time-convolution (tConv) layers, which uses features transferred from a model trained on the 2016 Physionet Heart Sound Database. We also employ a Representation Learning (RL) approach to generate features in an unsupervised manner using Deep Recurrent Autoencoders and use Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers. Finally, we utilize an SVM classifier on a high-dimensional segment-level feature extracted using various functionalities on short-term acoustic features, i.e., Low-Level Descriptors (LLD). An ensemble of the three different approaches provides a relative improvement of 11.13% compared to our best single sub-system in terms of the Unweighted Average Recall (UAR) performance metric on the evaluation dataset.

Crying Sub-Challenge

Björn Schuller, *Stefan Steidl*, *Anton Batliner*, *Peter B. Marschik*, *Harald Baumeister*, *Fengquan Dong*, *Simone Hantke*, *Florian B. Pokorny*, *Eva-Maria Rathner*, *Katrin D. Bartl-Pokorny*, *Christa Einspieler*, *Dajie Zhang*, *Alice Baird*, *Shahin Amiriparian*, *Kun Qian*, *Zhao Ren*, *Maximilian Schmitt*, *Panagiotis Tzirakis* and *Stefanos Zafeiriou*

GLAM – Group on Language, Audio & Music, Imperial College London, UK

ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany

AudEERING GmbH, Gilching, Germany

Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany

iDN – interdisciplinary Developmental Neuroscience, Medical University of Graz, Austria

University Medical Center Göttingen, Germany

Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden

Department of Clinical Psychology and Psychotherapy, University of Ulm, Germany

Shenzhen University General Hospital, Shenzhen, P.R. China

Machine Intelligence & Signal Processing Group, Technische Universität München, Germany

University of Oulu, Finland

Notes
Temporal and Summative Features for Infant Cry Classification in the Interspeech 2018 Computational Paralinguistics Challenge

Mon-SS-1-1-4, Time: 14:30-14:40

The temporal input comprises centi-second frames of low-level signal features which are input to LSTM nodes, while the summative vector comprises a large set of statistical functionals of the same frames that are input to MLP nodes. The combined network is jointly optimized and evaluated using leave-one-speaker-out cross-validation on the challenge training set. Results are compared to independently-trained temporal and summative networks and to a baseline SVM classifier. The combined model outperforms the other models and the challenge baseline on the training set. While problems remain in finding the best configuration and training protocol for such networks, the approach seems promising for future signal classification tasks.

Evolving Learning for Analysing Mood-Related Infant Vocalisation

Zixing Zhang1, Jing Han2, Kun Qian3, and Bjorn Schuller1,2
1GLAM – Group on Language, Audio & Music, Imperial College London, UK
2ZDB Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3Machine Intelligence & Signal Processing Group, Technische Universität München, Germany

Mon-SS-1-1-7, Time: 15:00-15:10

Infant vocalisation analysis plays an important role in the study of the development of pre-speech capability of infants, while machine-based approaches nowadays emerge with an aim to advance such an analysis. However, conventional machine learning techniques require heavy feature-engineering and refined architecture designing. In this paper, we present an evolving learning framework to automate the design of neural network structures for infant vocalisation analysis. In contrast to manually searching by trial and error, we aim to automate the search process in a given space with less interference. This framework consists of a controller and its child networks, where the child networks are built according to the controller’s estimation. When applying the framework to the Interspeech 2018 Computational Paralinguistics (ComParE) Crying Sub-challenge, we discover several deep recurrent neural network structures, which are able to deliver competitive results to the best ComParE baseline method.

Atypical Affect Sub-Challenge

Bjorn Schuller1,2,3, Stefan Steindl1, Anton Battiner2,3, Peter B. Marschik2,3, Harald Baumeister4, Fengquan Dong5, Simone Hantke2,3, Florian B. Pokorny5,6, Eva-Maria Rathner7, Katrin D. Bartl-Pokorny8, Christa Einspieler5, Dajie Zhang6, Alice Baird2,3, Shahin Amiriparian8,9, Kun Qian3, Zhao Ren10, Maximilian Schmitt1, Panagiota Tzirakis1 and Stefanos Zaferiou1,11
1GLAM – Group on Language, Audio & Music, Imperial College London, UK
2ZDB Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3Machine Intelligence & Signal Processing Group, MMK, Technical University of Munich, Germany

Mon-SS-1-1-8, Time: 15:10-15:20

This paper describes the application of a novel deep neural network architecture to the classification of infant vocalisations as part of the Interspeech 2018 Computational Paralinguistics Challenge. Previous approaches to infant cry classification have either applied a statistical classifier to summative features of the whole cry, or applied a syntactic pattern recognition technique to a temporal sequence of features. In this work we explore a deep neural network architecture that exploits both temporal and summative features to make a joint classification.
Deep Learning in Paralinguistic Recognition Tasks: Are Hand-crafted Features Still Relevant?

Johannes Wagner, Dominik Schiller, Andreas Seiderer and Elisabeth André
Human-Centered Multimedia, Augsburg University, Germany

Mon-SS-1-1-1, Time: 15:20-15:30

In the past, the performance of machine learning algorithms depended heavily on the representation of the data. Well-designed features therefore played a key role in speech and paralinguistic recognition tasks. Consequently, engineers have put a great deal of work into manually designing large and complex acoustic feature sets. With the emergence of Deep Neural Networks (DNNs), however, it is now possible to automatically infer higher abstractions from simple spectral representations or even learn directly from raw waveforms. This raises the question if (complex) hand-crafted features will still be needed in the future. We take this year’s INTERSPEECH Computational Paralinguistic Challenge as an opportunity to approach this issue by means of two corpora – Atypical Affect and Crying. At first, we train a Recurrent Neural Network (RNN) to evaluate the performance of several hand-crafted feature sets of varying complexity. Afterwards, we make the network do the feature engineering all on its own by prefixing a stack of convolutional layers. Our results show that there is no clear winner (yet). This creates room to discuss chances and limits of either approach.

Investigation on Joint Representation Learning for Robust Feature Extraction in Speech Emotion Recognition

Danqing Luo\(^1\), Yuexian Zou\(^1\) and Dongyan Huang\(^2\)
\(^1\)ADSPLAB, School of ECE, Peking University, Shenzhen, China
\(^2\)Human Language Technology, Institute for Infocomm Research/ A*STAR, Singapore

Mon-SS-1-1-10, Time: 15:30-15:40

Speech emotion recognition (SER) is a challenging task due to its difficulty in finding proper representations for emotion embedding in speech. Recently, Convolutional Recurrent Neural Network (CRNN), which is combined by convolution neural network and recurrent neural network, is popular in this field and achieves state-of-art on most of the datasets. However, most of work on CRNN only utilizes simple spectral information, which is not capable to capture enough emotion characteristics for the SER task. In this work, we investigate two joint representation learning structures based on CRNN aiming at capturing richer emotional information from speech. Cooperating the handcrafted high-level statistic features with CRNN, a two-channel SER system (HSF-CRNN) is developed to jointly learn the emotion-related features with better discriminative property. Furthermore, considering that the time duration of speech segment significantly affects the accuracy of emotion recognition, another two-channel SER system is proposed where CRNN features extracted from different time scale of spectrogram segment are used for joint representation learning. The systems are evaluated over Atypical Affect Challenge of ComParE2018 and IEMOCAP corpus. Experimental results show that our proposed systems outperform the plain CRNN.

Using Voice Quality Supervectors for Affect Identification

Soo Jin Park, Amber Afshan, Zhi Ming Chua and Abeer Alwan
Electrical and Computer Engineering Department, University of California Los Angeles, USA

Mon-SS-1-1-11, Time: 15:40-15:50

The voice quality of speech sounds often conveys perceivable information about the speaker’s affect. This study proposes perceptually important voice quality features to recognize affect represented in speech excerpts from individuals with mental, neurological and/or physical disabilities. The voice quality feature set consists of F0, harmonic amplitude differences between the first, second, fourth harmonics and the harmonic near 2 kHz, the center frequency and amplitudes of the first 3 formants and cepstral peak prominence. The feature distribution of each utterance and support vector machine classifiers were used for affect classification. Similar classification systems using the MFCCs and ComParE16 feature set were implemented. The systems were fused by taking the confidence mean of the classifiers. Applying the fused system to the Interspeech 2018 Atypical Affect subchallenge task resulted in unweighted average recalls of 43.9% and 41.0% on the development and test dataset, respectively. Additionally, we investigated clusters obtained by unsupervised learning to address gender-related differences.

An End-to-End Deep Learning Framework for Speech Emotion Recognition of Atypical Individuals

Dengke Tang\(^1\), Junlin Zeng\(^2\) and Ming Li\(^2\)
\(^1\)Data Science Research Center, Duke Kunshan University, Kunshan, China
\(^2\)School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

Mon-SS-1-1-12, Time: 15:50-16:00

The goal of the ongoing ComParE 2018 Atypical Affect sub-challenge is to recognize the emotional states of atypical individuals. In this work, we present three modeling methods under the end-to-end learning framework, namely CNN combined with extended features, CNN+RNN and ResNet, respectively. Furthermore, we investigate multiple data augmentation, balancing and sampling methods to further enhance the system performance. The experimental results show that data balancing and augmentation increase the unweighted accuracy (UAR) by 10% absolutely. After score level fusion, our proposed system achieves 48.8% UAR on the develop dataset.
Flexible Tongue Housed in a Static Model of the Vocal Tract With Jaws, Lips and Teeth
Takayuki Arai
Department of Information and Communication Sciences, Japan
Mon-S&T-1-1-3, Time: 14:00-16:00
Physical models of the human vocal tract with a moveable tongue have been reported in past literature. In this study, we developed a new model with a flexible tongue. As with previous models by the author, the flexible tongue is made of gel material. The shape of this model’s tongue is still an abstraction, although it is more realistic than previous models. Apart from the tongue, the model is static and solid; the gel tongue is the main part that can be manipulated. The static portion of the model is an extension of our recent static model with lips, teeth and tongue. The entire model looks like a sagittal splice taken from an artificial human head. Because the thin, acrylic plates on the outside are transparent, the interior of the oral and pharyngeal cavities are visible. When we feed a glottal sound through a hole in the laryngeal region on the bottom of the model, different vowels are produced, dependent upon the shape of the tongue. This model is the most useful and realistic looking of the models we’ve made for speech science education so far.

Voice Analysis Using Acoustic and Throat Microphones for Speech Therapy
Lani Mathew1 and Gopakumar K.2
1Mar Baselios College of Engineering, Thiruvananthapuram, Kerala, India
2TQM College of Engineering, Kollam, Kerala, India
Mon-S&T-1-1-4, Time: 14:00-16:00
Diagnosis of voice disorders by a speech therapist involves the process of voice recording with the patient, followed by software-aided analysis. In this paper, we propose a novel voice diagnosis system which gives voice report information based on Praat software, using voice samples from a throat microphone and an acoustic microphone, making the diagnosis near real-time, as well as robust to background noise. Results show that throat microphones give reliable Jitter and Shimmer values in ambient noise levels of 47~50 dB, while acoustic microphones show high variance in these parameters.

A Robust Context-Dependent Speech-to-Speech Phraselator Toolkit for Alexa
Manny Rayner1, Nikos Tsoukakis1 and Jan Stanek2
1University of Geneva, FTI/TIM, Switzerland
2University of South Australia, Adelaide, Australia
Mon-S&T-1-1-5, Time: 14:00-16:00
We present an open source toolkit for creating robust speech-to-speech phraselators, suitable for medical and other safety-critical domains, that can be hosted on the Amazon Alexa platform. Supported functionality includes context-dependent translation of incomplete utterances. We describe a preliminary evaluation on an English medical examination grammar.

Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India
Mon-P-1-1-1, Time: 14:00-16:00
Nasals and approximants consonants are often confused with each other. Despite the distinction in the production mechanism, these two sound classes exhibit a similar low frequency behavior and lack significant high frequency content. The present study uses a spectral representation obtained using the zero time windowing (ZTW) analysis of speech, for the task of distinction between these two. The instantaneous spectral representation has good resolution at resonances, which helps to highlight the difference in the acoustic vocal tract system response for these sounds. The ZTW spectra around the regions of glottal closure instants are averaged to derive parameters for their classification in continuous speech. A set of parameters based on the dominant resonances, center of gravity, band energy ratio and cumulative spectral sum in low frequencies, is derived from the average spectrum. The paper proposes classification using a knowledge-based approach and training a support vector machine. These classifiers are tested on utterances from different English speakers in the TIMIT dataset. The proposed methods result in an average classification accuracy of 90% between the two classes in continuous speech.

Gestural Lenition of Rhotics Captures Variation in Brazilian Portuguese
Phil Howson and Alexei Kochetov
University of Toronto
Mon-P-1-1-2, Time: 14:00-16:00
The goal of this study is to examine the rhotics in Brazilian Portuguese (BP), /ʁ/ and the ‘archetypal’ coda /R/, to determine if: (1) they can be characterized as a coordination of the tongue dorsum and tongue body or tip and (2) manipulation of the gestural settings accounts for rhotic allophony in BP.

Six native speakers of BP participated in an ultrasound experiment and produced target phonemes in #CV, VCV and VCV environments with the vowels /i, e, a, o/. Tongue contours for the rhotics were compared using Smoothing Spline ANOVAs. /çu/ were produced with a tongue body and dorsum gesture, while /ʁ/ also had an apical gesture. Archetypal /R/ was realized variably, as any of /ɾ, ɾ, ř, χ/.

BP rhotics can be described as the coordination of a tongue dorsum and a tongue body or tip gesture. ‘Archetypal’ /R/ is postulated to be /ɾ/ and /ʁ/. Allophony between /iʁ/ and /ɾ, ɾ, ř, χ/ is due to tongue tip lenition. Allophony between /eʁ/ and /h/ is due to weakening of the tongue dorsum and body gestures. This analysis suggests synchronic and diachronic changes of rhotics result from lenition. It also captures the rarity of diachronic changes from uvulars to alveolars.

Identification and Classification of Fricatives in Speech Using Zero Time Windowing Method
RaviShankar Prasad and Bayya Yegnanarayana
Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India
Mon-P-1-1-3, Time: 14:00-16:00
Fricatives are produced by creating a turbulence in the air-flow by passing it through a stricture in the vocal tract cavity. Fricatives are characterized by their noise-like behavior, which makes it difficult to analyze. Difference in the place of articulation leads to different classes of fricatives. Identification of fricative segment boundaries in speech helps in improving the performance of several applications. The present study attempts towards the identification and classification of fricative segments in continuous speech, based on the statistical behavior of instantaneous spectral characteristics. The proposed method uses parameters such as the dominant resonance frequencies, the center of gravity along with the statistical moments of the spectrum obtained using the zero time windowing (ZTW) method. The ZTW spectra exhibit a high temporal resolution and therefore gives accurate segment boundaries in speech. The proposed algorithm is tested on the TIMIT dataset for English language. A high identification rate of 97.5% is achieved for segment boundaries of the sibilant fricative class. Voiced nonsibilants
show a lower identification rate than their voiceless counterparts due to their vowel-like spectral characteristics. A high classification rate of 93.2% is achieved between sibilants and nonsibilants.

GlobalTIMIT: Acoustic-Phonetic Datasets for the World’s Languages

Nattanun Chanchaochai1, Christopher Cieri1, Japhet Debrah1, Hongwei Ding2, Yue Jiang2, Sishi Liao2, Mark Liberman2, Jonathan Wright1, Jiahong Yuan2, JuHong Zhan2 and Yuying Zhan2

1Linguistic Data Consortium, University of Pennsylvania, U.S.A.
2School of Foreign Languages, Shanghai Jiao Tong University, P.R.C.

Mon-P-1-1-4, Time: 14:00-16:00

Although the TIMIT acoustic-phonetic dataset ([1], [2]) was created three decades ago, it remains in wide use, with more than 20000 Google Scholar references and more than 1000 since 2017. Despite TIMIT’s antiquity and relatively small size, inspection of these references shows that it is still used in many research areas: speech recognition, speaker recognition, speech synthesis, speech coding, speech enhancement, voice activity detection, speech perception, overlap detection and source separation, diagnosis of speech and language disorders and linguistic phonetics, among others.

Nevertheless, comparable datasets are not available even for other widely-studied languages, much less for under-documented languages and varieties. Therefore, we have developed a method for creating TIMIT-like datasets in new languages with modest effort and cost and we have applied this method in standard Thai, standard Mandarin Chinese, English from Chinese L2 learners, the Guanzhong dialect of Mandarin Chinese and the Ga language of West Africa. Other collections are planned or underway.

The resulting datasets will be published through the LDC, along with instructions and open-source tools for replicating this method in other languages, covering the steps of sentence selection and assignment to speakers, speaker recruiting and recording, proof-listening and forced alignment.

Structural Effects on Properties of Consonantal Gestures in Tashlhiyt

Anne Hermes1, Doris Mucke1, Bastian Auris1 and Rachid Ridouane2

1IfL – Phonetics, University of Cologne, Germany
2LPP, UMR7018, CNRS-Sorbonne Nouvelle, Paris, France

Mon-P-1-1-5, Time: 14:00-16:00

Tashlhiyt Berber is a language in which every consonant can take up the nucleus position in a syllable. The present study investigates how gestural properties are modified when the consonants occur in different syllable positions (onset, nucleus, coda). Furthermore, the effect of higher structural components such as morphology on the respective gestural organization patterns are examined.

Therefore, we collected articulographic data for different consonantal roots, such as /bdg/ and /gzm/ with varying affixes, entailing different syllabification patterns in Tashlhiyt. Consonantal properties in different syllable positions are investigated with respect to their intragestural properties and intergestural properties, i.e. bonding strength. Furthermore, gestural coherence with respect to prefixation were examined.

Results reveal that consonantal gestures were not modified on the intragestural level in terms of duration, velocity, stiffness or displacement, when the morphological structure was kept constant. However, on the intergestural level syllable relation was encoded, revealing a tighter bonding for onset-nucleus relations than for heterosyllabic sequences. Furthermore, when changing the morphological marker, modifications of intragestural parameters occur, inducing temporal changes of consonantal gestures. We conclude that higher structural components should be taken into account when investigating syllable internal timing patterns.

Resyllabification in Indian Languages and Its Implications in Text-to-speech Systems

Mahesh M, Jeena J Prakash and Hema Murthy

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Mon-P-1-1-8, Time: 14:00-16:00

Resyllabification is a phonological process in continuous speech in which the coda of a syllable is converted into the onset of the following syllable, either in the same word or in the subsequent word. This paper presents an analysis of resyllabification across words in different Indian languages and its implications in Indian language text-to-speech (TTS) synthesis systems. The evidence for resyllabification is evaluated based on the acoustic analysis of a read speech corpus of the corresponding language. This study shows that the resyllabification obeys the maximum onset principle and introduces the notion of prominence resyllabification in Indian languages. This paper finds acoustic evidence for total resyllabification.

The resyllabification rules obtained are applied to TTS systems. The correctness of the rules is evaluated quantitatively by comparing the acoustic log-likelihood scores of the speech utterances with the original and resyllabified texts and by performing a pair comparison (PC) listening
test on the synthesized speech output. An improvement in the log-likelihood score with the resyllabified text is observed and the synthesized speech with the resyllabified text is preferred 3 times over those without resyllabification.

Voice Source Contribution to Prominence Perception: Rd Implementation
Andy Murphy, Irena Yanushevskaya, Ailbhe Ni Chasaide and Christer Gobl
Trinity College Dublin, Ireland
Mon-P-1-1-9, Time: 14:00-16:00

This paper explores the contribution of voice source modulation to the perception of prominence, following on previous analyses of accentuation, focus and deaccentuation. A listening test was carried out on a sentence of Irish with three accented, prominent syllables (P1, P2, P3). Using inverse filtering and resynthesis, a flattened version was generated, with only slight declination of f0 and other voice source parameters. The global waveform parameter Rd was modulated to provide (i) source boosting (tenser phonation) on either P1 or P2 and/or (ii) source attenuation (laxer phonation) following (Post-attenuation) or preceding (Pre-attenuation) P1 or P2. Rd variation was achieved in two different ways to generate two series of stimuli. f0 was not varied in either series. Twenty-nine listeners rated the prominence level of all syllables in the utterance. Results show that the phrasal position (P1 vs. P2) makes a large difference to prominence judgements. P1 emerged as overall more prominent and more readily ‘enhanced’ by the source modifications. Post-attenuation was particularly important for P1, with effects equal to or greater than local P-boosting. In the case of P2, Pre-attenuation was much more important than Post-attenuation.

On the Relationship between Glottal Pulse Shape and Its Spectrum: Correlations of Open Quotient, Pulse Skew and Peak Flow with Source Harmonic Amplitudes
Christer Gobl, Andy Murphy, Irena Yanushevskaya and Ailbhe Ni Chasaide
Phonetics and Speech Laboratory, School of Linguistic, Speech and Communication Sciences, Trinity College Dublin, Ireland
Mon-P-1-1-10, Time: 14:00-16:00

This paper explores the relationship between the glottal pulse amplitude (Up) and the amplitude of the first harmonic (H1), as well as the combined effects of Up, the open quotient (Oq) and degree of pulse asymmetry/skew (Rk) on the low end of the source spectrum. This serves to elucidate their relationship to the H1-H2 estimate, widely used to make inferences on Oq and voice quality from estimates of H1-H2. Significant improvement in the detection of phonation type compared to the existing voice quality features and MFCC features.

Vincent Hughes1, Philip Harrison1,2, Paul Foulkes1, Peter French1,2, Colleen Kavanagh1 and Eugenia San Segundo Fernández1
1Department of Language and Linguistic Science, University of York, UK
2J P French Associates, York, UK
Mon-P-1-1-11, Time: 14:00-16:00

Semi-automatic systems based on traditional linguistic-phonetic features are increasingly being used for forensic voice comparison (FVC) casework. In this paper, we examine the stability of the output of a semi-automatic system, based on the long-term formant distributions (LTFDs) of F1, F2 and F3, as the channel quality of the input recordings decreases. Cross validated, calibrated GMM-UBM log likelihood-ratios (LLRs) were computed for 97 Standard Southern British English speakers under four conditions. In each condition the same speech material was used, but the technical properties of the recordings changed: high quality studio recording, landline telephone recording, high bit-rate GSM mobile telephone recording and low bit-rate GSM mobile telephone recording. Equal error rate (EER) and the log LR cost function (Cllr) were compared across conditions. System validity was found to decrease with poorer technical quality, with the largest differences in EER (21.66%) and Cllr (0.46) found between the studio and the low bit-rate GSM conditions. However, importantly, performance for individual speakers was affected differently by channel quality. Speakers that produced stronger evidence overall were found to be more variable. Mean F3 was also found to be a predictor of LLR variability, however no effects were found based on speakers’ voice quality profiles. of H1-H2.

Breathy to Tense Voice Discrimination using Zero-Time Windowing Cepstral Coefficients (ZTWCCs)
Sudarsana Reddy Kadri and Bayya Vignanarayana
Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India
Mon-P-1-1-12, Time: 14:00-16:00

In this paper, we consider breathy to tense voices, which are often considered to be opposite ends of a voice quality continuum. Along with these, other aspects of a speaker’s voice play an important role to convey the information to the listener such as mood, attitude and emotional state. The glottal pulse characteristics in different phonation types vary due to the tension of laryngeal muscles together with the respiratory effort. In the present study, we are exploring the features that can capture effects of excitation on the vocal tract system through a signal processing method, called as zero-time windowing (ZTW) method. The ZTW method gives the instantaneous spectrum which captures the changes in the speech production mechanism, providing a higher spectral resolution. The cepstral coefficients derived from ZTW method are used for the classification of phonation types. Along with zero-time windowing cepstral coefficients (ZTWCCs), we use the excitation source features derived from zero frequency filtering (ZFF) method. The excitation features used are strength of excitation, energy of excitation, loudness measure and ZFF signal energy. Classification experiments using ZTWCC and excitation features reveal a significant improvement in the detection of phonation type compared to the existing voice quality features and MFCC features.

Analysis of Breathiness in Contextual Vowel of Voiceless Nasals in Mizo
Pamir Gogoi1, Sishir Kalita2, Parismita Gogoi2, Ratre Raywand1, Priyankoo Sarmah1 and S R Mahadeva Prasanna2,3
1University of Florida, Gainesville, USA
2Indian Institute of Technology Guwahati, Guwahati, India
3Indian Institute of Technology Dharward, Dharward, India
Mon-P-1-1-13, Time: 14:00-16:00

This paper examines the source characteristics of voiced and voiceless nasals in Mizo, a Tibeto-Burman language spoken in North-East India. Mizo is one of the few languages that has voiced and voiceless nasals in its phoneme inventory. This analysis is motivated by the interaction between breathness and nasality reported in a number of speech perception studies using synthetic stimuli. However, there are no studies examining this interaction in vowels after voiced and voiceless nasals. Existing research has also documented the interaction between breath phonation and vowel height. The current study is an acoustic analysis of breathiness in high and low vowels following voiced and voiceless nasals. The low bit-rate GSM conditions. However, importantly, performance for individual speakers was affected differently by channel quality. Speakers that produced stronger evidence overall were found to be more variable. Mean F3 was also found to be a predictor of LLR variability, however no effects were found based on speakers’ voice quality profiles. of H1-H2.
Mon-P-1-2: Speaker State and Trait
Hall 4-6: Poster-2, 14:00-16:00, Monday, 3 September, 2018
Chair: Vidhyasagaran Sethu

Infant Emotional Outbursts Detection in Infant-paren Spoken Interactions
Yijia Xu1, Mark Hasegawa-Johnson1,2 and Nancy McElwain1,3
1Department of Electrical and Computer Engineering
2Beckman Institute for Advanced Science and Technology
3Department of Human Development and Family Studies,
University of Illinois at Urbana Champaign, IL, USA

Mon-P-1-2-1, Time: 14:00-16:00
Detection of infant emotional outbursts, such as crying, in large corpora of recorded infant speech, is essential to the study of dyadic social process, by which infants learn to identify and regulate their own emotions. Such large corpora now exist with the advent of LENA speech monitoring systems, but are not labeled for emotional outbursts. This paper reports on our efforts to manually code child utterances as being of type “laugh”, “cry”, “fuss”, “babble” and “hiccup” and to develop algorithms capable of performing the same task automatically. Human labelers achieve much higher rates of inter-coder agreement for some of these categories than for others. Linear discriminant analysis (LDA) achieves better accuracy on tokens that have been coded by two human labelers than on tokens that have been coded by only one labeler, but the difference is not as much as we expected, suggesting that the acoustic and contextual features being used by human labelers are not yet available to the LDA. Convolutional neural network and hidden markov model achieve better accuracy than LDA, but worse F-score, because they over-weight the prior. Discounting the transition probability does not solve the problem.

Deep Neural Networks for Emotion Recognition Combining Audio and Transcripts
Jaejin Cho1, Raghavendra Pappagari1, Purva Kulkarni2, Jesús Villalba1, Yishay Carmiel1 and Najim Dehak1
1Center for Language Speech Processing, Johns Hopkins University, Baltimore, MD, USA
2IntelligentWire, Seattle, WA, USA
Mon-P-1-2-2, Time: 14:00-16:00
In this paper, we propose to improve emotion recognition by combining acoustic information and conversation transcripts. On the one hand, an LSTM network was used to detect emotion from acoustic features like f0, shimmer, jitter, MFCC, etc. On the other hand, a multi-resolution CNN was used to detect emotion from word sequences. This CNN consists of several parallel convolutions with different kernel sizes to exploit contextual information at different levels. A temporal pooling layer aggregates the hidden representations of different words into a unique sequence level embedding, from which we compute the emotion posterior. We optimized a mixture of classification and verification losses. The verification loss tries to bring embeddings from same emotions closer while it separates embeddings for different emotions. We also compared our CNN with state-of-the-art text-based hand-crafted features (e-vector). We evaluated our approach on the USC-IEMOCAP dataset as well as the dataset consisting of US English telephone speech. In the former, we used human transcripts while in the latter, we used ASR transcripts. The results showed fusing audio and transcript information improved unweighted accuracy by relative 24% for IEMOCAP and relative 3.4% for the telephone data compared to a single acoustic system.

Preference-Learning with Qualitative Agreement for Sentence Level Emotional Annotations
Srinivas Parthasarathy and Carlos Busso
Multimodal Signal Processing(MSP) lab, Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson TX 75080, USA
Mon-P-1-2-3, Time: 14:00-16:00
The perceptual evaluation of emotional attributes is noisy due to inconsistencies between annotators. The low inter-evaluator agreement arises due to the complex nature of emotions. Conventional approaches average scores provided by multiple annotators. While this approach reduces the influence of dissident annotations, previous studies have showed the value of considering individual evaluations to better capture the underlying ground-truth. One of these approaches is the qualitative agreement (QA) method, which provides an alternative framework that captures the inherent trends amongst the annotators. While previous studies have focused on using the QA method for time-continuous annotations from a fixed number of annotators, most emotional databases are annotated with attributes at the sentence-level (e.g., one global score per sentence). This study proposes a novel formulation based on the QA framework to estimate reliable sentence-level annotations for preference-learning. The proposed relative labels between pairs of sentences capture consistent trends across evaluators. The experimental evaluation shows that preference-learning methods to rank-order emotional attributes trained with the proposed QA-based labels achieve significantly better performance than the same algorithms trained with relative scores obtained by averaging absolute scores across annotators. These results show the benefits of QA-based labels for preference-learning using sentence-level annotations.

Transfer Learning for Improving Speech Emotion Classification Accuracy
Siddique Latif1, Rajib Rana2, Shahzad Younis1, Junaid Gadir1 and Julien Epps4
1Information Technology University (ITU)-Punjab, Pakistan
2University of Southern Queensland, Australia
3National University of Sciences and Technology (NUST), Pakistan
4The University of New South Wales, Sydney, Australia
Mon-P-1-2-4, Time: 14:00-16:00
The majority of existing speech emotion recognition research focuses on automatic emotion detection using training and testing data from same corpus collected under the same conditions. The performance of such systems has been shown to drop significantly in cross-corpus and cross-language scenarios. To address the problem, this paper exploit a transfer learning technique to improve the performance of speech emotion recognition systems that is novel in cross-language and cross-corpora scenarios. Evaluations on five different corpora in three different languages show that Deep Belief Networks (DBNs) offer better accuracy than previous approaches on cross-corpus emotion recognition, relative to a Sparse Autoencoder and Support Vector Machine (SVM) baseline system. Results also suggest that using a large number of languages for training and using a small fraction of the target data in training can significantly boost accuracy compared with baseline also for the corpus with limited training examples.

What Do Classifiers Actually Learn? A Case Study on Emotion Recognition Datasets
Patrick Meyer, Eric Buschermöhle and Tim Fingscheidt
Institute for Communications Technology
Technische Universität Braunschweig
38106 Braunschweig, Germany
Mon-P-1-2-5, Time: 14:00-16:00
In supervised learning, a typical method to ensure that a classifier has desirable generalization properties, is to split the available data into training, validation and test subsets. Given a proper data split, we typically then trust our results on the test data. But what do classifiers actually learn? In this case study we show how important it is to analyze precisely the available data, its inherent dependencies w.r.t. class labels and present an example of a popular database for speech emotion recognition, where a minor change of the data split results in an accuracy decrease of about 55% absolute, leading to the conclusion that linguistic content has been learned instead of the desired speech emotions.
State of Mind: Classification through Self-reported Affect and Word Use in Speech
Eva-Maria Rathner1, Yannik Tertorist1, Nicholas Cummins1, Björn Schuller1,2 and Harald Baumeister1
1Clinical Psychology and Psychotherapy, University of Ulm, Germany
2ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3GLAM – Group on Language, Audio & Music, Imperial College London, UK

Mon-P-1-2-6, Time: 14:00-16:00
Human state-of-mind (SOM, e.g. perception, cognition, attention) constantly shifts due to internal and external demands. Mental health is influenced by the habitual use of either adaptive or maladaptive SOM. Therefore, the training of conscious regulation of SOM could be promising in self-help (e- and m-health), blended care and psychotherapy. The presented study indicates that SOM can be influenced by telling personal narratives. Furthermore, SOM and narrative sentiment (positive vs. negative) can be predicted through word use. Such results lay the groundwork for the development of applications that analyse text and speech for: i) the early detection of mental health; ii) the early detection of maladaptive changes in emotion dynamics; (iii) the use of personal narratives to improve emotion regulation skills; iv) the distribution of tailored interventions, and finally, v) evaluation of therapy outcome.

Exploring Spatio-Temporal Representations by Integrating Attention-based Bidirectional-LSTM RNNS and FCNs for Speech Emotion Recognition
Ziping Zhao1, Yu Zheng1, Zixing Zhang1, Haishuai Wang1, Yiqin Zhao1, Chao Li1
1College of Computer and Information Engineering, Tianjin Normal University

Mon-P-1-2-7, Time: 14:00-16:00
Automatic emotion recognition from speech, which is an important and challenging task in the field of affective computing, heavily relies on the effectiveness of the speech features for classification. Previous approaches to emotion recognition have mostly focused on the extraction of carefully hand-crafted features. How to model spatio-temporal dynamics for speech emotion recognition effectively is still under active investigation. In this paper, we propose a method to tackle the problem of emotional relevant feature extraction from speech by leveraging Attention-based Bidirectional Long Short-Term Memory Recurrent Neural Networks with fully convolutional networks in order to automatically learn the best spatio-temporal representations of speech signals. The learned high-level features are then fed into a deep neural network (DNN) to predict the final emotion. The experimental results on the Chinese Natural Audio-Visual Emotion Database (CHEAVD) and the Interactive Emotional Dyadic Motion Capture (IEDMCAP) corpora show that our method provides more accurate predictions compared with other existing emotion recognition algorithms.

End-to-End Deep Neural Network Age Estimation
Pegah Gahremane1, Phani Sankar Nidadavolu1, Nanxin Chen1, Jesús Vilalta1, Daniel Povey1,2, Sanjeev Khudanpur1,2 and Najim Dhekir1
1Center for Language and Speech Processing
2Human Language Technology Center Of Excellence, Johns Hopkins University, Baltimore, MD

Mon-P-1-2-8, Time: 14:00-16:00
In this paper, we apply the recently proposed x-vector neural network architecture for the task of age estimation. This architecture maps a variable length utterance into a fixed dimensional embedding which retains the relevant sequence level information. This is achieved by a temporal pooling layer. From the embedding, a series of layers is applied to make predictions. The full network is trained end-to-end in a discriminative fashion. This kind of network is starting to outperform the state-of-the-art x-vector embeddings in tasks like speaker and language recognition. Motivated by this, we investigated the optimum way to train x-vectors for the age estimation task. Despite that a regression objective is typical for this task, we found that optimizing a mixture of classification and regression losses provides better results. We trained our models on the NIST SRE08 dataset and evaluated on SRE10. The proposed approach improved mean absolute error (MAE) by 12% w.r.t the x-vector baseline.

Improving Gender Identification in Movie Audio Using Cross-Domain Data
Rajat Hebbar, Krishna Somandepalli and Shrikanth Narayanan
Signal Analysis and Interpretation Laboratory, Department of Electrical Engineering, University of Southern California, Los Angeles

Mon-P-1-2-9, Time: 14:00-16:00
Gender identification from audio is an important task for quantitative gender analysis in multimedia and to improve tasks like speech recognition. Robust gender identification requires speech segmentation that relies on accurate voice activity detection (VAD). These tasks are challenging in movie audio due to diverse and often noisy acoustic conditions. In this work, we acquire VAD labels for movie audio by aligning it with subtitle text and train a recurrent neural network model for VAD. Subsequently, we apply transfer learning to predict gender using feature embeddings obtained from a model pre-trained for large-scale audio classification. In order to account for the diverse acoustic conditions in movie audio, we use audio clips from YouTube labeled for gender. We compare the performance of our proposed method with baseline experiments that were setup to assess the importance of feature embeddings and training data used for gender identification task. For systematic evaluation, we extend an existing benchmark dataset for movie VAD, to include precise gender labels. The VAD system shows comparable results to state-of-the-art in movie domain. The proposed gender identification system outperforms existing baselines, achieving an accuracy of 85% for movie audio. We have made the data and related code publicly available.

On Learning to Identify Genders from Raw Speech Signal Using CNNs
Selen Hande Kabil1,2, Hannah Muckenhirn1,2 and Mathew Magimai Doss1
1Idiap Research Institute, Martigny, CH
2École Polytechnique Fédérale de Lausanne, CH

Mon-P-1-2-10, Time: 14:00-16:00
Automatic Gender Recognition (AGR) is the task of identifying the gender of a speaker given a speech signal. Automatic approaches extract features like fundamental frequency and cepstral features from the speech signal and train a binary classifier. Inspired from recent works in the area of automatic speech recognition (ASR), speaker recognition and presentation attack detection, we present a novel approach where relevant features and classifier are jointly learned from the raw speech signal in end-to-end manner. We propose a convolutional neural networks (CNN) based gender classifier that consists of: (1) convolution layers, which can be interpreted as a feature learning stage and (2) a multilayer perceptron (MLP), which can be interpreted as a classification stage. The system takes raw speech signal as input and outputs gender posterior probabilities. Experimental studies conducted on two datasets, namely AVspoof and AVspoof 2015, with different architectures show that with simple architectures the proposed approach yields better system than standard acoustic features based approach. Further analysis of the CNNs show that the CNNs learn formant and fundamental frequency information for gender identification.

Denoising and Raw-waveform Networks for Weakly-Supervised Gender Identification on Noisy Speech
Jilt Sebastian1,2, Manoj Kumar1, Pavan Kumar D. S.1,2, Mathew Magimai Doss1, Hema Murthy1 and Shrikanth Narayanan1

Notes
Mon-P-1-2-11, Time: 14:00-16:00
This paper presents a raw-waveform neural network and uses it along with a denoising network for clustering in weakly-supervised learning scenarios under extreme noise conditions. Specifically, we consider language independent gender identification on a set of varied noise conditions, and signal to noise ratios (SNRs). We formulate the denoising problem as a source separation task and train the system using a discriminative criterion in order to enhance output SNRs. A denoising recurrent neural network (RNN) is first trained on a small subset (roughly one-fifth) of the data for learning a speech-specific task. The denoised speech signal is then directly fed as input to a raw-waveform convolutional neural network (CNN) trained with denoised speech. We evaluate the standalone performance of denoiser in terms of various signal-to-noise measures and discuss its contribution towards robust gender identification. An absolute improvement of 11.66% and 13.53% is achieved by the combined pipeline over the i-vector SVM baseline system for 0 dB and -5 dB SNR conditions, respectively. We further analyse the information captured by the first CNN layer in both noisy and denoised speech.

The Effect of Exposure to High Altitude and Heat on Speech Articulatory Coordination
James Williamson1, Thomas Quatieri1, Adam Lammert1, Katherine Mitchell1, Katherine Finkelstein2, Nicole Ekon1, Caitlin Dillon1, Robert Kenelick2 and Kristin Heaton2
1MIT Lincoln Laboratory
2USARIELM
Mon-P-1-2-12, Time: 14:00-16:00
The effects of altitude and heat on speech articulatory coordination following exercise and approximately three hours of exposure are explored. Recordings of read speech and free response speech before and after exercise in moderate altitude, moderate heat and both moderate altitude and heat are analyzed using features that characterize articulatory coordination. It is found that 1) moderate altitude causes small changes and moderate heat negligible changes to articulatory coordination features after brief exposure prior to exercise; 2) moderate altitude and heat produce similar large exercise changes in articulatory exercise and longer exposure; 3) moderate altitude and heat produce larger feature changes in combination than individually immediately following exercise. Finally, using cross-validation training of a statistical classifiers, the features are sufficient to classify the four experimental conditions with an accuracy of 0.90.

Mon-P-1-3: Deep Learning for Source Separation and Pitch Tracking
Hall 4-6: Poster-3, 14:00-16:00, Monday, 3 September, 2018
Chair: Mathew Magimai Doss
Permutation Invariant Training of Generative Adversarial Network for Monaural Speech Separation
Lianwu Chen1, Meng Yu1, Yanmin Qian2, Dan Su1 and Dong Yu1
1Tencent AI Lab, Shenzhen, China
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Mon-P-1-3-1, Time: 14:00-16:00
We explore generative adversarial networks (GANs) for speech separation, particularly with permutation invariant training (SSGAN-PIT). Prior work demonstrates that GANs can be implemented for suppressing additive noise in noisy speech waveform and improving perceptual speech quality. In this work, we train GANs for speech separation which enhances multiple speech sources simultaneously with the permutation issue addressed by the utterance level PIT in the training of the generator network. We propose operating GANs on the power spectrum domain instead of waveforms to reduce computation. To better explore time dependencies, recurrent neural networks (RNNs) with long short-term memory (LSTM) are adopted for both generator and discriminator in this study. We evaluated SSGAN-PIT on the WSJ0 two-talker mixed speech separation task and found that SSGAN-PIT outperforms SSGAN without PIT and the neural networks based speech separation with or without PIT. The evaluation confirms the feasibility of the proposed model and training approach for efficient speech separation. The convergence behavior of permutation invariant training and adversarial training are analyzed.

Mon-P-1-3-2, Time: 14:00-16:00
Speaker-aware source separation methods are promising workarounds for major difficulties such as arbitrary source permutation and unknown number of sources. However, it remains challenging to achieve satisfying performance provided a very short available target speaker utterance (anchor). Here we present a novel “deep extractor network” which creates an extractor point for the target speaker in a canonical high dimensional embedding space and pulls together the time-frequency bins corresponding to the target speaker. The proposed model is different from prior works that the canonical embedding space encodes knowledge of both the anchor and the mixture during training phase: first, embeddings for the anchor and mixture speech are separately constructed in a primary embedding space and then combined as an input to feed-forward layers to transform to a canonical embedding space which we discover more stable than the primary one. Experimental results show that given a very short utterance, the proposed model can efficiently recover high quality target speech from a mixture, which outperforms various baseline models, with 5.2% and 6.6% relative improvements in SDR and PESQ respectively compared with a baseline oracle deep attractor model. Meanwhile, we show it can be generalized well to more than one interfering speaker.

Mon-P-1-3-3, Time: 14:00-16:00
We propose a novel multi-task neural network-based approach for joint sound source localization and speech/non-speech classification in noisy environments. The network takes raw short time Fourier transform as input and outputs the likelihood values for the two tasks, which are used for the simultaneous detection, localization and classification of an unknown number of overlapping sound sources. Tested with real recorded data, our method achieves significantly better performance in terms of speech/non-speech classification and localization of speech sources, compared to method that performs localization and classification separately. In addition, we demonstrate that incorporating the temporal context can further improve the performance.

Joint Localization and Classification of Multiple Sound Sources Using a Multi–task Neural Network
Weipeng He1,2, Petr Motlicek1 and Jean-Marc Odobez1,2
1Idiap Research Institute, Switzerland
2École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Detection of Glottal Closure Instants from Speech Signals: A Convolutional Neural Network Based Method
Shuai Yang1, Zhiyong Wu1,2, Binbin Shen2 and Helen Meng1,3
1Tsinghua-CUK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University
2Pachira Information Technology (Beijing) Co., Ltd.
3Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
Mon-P-1-3-4, Time: 14:00-16:00
Most conventional methods to detect glottal closure instants (GCI) are based on signal processing technologies and different GCI candidate selection methods. This paper proposes a classification method to detect glottal closure instants from speech waveforms using convolutional neural network (CNN). The procedure is divided into two successive steps. Firstly, a low-pass filtered signal is computed, whose negative peaks are taken as candidates for GCI placement. Secondly, a CNN-based classification model determines for each peak whether it corresponds to a GCI or not. The method is compared with three existing GCI detection algorithms on two publicly available databases. For the proposed method, the detection accuracy in terms of F1-score is 98.23%. Additional experiment indicates that the model can perform better after trained with the speech data from the speakers who are the same as those in the test set.

Robust TDOA Estimation Based on Time-Frequency Masking and Deep Neural Networks
Zhong-Qiu Wang1, Xueliang Zhang1, DeLiang Wang1,2
1Department of Computer Science and Engineering, The Ohio State University, USA
2Department of Computer Science, Inner Mongolia University, China
Mon-P-1-3-5, Time: 14:00-14:00
A novel framework for robust time difference of arrival (TDOA) estimation in noisy and reverberant environments. Three novel algorithms are proposed to improve the robustness of conventional cross-correlation-, beamforming- and subspace-based algorithms for speaker localization. The key idea is to leverage the power of deep neural networks (DNN) to accurately identify T-F units that are relatively clean for TDOA estimation. All of the proposed algorithms exhibit strong robustness for TDOA estimation in environments with low input SNR, high reverberation and low direction-to-reverberant energy ratio.

Waveform to Single Sinusoid Regression to Estimate the F0 Contour from Noisy Speech Using Recurrent Deep Neural Networks
Akishiro Kato and Tomi Kinnunen
University of Eastern Finland
Mon-P-1-3-6, Time: 14:00-16:00
The fundamental frequency (F0) represents pitch in speech that determines prosodic characteristics of speech and is needed in various tasks for speech analysis and synthesis. Despite decades of research on this topic, F0 estimation at low signal-to-noise ratios (SNRs) in unexpected noise conditions remains difficult. This work proposes a new approach to noise robust F0 estimation using a recurrent neural network (RNN) trained in a supervised manner. Recent studies employ deep neural networks (DNNs) for F0 tracking as a frame-by-frame classification task into quantised frequency states but we propose waveform-to-sinusoid regression instead to achieve both noise robustness and accurate estimation with increased frequency resolution.

Reducing Interference with Phase Recovery in DNN-based Monaural Singing Voice Separation
Paul Magron1, Konstantinos Drossos2, Stylianos Ioannis Mimikakis1 and Tuomas Virtanen1
1Laboratory of Signal Processing, Tampere University of Technology, Finland
2Fraunhofer IDMT, Ilmenau, Germany
Mon-P-1-3-7, Time: 14:00-16:00
State-of-the-art methods for monaural singing voice separation consist in estimating the magnitude spectrum of the voice in the short-time Fourier transform (STFT) domain by means of deep neural networks (DNNs). The resulting magnitude estimate is then combined with the mixture’s phase to retrieve the complex-valued STFT of the voice, which is further synthesized into a time-domain signal. However, when the sources overlap in time and frequency, the STFT phase of the voice differs from the mixture’s phase, which results in interference and artifacts in the estimated signals. In this paper, we investigate on recent phase recovery algorithms that tackle this issue and can further enhance the separation quality. These algorithms exploit phase constraints that originate from a sinusoidal model or from consistency, a property that is a direct consequence of the STFT redundancy. Experiments conducted on real music songs show that those algorithms are efficient for reducing interference in the estimated voice compared to the baseline approach.

Nebula: F0 Estimation and Voicing Detection by Modeling the Statistical Properties of Feature Extractors
Kanru Hua
University of Illinois, U.S.A.
Mon-P-1-3-8, Time: 14:00-16:00
A F0 and voicing status estimation algorithm for high quality speech analysis/synthesis is proposed. This problem is approached from a different perspective that models the behavior of feature extractors under noise, instead of directly modeling speech signals. Under time-frequency locality assumptions, the joint distribution of extracted features and target F0 can be characterized by training a bank of Gaussian mixture models (GMM) on artificial data generated from Monte-Carlo simulations. The trained GMMs can then be used to generate a set of conditional distributions on the predicted F0, which are then combined and post-processed by Viterbi algorithm to give a final F0 trajectory. Evaluation on CSTR and CMU Arctic speech databases shows that the proposed method, trained on fully synthetic data, achieves lower gross error rates than state-of-the-art methods.

Real-time Single-channel Dereverberation and Separation with Time-domain Audio Separation Network
Yi Luo and Nima Mesgarani
Department of Electrical Engineering, Columbia University, New York, NY
Mon-P-1-3-9, Time: 14:00-16:00
We investigate the recently proposed Time-domain Audio Separation Network (TasNet) in the task of real-time single-channel speech dereverberation. Unlike systems that take time-frequency representation of the audio as input, TasNet learns an adaptive front-end in replacement of the time-frequency representation by a time-domain convolutional non-negative autoencoder. We show that by formulating the dereverberation problem as a denoising problem where the direct path is separated from

Notes

Experimental results with PTDB-TUG corpus contaminated by additive noise (NOISEX-92) demonstrate that the proposed method improves gross pitch error (GPE) rate and fine pitch error (FPE) by more than 35% at SNRs between -10 dB and +10 dB compared with well-known noise robust F0 tracker, PEVAC. Furthermore, the proposed method also outperforms state-of-the-art DNN-based approaches by more than 15% in terms of both FPE and GPE rate over the preceding SNR range.

Waveform to Single Sinusoid Regression to Estimate the F0 Contour from Noisy Speech Using Recurrent Deep Neural Networks
Akihiro Kato and Tomi Kinnunen
University of Eastern Finland
Mon-P-1-3-6, Time: 14:00-16:00
The fundamental frequency (F0) represents pitch in speech that determines prosodic characteristics of speech and is needed in various tasks for speech analysis and synthesis. Despite decades of research on this topic, F0 estimation at low signal-to-noise ratios (SNRs) in unexpected noise conditions remains difficult. This work proposes a new approach to noise robust F0 estimation using a recurrent neural network (RNN) trained in a supervised manner. Recent studies employ deep neural networks (DNNs) for F0 tracking as a frame-by-frame classification task into quantised frequency states but we propose waveform-to-sinusoid regression instead to achieve both noise robustness and accurate estimation with increased frequency resolution.
the reverberations, a TasNet denoising autoencoder can outperform a deep LSTM baseline on log-power magnitude spectrogram input in both causal and non-causal settings. We further show that adjusting the stride size in the convolutional autoencoder helps both the dereverberation and separation performance.

Music Source Activity Detection and Separation Using Deep Attractor Network

Rajath Kumar, Yi Luo and Nima Mesgarani
Department of Electrical Engineering, Columbia University, New York, NY

Mon-P-1-3-10, Time: 14:00-16:00

In music signal processing, singing voice detection and music source separation are widely researched topics. Recent progress in deep neural network based source separation has advanced the state of the performance in the problem of vocal and instrument separation, while the problem of joint source activity detection and separation remains unexplored. In this paper, we propose an approach to perform source activity detection using the high-dimensional embedding generated by Deep Attractor Network (DANet) when trained for music source separation. By defining both tasks together, DANet is able to dynamically estimate the number of outputs depending on the active sources. We propose an Expectation-Maximization (EM) training paradigm for DANet which further improves the separation performance of the original DANet. Experiments show that our network achieves higher source separation and comparable source activity detection against a baseline system.

Improving Mandarin Tone Recognition Using Convolutional Bidirectional Long Short-Term Memory with Attention

Longfei Yang, Yanlu Xie and Jinsong Zhang
Beijing Advanced Innovation Center for Language Resources, Beijing Language and Culture University, Beijing 100083, China

Mon-P-1-3-11, Time: 14:00-16:00

Automatic tone recognition is useful for Mandarin spoken language processing. However, the complex F0 variations from the tone co-articulations and the interplay effects among tonality make it rather difficult to perform tone recognition of Chinese continuous speech. This paper explored the application of Bidirectional Long Short-Term Memory (BLSTM), which had the capability of modeling time series, to Mandarin tone recognition to handle the tone variations in continuous speech. In addition, we introduced attention mechanism to guide the model to select the suitable context information. The experimental results showed that our network achieved higher source separation and comparable source activity detection against a baseline system.

Mon-P-1-4: Acoustic Analysis-Synthesis of Speech Disorders

Hall 4-6, Poster-4, 14:00-16:00, Monday, 3 September, 2018
Chair: Vikramjit Mitra

Vowel Space as a Tool to Evaluate Articulation Problems

Rob van Son1,2, Catherine Middag2 and Kris Demuynck3
1NIKI-AVL, Amsterdam; 2ACLC, University of Amsterdam, The Netherlands; 3DLab, University of Ghent, Belgium

Towards a Better Characterization of Parkinsonian Speech: A Multidimensional Acoustic Study

Veronique Delvaux1,2, Kathy Huet3, Myriam Piccaluga4, Sophie van Malderen5 and Bernard Harmegnies6
1FNRS, Belgium
2RSTL, UMONS, Belgium

Mon-P-1-4-1, Time: 14:00-16:00

This paper reports on a first attempt at adopting a new perspective in characterizing speech disorders in Parkinson’s Disease (PD) based on individual patient profiles. Acoustic data were collected on 13 Belgian French speakers with PD, 6 male, 7 female, aged 45-81 and 50 healthy controls (HC) using the “MonPaGe” protocol (Fougeron et al., LREC18). In this protocol, various kinds of linguistic material are recorded in different speech conditions, in order to assess multiple speech dimensions for each speaker. First, we compared a variety of voice and speech parameters across groups (HC vs. PD patients). Second, we examined individual profiles of PD patients. Results showed that as a group PD participants most systematically differed from HC in terms of speech tempo and rhythm. Moreover, the analysis of individual profiles revealed that other parameters related to pneumophonatory control and linguistic prosody, were valuable to describe the speech specificities of several PD patients.

Self-similarity Matrix Based Intelligibility Assessment of Cleft Lip and Palate Speech

Sishir Kalita1, S R Mahadeva Prasanna1,2 and Samarendra Dandapat2
1Indian Institute of Technology Guwahati, Guwahati-781039, India
2Indian Institute of Technology Dharwad, Dharwad-580011, India

Mon-P-1-4-3, Time: 14:00-16:00

This work presents a comparison based framework by exploiting the self-similarity matrices matching technique to estimate the speech intelligibility of cleft lip and palate (CLP) children. Self-similarity matrix (SSM) of a feature sequence is a square matrix, which encodes the acoustic-phonetic composition of the underlying speech signal. Deviations in the acoustic characteristics of underlying sound units due to the degradation of intelligibility will deviate the CLP speech’s SSM structure from that of normal. This degree of deviations in CLP speech’s SSM from the corresponding normal speech’s SSM may provide information about the severity profile of speech intelligibility. The degree of deviations is quantified using the structural similarity (SSIM) index, which is considered as the representative of objective intelligibility score. The proposed method is evaluated using two parameterizations of speech signals: Mel-frequency cepstral coefficients and Gaussian posteriorgrams and compared with dynamic time warping (DTW) based intelligibility assessment method. The proposed SSM based method shows the better correlation with the perceptual ratings of intelligibility when compared to the DTW based method.

Pitch-Adaptive Front-end Feature for Hypernasality Detection

Akhilesh Kumar Dubey1, S R Mahadeva Prasanna1,2 and S Dandapat2

Notes
Notes
this paper proposes a novel approach to create a unit set for CTC-based speech recognition systems. By using Byte-Pair Encoding we learn a unit set of an arbitrary size on a given training text. In contrast to using characters or words as units this allows us to find a good trade-off between the size of our unit set and the available training data. We investigate both Crossword units, that may span multiple word and Subword units. By evaluating these unit sets with decodings methods using a separate language model we are able to show improvements over a purely character-based unit set.

Neural Error Corrective Language Models for Automatic Speech Recognition
Tomohiro Tanaka, Ryo Masumura, Hirokazu Masataki and Yushi Aono
NTT Media Intelligence Laboratories, NTT Corporation

We present novel neural network based language models that can correct automatic speech recognition (ASR) errors by using speech recognizer output as a context. These models, called neural error corrective language models (NECLMs), utilizes ASR hypotheses of a target utterance as a context for estimating the generative probability of words. NECLMs are expressed as conditional generative models composed of an encoder network and a decoder network. In the models, the encoder network constructs context vectors from N-best lists and ASR confidence scores generated in a speech recognizer. The decoder network rescores recognition hypotheses by computing a generative probability of words using the context vectors so as to correct ASR errors. We evaluate the proposed models in Japanese lecture ASR tasks. Experimental results show that NECLM achieve better ASR performance than a state-of-the-art ASR system that incorporate a convolutional neural network acoustic model and a long short-term memory recurrent neural network language model.

Entity-Aware Language Model as an Unsupervised Reranker
Mohammad Sadegh Rasooli1 and Sarangarajan Parthasarathy2
1Department of Computer Science, Columbia University, New York, NY, 10027
2Artificial Intelligence and Research, Microsoft Corporation, USA

In language modeling, it is difficult to incorporate entity relationships from a knowledge-base. One solution is to use a reranker trained with global features, in which global features are derived from n-best lists. However, training such a reranker requires manually annotated n-best lists, which is expensive to obtain. We propose a method based on the contrastive estimation method that alleviates the need for such data. Experiments in the music domain demonstrate that global features, as well as features extracted from an external knowledge-base, can be incorporated into our reranker. Our final model, a simple ensemble of a language model and reranker, achieves a 0.44% absolute word error rate improvement over an LSTM language model on the blind test data.

Character-level Language Modeling with Gated Hierarchical Recurrent Neural Networks
Iksoo Choi, Jinhwon Park and Wonyong Sung
Department of Electrical and Computer Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea

Recurrent neural network (RNN)-based language models are widely used for speech recognition and translation applications. We propose a gated hierarchical recurrent neural network (GHRNN) and apply it to the character-level language modeling. GHRNN consists of multiple RNN units that operate with different time scales and the frequency of operation at each unit is controlled by the learned gates from training data. In our model, GHRNN learns the hierarchical structure of character, sub-word and word. Timing gates are included in the hierarchical connections to control the operating frequency of these units. The performance was measured for Penn Treebank and Wikitext-2 datasets. Experimental results showed lower bit per character (BPC) when compared to simply layered or skip- connected RNN models. Also, when a continuous cache model is added, the BPC of 1.192 is recorded, which is comparable to the state of the art result.

Mon-0-2-1-4, Time: 17:30-17:50

This paper proposes a novel approach to create a unit set for CTC-based speech recognition systems. By using Byte-Pair Encoding we learn a unit set of an arbitrary size on a given training text. In contrast to using characters or words as units this allows us to find a good trade-off between the size of our unit set and the available training data. We investigate both Crossword units, that may span multiple word and Subword units. By evaluating these unit sets with decodings methods using a separate language model we are able to show improvements over a purely character-based unit set.

Notes
This paper evaluates results from a cross-cultural and cross-language experiment series employing short audio-visual utterances produced with varying attitudinal expressions. German and Cantonese-speaking participants freely labeled such utterances in the two languages and assigned to each stimulus a verbal label. Based on the results of the four experiments we were able to establish to what degree the attitudual frames of reference of the two groups overlap and how they differ. Verbal labels were assessed regarding their emotional content in terms of valence, activation and dominance and for the linguistic opposition between assertive and interrogative speech act and hence permit to abstract from the language of the rater and ultimately even abstract from the attitudual categories used when eliciting the stimuli. Instead we regard each utterance as a data-point in the emotional space. We found that the judgments of the two rater groups agree well with respect to the valence of attitudual expressions and diverge most as to the perceived activation of the stimulus presenter. Cantonese speaking participants seem to mirror Germans’ ratings of German stimuli better than vice versa, which suggests an interesting asymmetry of attitudinal perception. As for the modality of presentation, the audio channel primarily transmits linguistically relevant information regarding the opposition of assertion and interrogation while the visual information signals the emotional content.

An Active Feature Transformation Method for Attitude Recognition of Video Bloggers

Fasih Haider¹, Fahim A. Salim², Owen Conlan¹ and Saturnino Luz²

¹IPHSI, University of Edinburgh, UK
²ADAPT Centre, Trinity College Dublin, Ireland

Mon-O-2-2-4, Time: 17:30-17:50

Video blogging is a form of unidirectional communication where a video blogger expresses his/her opinion about different issues. The success of a video blog is measured using metrics like the number of views and comments by online viewers. Researchers have highlighted the importance of non-verbal behaviours (e.g. attitudes) in the context of video blogging and showed that it correlates with the level of attention (number of views) gained by a video blog. Therefore, an automatic attitude recognition system can help potential video bloggers to train their attitudes. It can also be useful in developing video blogs summarization and search tools. This study proposes a novel Active Feature Transformation (AFT) method for automatic recognition of attitudes (a form of non-verbal behaviour) in video blogs. The proposed method transforms the Mel-frequency Cepstral Coefficient (MFCC) features for the classification task. The Principal Component Analysis (PCA) transformation is also used for comparison. Our results show that AFT outperforms PCA in terms of accuracy and dimensionality reduction for attitude recognition using linear discrimination analysis, 1-nearest neighbour and decision tree classifiers.

Automatic Assessment of Individual Culture Attribute of Power Distance Using a Social Context-Enhanced Prosodic Network Representation

Fu-Sheng Tsai¹,², Hao-Chun Yang¹,³, Wei-Wen Chang¹ and Chi-Chun Lee¹,³

¹Department of Electrical Engineering, National Tsing Hua University, Taiwan
²International Human Resource Development, National Taiwan Normal University, Taiwan
³MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

Mon-O-2-2-5, Time: 17:50-18:10

Culture is a collective social norm of human societies that often influences a person’s values, thoughts and social behaviors during interactions at an individual level. In this work, we present a computational analysis toward automatic assessing an individual’s culture attribute of power distance, i.e., a measure of his/her belief about status, authority and power in organizations, by modeling their expressive prosodic structures during social encounters with people of different power status. Specifically, we propose a center-loss embedded network architecture to jointly consider the effect of social interaction contexts on individuals’ prosodic manifestations in order to learn an enhanced representation for power distance recognition. Our proposed prosodic network achieves an overall accuracy of 78.6% in binary classification task of recognizing high versus low power distance. Our experiment demonstrates an improved discriminability (17.6% absolute improvement) over prosodic neural network without social context enhancement. Further visualization reveals that the diversity in the prosodic manifestation for individuals with low power distance seems to be higher than those of high power distance.

Analysis and Detection of Phonation Modes in Singing Voice using Excitation Source Features and Single Frequency Filtering Cepstral Coefficients (SFFCC)

Sudarsana Reddy Kadiri and Bayya Yegnanarayana

Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India

Mon-O-2-6, Time: 18:10-18:30

In this study, classification of the phonation modes in singing voice is carried out. Phonation modes in singing voice can be described using four categories: breathy, neutral, flow and pressed phonations. Previous studies on the classification of phonation modes use voice quality features derived from inverse filtering which lack in accuracy. This is due to difficulty in deriving the excitation source features using inverse filtering from singing voice. We propose to use the excitation source features that are derived directly from the signal. It is known that, the characteristics of the excitation source vary in different phonation types due to the vibration of the vocal folds together with the respiratory effort (lungs effort). In the present study, we are exploring excitation source features derived from the modified zero frequency filtering (ZFF) method. Apart from excitation source features, we also explore cepstral coefficients derived from single frequency filtering (SFF) method for the analysis and classification of phonation types in singing voice.

Mon-O-2-3: Automatic Detection and Recognition of Voice and Speech Disorders

MR G.01-G.02; 16:30-18:30; Monday, 3 September, 2018

Chairs: Rob van Son and Ajish Abraham

A Deep Learning Method for Pathological Voice Detection Using Convolutonal Deep Belief Networks

Huiwu Wu¹, John Soraghan², Anja Lowlé ³ and Gaetano Di-Caterina¹

¹Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland
²Speech and Language Therapy, School of Psychological Sciences and Health, University of Strathclyde, Glasgow, Scotland

Mon-O-2-3-1, Time: 16:30-16:50

Automatically detecting pathological voice disorders such as vocal cord paralysis or Reinke’s edema is an important medical classification problem. While deep learning techniques have achieved significant progress in the speech recognition field, there has been less research work in the area of pathological voice disorders detection. A novel system for pathological voice detection using Convolutonal Neural Network (CNN) as the basic
architecture is presented in this work. The novel system uses spectrograms of normal and pathological speech recordings as the input to the network. Initially Convolutional Deep Belief Network (CDBN) are used to pre-train the weights of CNN system. This acts as a generative model to explore the structure of the input data using statistical methods. Then a CNN is trained using supervised back-propagation learning algorithm to fine-tune the weights. Results show that a small amount of data can be used to achieve good results in classification with this deep learning approach. A performance analysis of the novel method is provided using real data from the Saarbrucken Voice database.

Dysarthric Speech Recognition Using Time-delay Neural Network Based Denoising Autoencoder
Chitraleka Bhat, Biswajit Das, Bhavik Vachhani and Sunil Kumar Kopparapu
TCS Research and Innovation, Mumbai, India
Mon-0-2-3-2, Time: 16:50-17:10
Dysarthria is a manifestation of the disruption in the neuro-muscular physiology resulting in uneven, slow, slurred, harsh or quiet speech. Dysarthric speech poses serious challenges to automatic speech recognition, considering this speech is difficult to decipher for both humans and machines. The objective of this work is to enhance dysarthric speech features to match that of healthy control speech. We use a Time-Delay Neural Network based Denoising Autoencoder (TDNN-DAE) to enhance the dysarthric speech features. The dysarthric speech thus enhanced is recognized using a DNN-HMM based Automatic Speech Recognition (ASR) engine. This methodology was evaluated for speaker-independent (SI) and speaker-adapted (SA) systems. Absolute improvements of 13% and 3% was observed in the ASR performance for SI and SA systems respectively as compared with unenhanced dysarthric speech recognition.

A Multitask Learning Approach to Assess the Dysarthria Severity in Patients with Parkinson’s Disease
Juan Camilo Vázquez Correa1,2, Tomas Arias1,2,3, Juan Rafael Orozco-Arroyave2 and Elmar Nöth1
1Faculty of Engineering, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
2Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
3Ludwig-Maximilians-University, Munich, Germany
Mon-0-2-3-3, Time: 17:10-17:30
Parkinson’s disease is a neurodegenerative disorder characterized by a variety of motor and non-motor symptoms. Particularly, several speech impairments appear in the initial stages of the disease, which affect aspects related to respiration and the movement of muscles and limbs in the vocal tract. Most of the studies in the literature aim to assess only one specific task from the patients, such as the classification of patients vs. healthy speakers, or the assessment of the neurological state of the patients. This study proposes a multitask learning approach based on convolutional neural networks to assess at the same time several speech deficits of the patients. A total of eleven speech aspects are considered, including difficulties of the patients to move articulators such as lips, palate, tongue and larynx. According to the results, the proposed approach improves the generalization of the convolutional network, producing more representative feature maps to assess the different speech symptoms of the patients. The multitask learning scheme improves in of up to 4% the average accuracy relative to single networks trained to assess each individual speech aspect.

The Use of Machine Learning and Phonetic Endophenotypes to Discover Genetic Variants Associated with Speech Sound Disorder
Jason Lilley, Erin Crowgey and H Timothy Bunnell
Nemours Biomedical Research, Wilmington, DE, USA
Mon-0-2-3-4, Time: 17:30-17:50
Thirty-four (34) children with reported speech sound disorders (SSD) were recruited for a prior study, as well as 31 of their siblings, many of whom also showed SSD. Using data-clustering techniques, we assigned each child to one or more endophenotypes defined by the number and type of speech errors made on the GFTA-2. The genetic samples of 53 of the participants underwent whole exome sequencing. Variant alleles were detected, filtered and annotated from the sequenced and the data were filtered using quality checks, annotations and phenotypes. We then used Random Forest classification to search for associations between variants and endophenotypes. In this preliminary report, we highlight one promising association with a common variant of COMT, a dopamine metabolizer in the brain.

Whistle-blowing ASRs: Evaluating the Need for More Inclusive Speech Recognition Systems
Meredith Moore, Hemanth Venkateswara and Sethuraman Panchanathan
Arizona State University’s Center for Cognitive Ubiquitous Computing
Mon-0-2-3-5, Time: 17:50-18:10
Speech is a complex process that can break in many different ways and lead to a variety of voice disorders. Dysarthria is a voice disorder where individuals are unable to control one or more of the aspects of speech—the articulation, breathing, voicing, or prosody—leading to less intelligible speech. In this paper, we evaluate the accuracy of state-of-the-art automatic speech recognition systems (ASRs) on two dysarthric speech datasets and compare the results to ASR performance on control speech. The limits of ASR performance using different voices have not been explored since the field has shifted from generative models of speech recognition to deep neural network architectures. To test how far the field has come in recognizing disordered speech, we test two different ASR systems: (1) Carnegie Mellon University’s Sphinx Open Source Recognition and (2) GoogleSpeech Recognition. While (1) uses generative models of speech recognition, (2) uses deep neural networks. As expected, while (2) achieved lower word error rates (WER) on dysarthric speech than (1), control speech had a WER 59% lower than dysarthric speech. Future studies should be focused not only on making ASRs robust to environmental noise, but also more robust to different voices.

Data Augmentation Using Healthy Speech for Dysarthric Speech Recognition
Bhavik Vachhani, Chitraleka Bhat and Sunil Kumar Kopparapu
TCS Research and Innovation, Mumbai, India
Mon-0-2-3-6, Time: 18:10-18:30
Dysarthria refers to a speech disorder caused by trauma to the brain areas concerned with motor aspects of speech giving rise to effortful, slow, slurred or prosodically abnormal speech. Traditional Automatic Speech Recognizers (ASR) perform poorly on dysarthric speech recognition tasks, owing mostly to insufficient dysarthric speech data. Speaker related challenges complicates data collection process for dysarthric speech. In this paper, we explore data augmentation using temporal and speed modifications of healthy speech to simulate dysarthric speech. DNN-HMM based Automatic Speech Recognition (ASR) and Random Forest based classification were used for evaluation of the proposed method. Dysarthric speech generated synthetically is classified for severity using a Random Forest classifier that is trained on actual dysarthric speech. ASR trained on healthy speech augmented with simulated dysarthric speech is evaluated for dysarthric speech recognition. All evaluations were carried out using Universal Access dysarthric speech corpus. An absolute improvement of 4.24% and 2% was achieved using tempo based and speed based data augmentation respectively as compared to ASR performance using healthy speech alone for training.

Notes
Improving Sparse Representations in Exemplar-Based Voice Conversion with a Phoneme-Selective Objective Function
Shaojin Ding, Guanlong Zhao, Christopher Liberatore and Ricardo Gutierrez-Osuna
Department of Computer Science and Engineering, Texas A&M University, USA

Mon-0-2-4-1, Time: 16:30-16:50
The acoustic quality of exemplar-based voice conversion (VC) degrades whenever the phoneme labels of the selected exemplars do not match the phonetic content of the frame being represented. To address this issue, we propose a Phoneme-Selective Objective Function (PSOF) that promotes a sparse representation of each speech frame with exemplars from a few phoneme classes. Namely, PSOF enforces group sparsity on the representation, where each group corresponds to a phoneme class. The sparse representation for exemplars within a phoneme class tends to activate or suppress simultaneously using the proposed objective function. We conducted two sets of experiments on the ARCTIC corpus to evaluate the proposed method. First, we evaluated the ability of PSOF to reduce phoneme mismatches. Then, we assessed its performance on a VC task and compared it against three baseline methods from previous studies. Results from objective measurements and subjective listening tests show that the proposed method effectively reduces phoneme mismatches and significantly improves VC acoustic quality while retaining the voice identity of the target speaker.

Learning Structured Dictionaries for Exemplar-based Voice Conversion
Shaojin Ding, Christopher Liberatore and Ricardo Gutierrez-Osuna
Department of Computer Science and Engineering
Texas A&M University, United States

Mon-0-2-4-2, Time: 16:50-17:10
Incorporating phonetic information has been shown to improve the performance of exemplar-based voice conversion. A standard approach is to build a phonetically structured dictionary, where exemplars are categorized into sub-dictionaries according to their phoneme labels. However, acquiring phoneme labels can be expensive and the phoneme labels can have inaccuracies. The latter problem becomes more salient when the speakers are non-native speakers. This paper presents an iterative dictionary-learning algorithm that avoids the need for phoneme labels and instead learns the structured dictionaries in an unsupervised fashion. At each iteration, two steps are alternatively performed: cluster update and dictionary update. In the cluster update step, each training frame is assigned to a cluster whose sub-dictionary represents it with the lowest residual. In the dictionary update step, the sub-dictionary for a cluster is updated using all the speech frames in the cluster. We evaluate the proposed algorithm through objective and subjective experiments on a new corpus of non-native English speech. Compared to previous studies, the proposed algorithm improves the acoustic quality of voice-converted speech while retaining the target speaker’s identity.

Exemplar-Based Spectral Detail Compensation for Voice Conversion
Yu-Huai Peng1, Hsin-Tsai Hwang1, Yichao Wu1, Yu Tsao2 and Hsin-Min Wang2
1Institute of Information Science, Academia Sinica, Taipei, Taiwan
2Graduate School of Informatics, Nagoya University, Japan

Mon-0-2-4-3, Time: 17:10-17:30
Most voice conversion (VC) systems are established under the vocoder-based VC framework. When performing spectral conversion (SC) under this framework, the low-dimensional spectral features, such as mel-cepstral coefficients (MCCs), are often adopted to represent the high-dimensional spectral envelopes. The joint density Gaussian mixture model (JDM) based SC method with the STRAIGHT vocoder is a well-known representative. Although it is reasonably effective, the loss of spectral details in the converted spectral envelopes inevitably deteriorates speech quality and similarity. To overcome this problem, we propose a novel exemplar-based spectral detail compensation method for VC. In the offline stage, the paired dictionaries of source spectral envelopes and target spectral details are constructed. In the online stage, the locally linear embedding (LLE) algorithm is applied to predict the target spectral details from the source spectral envelopes and, then, the predicted spectral details are used to compensate the converted spectral envelopes obtained by a baseline GMM-based SC method with the STRAIGHT vocoder. Experimental results show that the proposed method can notably improve the baseline system in terms of objective and subjective tests.

Whispered Speech to Neutral Speech Conversion Using Bidirectional LSTMs
G. Nisha Meenakshi and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute Science
Bangalore-560012, Karnataka, India

Mon-0-2-4-4, Time: 17:30-17:50
We propose a bidirectional long short-term memory (BLSTM) based whispered speech to neutral speech conversion system that employs the STRAIGHT speech synthesizer. We use a BLSTM to map the spectral features of whispered speech to those of neutral speech. Three other BLSTMs are employed to predict the pitch, periodicity levels and the voiced/unvoiced phoneme decisions from the spectral features of whispered speech. We use objective measures to quantify the quality of the predicted spectral features and excitation parameters, using data recorded from six subjects, in a four fold setup. We find that the temporal smoothness of the spectral features predicted using the proposed BLSTM based system is statistically more compared to that predicted using deep neural network based baseline schemes. We also observe that while the performance of the proposed system is comparable to the baseline scheme for pitch prediction, it is superior in terms of classifying voice decisions and predicting periodicity levels. From subjective evaluation via listening test, we find that the proposed method is chosen as the best performing scheme 26.61% (absolute) more than the best baseline scheme. This reveals that the proposed method yields a more natural sounding neutral speech from whispered speech.

Voice Conversion Across Arbitrary Speakers Based on a Single Target-Speaker Utterance
Songxian Liu1, Jinghua Zhong1, Lifa Sun12, Xixin Wu1, Xunying Liu1 and Helen Meng1
1Human-Computer Communications Laboratory, Department of Chinese Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
2SpeechX Limited, Shenzhen, China

Mon-0-2-4-5, Time: 17:50-18:10
Developing a voice conversion (VC) system for a particular speaker typically requires considerable data from both the source and target speakers. This paper aims to effectuate VC across arbitrary speakers, which we call any-to-any VC, with only a single target-speaker utterance. Two systems are studied: (1) the i-vector-based VC (IVC) system and (2) the speaker-encoder-based VC (SEVC) system. Phonetic PosteriorGrams are adopted as speaker-independent linguistic features extracted from speech samples. Both systems train a multi-speaker deep bidirectional long-short term memory (DBLSTM) VC model, taking in additional inputs that encode speaker identities, in order to generate the outputs. In the IVC system, the speaker identity of a new target speaker is represented by i-vectors. In the SEVC system, the speaker identity is represented by speaker embedding predicted from a separately trained model. Experiments verify
the effectiveness of both systems in achieving VC based only on a single target-speaker utterance. Furthermore, the IVC approach is superior to SEVC, in terms of the quality of the converted speech and its similarity to the utterance produced by the genuine target speaker.

Multi-target Voice Conversion without Parallel Data by Adversarially Learning Disentangled Audio Representations

Ju-chieh Chou, Cheng-chieh Yeh, Hung-yi Lee and Lin-shan Lee
College of Electrical Engineering and Computer Science, National Taiwan University

Mon-0-2-4-6, Time: 18:10-18:30

Recently, cycle-consistent adversarial network (Cycle-GAN) has been successfully applied to voice conversion to a different speaker without parallel data, although in those approaches an individual model is needed for each target speaker. In this paper, we propose an adversarial learning framework for voice conversion, with which a single model can be trained to convert the voice to many different speakers, all without parallel data, by separating the speaker characteristics from the linguistic content in speech signals. An autoencoder is first trained to extract speaker-independent latent representations and speaker embedding separately using another auxiliary speaker classifier to regularize the latent representation. The decoder then takes the speaker-independent latent representation and the target speaker embedding as the input to generate the voice of the target speaker with the linguistic content of the source utterance. The quality of decoder output is further improved by patching with the residual signal produced by another pair of generator and discriminator. A target speaker set size of 20 was tested in the preliminary experiments and very good voice quality was obtained. Conventional voice conversion metrics are reported. We also show that the speaker information has been properly reduced from the latent representations.

Mon-SS-2-1: Special Session: The INTERSPEECH 2018 Computational Paralinguistics Challenge (ComParE): Atypical & Self-Assessed Affect, Crying & Heart Beats 2

MR 1:01-1:02, 16:30-18:30; Monday, 3 September, 2018

Chairs: Björn Schuller, Stefan Steidl, Anton Batliner, Peter B. Marschik, Harald Baumeister and Fengquan Dong

Self-assessed Affect Sub-Challenge

Björn Schuller1,2,3, Stefan Steidl2, Anton Batliner2,4, Peter B. Marschik2,4, Harald Baumeister2, Fengquan Dong5, Simone Hantke1,2, Florian B. Pokorny2,3, Eva-Maria Rathner4, Katrin D. Bartl-Pokorny2, Christa Einspieler2, Dajie Zhang1,6, Alice Baird1, Shahin Aminpariain1,2, Kun Qian1,2, Zhao Ren1,6, Maximilian Schmidt1, Panagiotis Tziarakis1 and Stefanos Zaferiou1,2,11

1GLAM – Group on Language, Audio & Music, Imperial College London, UK
2ZD B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3audEERING GmbH, Gilching, Germany
4Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany
5iDIN – interdisciplinary Developmental Neuroscience, Medical University of Graz, Austria
6University Medical Center Göttingen, Germany
7Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
8Department of Clinical Psychology and Psychotherapy, University of Ulm, Germany
9Shenzhen University General Hospital, Shenzhen, PR. China
10Machine Intelligence & Signal Processing Group, Technische Universität München, Germany
11University of Oulu, Finland

Mon-SS-2-1-1, Time: 16:30-16:42

Attention-based Sequence Classification for Affect Detection

Cristina Gorrostieta, Richard Brutti, Kye Taylor, Avi Shapiro, Joseph Moran, Ali Azarbayejani and John Kane
Cogito Corporation

Mon-SS-2-1-2, Time: 16:42-16:54

This paper presents the Cogito submission to the Interspeech Computational Paralinguistics Challenge (ComParE), for the second sub-challenge. The aim of this second sub-challenge is to recognize self-assessed affect from short clips of speech-containing audio data. We adopt a sequence classification-based approach where we use a long-short term memory (LSTM) network for modeling the evolution of low-level spectral coefficients, with added attention mechanism to emphasize salient regions of the audio clip. Additionally to deal with the underrepresentation of the negative valence class we use a combination of mitigation strategies including oversampling and loss function weighting. Our experiments demonstrate improvements in detection accuracy when including the attention mechanism and class balancing strategies in combination, with the best models outperforming the best single challenge baseline model.

Computational Paralinguistics: Automatic Assessment of Emotions, Mood and Behavioural State from Acoustics of Speech

Zafi Sherhan Syed, Julien Schroeter, Kirill Sidorov and David Marshall
Cardiff University, UK

Mon-SS-2-1-3, Time: 16:54-17:06

Paralinguistic analysis of speech remains a challenging task due to the many confounding factors which affect speech production. In this paper, we address the Interspeech 2018 Computational Paralinguistics Challenge (ComParE) which aims to push the boundaries of sensitivity to non-textual information that is conveyed in the acoustics of speech. We attack the problem on several fronts. We posit that a substantial amount of paralinguistic information is contained in spectral features alone. To this end, we use a large ensemble of Extreme Learning Machines for classification of spectral features. We further investigate the applicability of (an ensemble of) CNN-GRUs networks to model temporal variations therein. We report on the details of the experiments and the results for three ComParE sub-challenges: Atypical Affect, Self-Assessed Affect and Crying. Our results compare favourably and in some cases exceed the published state-of-the-art performance.

Investigating Utterance Level Representations for Detecting Intent from Acoustics

SaiKrishna Rallabandi1, Bhavya Karki1, Carla Vegas1,2, Eric Nyberg2 and Alan W Black1
1Language Technologies Institute, Carnegie Mellon University, PA, USA
2NOVA Laboratory for Computer Science and Informatics, FCT NOVA, Campus Caparica, Almada, Portugal

Mon-SS-2-1-4, Time: 17:06-17:18

Recognizing paralinguistic cues from speech has applications in varied domains of speech processing. In this paper we present approaches to identify the expressed intent from acoustics in the context of INTERSPEECH 2018 ComParE challenge. We have made submissions in three sub-
challenges: prediction of 1) self-assessed affect and 2) atypical affect 3) Crying Sub challenge. Since emotion and intent are perceived at suprasegmental levels, we explore a variety of utterance level embeddings. The work includes experiments with both automatically derived as well as knowledge-inspired features that capture spoken intent at various acoustic levels. Incorporation of utterance level embeddings at the text level using an off the shelf phone decoder has also been investigated. The experiments impose constraints and manipulate the training procedure using heuristics from the data distribution. We conclude by presenting the preliminary results on the development and blind test sets.

LSTM Based Cross-corpus and Cross-task Acoustic Emotion Recognition
Heysem Kaya1, Dmitriy Fedotov2,3, Ali Yesilkayanat4, Oxana Verkholyak5, Yang Zhang6 and Alexey Karpov7
1Department of Computer Engineering, Namik Kemal University, Tokat, Turkey
2St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences, Russia
3Institute of Communications Engineering, Ulm University, Ulm, Germany
4Department of Computer Engineering, Bogazici University, Istanbul, Turkey
5Noah’s Ark Lab, Huawei Technologies, Shenzhen, China

Mon-SS-2-1-5, Time: 17:18-17:30
Acoustic emotion recognition is a popular and central research direction in paralinguistic analysis, due its relation to a wide range of affective states/traits and manifold applications. Developing highly generalizable models still remains as a challenge for researchers and engineers, because of multitude of nuisance factors. To assert generalization, deployed models need to handle spontaneous speech recorded under different acoustic conditions compared to the training set. This requires that the models are tested for cross-corpus robustness. In this work, we first investigate the suitability of Long-Short-Term-Memory (LSTM) models trained with time- and space-continuously annotated affective primitives for cross-corpus acoustic emotion recognition. We next employ an effective approach to use the frame level valence and arousal predictions of LSTM models for utterance level affect classification and apply this approach on the ComParE 2018 challenge corpora. The proposed method alone gives motivating results both on development and test set of the Self-Assessed Affect Sub-Challenge. On the development set, the cross-corpus prediction based method gives a boost to performance when fused with top components of the baseline system. Results indicate the suitability of the proposed method for both time-continuous and utterance level cross-corpus acoustic emotion recognition tasks.

Implementing Fusion Techniques for the Classification of Paralinguistic Information
Bogdan Vlasenko1, Jilt Sebastian1,2,3, Pavan Kumar D. S.1,3 and Mathew Magimai Doss1
1Idiap Research Institute, CH-1920 Martigny, Switzerland
2Indian Institute of Technology Madras, India
3École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Mon-SS-2-1-6, Time: 17:30-17:42
This work tests several classification techniques and acoustic features and further combines them using late fusion to classify paralinguistic information for the ComParE 2018 challenge. We use Multiple Linear Regression (MLR) with Ordinary Least Squares (OLS) analysis to select the most informative features for Self-Assessed Affect (SSA) sub-Challenge. We also propose to use raw-waveform convolutional neural networks (CNN) in the context of three paralinguistic sub-challenges. By using combined evaluation split for estimating codebook, we obtain better representation for Bag-of-Audio-Words approach. We preprocess the speech to vocalized segments to improve classification performance. For fusion of our leading classification techniques, we use weighted late fusion approach applied for confidence scores. We use two mismatched evaluation phases by exchanging the training and development sets and this estimates the optimal fusion weight. Weighted late fusion provides better performance on development sets in comparison with baseline techniques. Raw-waveform techniques perform comparable to the baseline.

General Utterance-Level Feature Extraction for Classifying Crying Sounds, Atypical & Self-Assessed Affect and Heart Beats
Gábor Gaspztoy1, Tamás Grósz1,2 and László Tóth1
1MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
2Institute of Informatics, University of Szeged, Hungary

Mon-SS-2-1-7, Time: 17:42-17:54
In the area of computational paralinguistics, there is a growing need for general techniques that can be applied in a variety of tasks and which can be easily realized using standard and publicly available tools. In our contribution to the 2018 Interspeech Computational Paralinguistic Challenge (ComParE), we test four general ways of extracting features. Besides the standard ComParE feature set consisting of 6373 diverse attributes, we experiment with two variations of Bag-of-Audio-Words representations, and define a simple feature set inspired by Gaussian Mixture Models. Our results indicate that the UAR scores obtained via the different approaches vary among the tasks. In our view, this is mainly because most feature sets tested were local by nature and they could not properly represent the utterances of the Atypical Affect and Self-Assessed Affect Sub-Challenges. On the Crying Sub-Challenge, however, a simple combination of all four feature sets proved to be effective.

Self-Assessed Affect Recognition Using Fusion of Attentional BLSTM and Static Acoustic Features
Bo-Hao Su1,2, Sung-Lin Yeh1,2, Ming-Ya Ko1,2, Huan-Yu Chen1,2, Shun-Chang Zhong1,2, Jeng-Lin Li1,2 and Chi-Chun Lee1,2
1Department of Electrical Engineering, National Tsing Hua University, Taiwan
2MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

Mon-SS-2-1-8, Time: 17:54-18:06
In this study, we present a computational framework to participate in the Self-Assessed Affect Sub-Challenge in the INTERSPEECH 2018 Computation Paralinguistics Challenge. The goal of this sub-challenge is to classify the valence scores given by the speaker themselves into three different levels, i.e., low, medium and high. We explore fusion of Bi-directional LSTM with baseline SVM models to improve the recognition accuracy. In specifics, we extract frame-level acoustic LLDDs as input to the BLSTM with a modified attention mechanism and separate SVMs are trained using the standard ComParE baseline feature sets with minority class upsampling. These diverse prediction results are then further fused using a decision-level score fusion scheme to integrate all of the developed models. Our proposed approach achieves a 62.94% and 67.04% unweighted average recall (UAR), which is an 6.24% and 1.04% absolute improvement over the best baseline provided by the challenge organizer. We further provide a detailed comparison analysis between different models.

Vocalic, Lexical and Prosodic Cues for the INTERSPEECH 2018 Self-Assessed Affect Challenge
Claude Montacié1 and Marie-José Caraty2
1STIH Laboratory, Paris Sorbonne University, 28 rue Serpente, 75006, Paris, France
2STIH Laboratory, Paris Descartes University, 45 rue des Saints-Pères, 75006, Paris, France

Mon-SS-2-1-9, Time: 18:06-18:18
The INTERSPEECH 2018 Self-Assessed Affect Challenge consists in the prediction of the affective state of mind from speech. Experiments were
conducted on the Ulm State-of-Mind in Speech database (USoMS) where subjects self-report their affective state. Dimensional representation of emotion (valence) is used for labeling. We have investigated cues related to the perception of the emotional valence according to three main relevant linguistic levels: phonetics, lexical and prosodic. For this purpose we studied: the degree-of-articulation, the voice quality, an affect lexicon and the expressive prosodic contours. For the phonetics level, a set of gender-dependent audio-features were computed on vowel analysis (voice quality and speech articulation measurements). At the lexical level, an affect lexicon was extracted from the automatic transcription of the USoMS database. This lexicon has been assessed for the Challenge task comparatively to a reference polarity lexicon. In order to detect expressive prosody, N-gram models of the prosodic contours were computed from an intonation labeling system. At last, an emotional valence classifier was designed combining ComParE and eGeMAPS feature sets with other phonetic, prosodic and lexical features. Experiments have shown an improvement of 2.4% on the Test set, compared to the baseline performance of the Challenge.

The INTERSPEECH 2018 Computational Paralinguistics Challenge: Summary of results
Bjorn Schuller1,2, Stefan Steidl3, Anton Ballinier4, Peter B. Marschik5,6, Harald Baumeister5, Fengquan Dong7, Simone Hantke7,8, Florian B. Pokorny9,10, Eva-Maria Rathner11, Katrin D. Bartl-Pokorny10, Christa Einspieler12, Dajie Zhang13, Alice Baird14, Shahin Amiriparian15,16, Quinn Kian15,16, Zhao Ren15, Maximilian Schmitt17, Panagiotis Tzirakis18 and Stefanos Zaferiou1,19,20

1GLAM – Group on Language, Audio & Music, Imperial College London, UK
2ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3audEERING GmbH, Garching, Germany
4Pattern Recognition Lab, FAU Erlangen-Nuremberg, Germany
5iDN – interdisciplinairy Developmental Neuroscience, Medical University of Graz, Austria
6University Medical Center Göttingen, Germany
7Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
8Department of Clinical Psychology and Psychotherapy, University of Ulm, Germany
9Shenzhen University General Hospital, Shenzhen, P.R. China
10Machine Intelligence & Signal Processing Group, Technische Universität München, Germany
11University of Oulu, Finland

Mon-SS-2-1-10, Time: 18:18-18:30

Game-based Spoken Dialog Language Learning Applications for Young Students
Keelan Evanim1, Veronika Timpe-Laughlin1, Eugene Tsipursan2, Ian Blood3, Jeremy Lee4, James Bruno5, Vikram Ramanarayanan5, Patrick Lange6 and David Suendermann-Oefel7
1Educational Testing Service R&D, 660 Rosedale Rd., Princeton, NJ, USA
2Educational Testing Service R&D, 90 New Montgomery Street, Suite 1500, San Francisco, CA, USA

Mon-SS-2-1-2, Time: 16:30-18:30

The IBM Virtual Voice Creator
Alexander Sarin1, Slava Shechtman1, Zvi Kons2, Ron Hoory1, Shay Ben-David2, Joe Pavitt2, Shai Rozenberg2, Carmel Rabinovitz1 and Tal Droy1
1IBM Research – Haifa, Israel
2IBM Research – Hursley, UK

Mon-SS-2-1-3, Time: 16:30-18:30

The IBM Virtual Voice Creator (IVVC) is an end-to-end cloud-based solution for TTS voice customization and voiceover generation in games and animated movies. The solution is based on the IBM expressive TTS technology with built-in online voice transformation capabilities. It is endowed with an interactive web GUI studio.

IVVC lets the users create unique voice personas according to their needs and imagination and control the vocal performance of the virtual speakers. IVVC provides a powerful set of controls over the voice characteristics, including the vocal tract, glottal pulse, breathiness, pitch, rate and special voice effects. IVVC also allows the user to control emotional style and emphasis in the synthesized speech.

The virtual voice design and performance controls are interactive, intuitive, fast and do not require any special skills.

Notes

Mon-S&T-2-1: Show and Tell 2
MR G 05-G 06; 16:30-18:30; Monday, 3 September, 2018
Chairs: Veena T and C. Krishna Mohan

Intonation tutor by SPIRE (In-SPIRE): An Online Tool for an Automatic Feedback to the Second Language Learners in Learning Intonation
Anand P A1, Chiranjeevi Yarra2, Kaushthubha N K2, Prasanta Kumar Ghosh2
1National Institute of Technology Karnataka (NITK), Surathkal-575025, India
2Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India

Mon-S&T-2-1-1, Time: 16:30-18:30
In spoken communication, intonation often conveys meaning of an utterance. Thus, incorrect intonation, typically made by second language (L2) learners, could result in miscommunication. We demonstrate In-SPIRE tool that helps the L2 learners to learn intonation in a self-learning manner. For this, we design an interactive self-explanatory front end, which is also used to send learner’s audio and hand-shake signals to the back-end. At the back-end, we implement a system that takes the learner’s audio against a specific stimuli and computes pitch patterns representing the intonation. For this, we apply pitch stylization on each syllable segment in the audio. Further, we compute a quality score using the learner’s patterns and the respective ground-truth patterns. Finally, the score, the patterns of the learners and the ground-truth are sent to the front-end for display as a feedback to the learners. Thus, the learner could correct any mismatch in his/her intonation with respect to the ground-truth. The proposed tool benefits the learners who do not have access to effective spoken language training.
Mobile Application for Learning Languages for the Unlettered
Gayathri G, Mohana N, Radhika Pal and Hema Murthy
Indian Institute of Technology, Madras, India
Mon-S&T-2-1-4, Time: 16:30-18:30
Mobile based technologies have become ubiquitous and various applications from games to readers are mobile oriented. In this paper, we propose development of speech based language learning app. Conventionally language learning tools start with words, followed by sentences. The fundamental assumption is that the person is literate. In the Indian context, the literacy levels are as low as 65%. In addition, each Indian language has its own scripts. The objective of this work is to develop a mobile app that starts from the script to teach the language to a person who can speak the language but is unlettered. Since the focus is on the unlettered, writing should be easy. A script centric approach is used to learn a language. The application starts with teaching a simple letter of the alphabet, followed by another letter that can be obtained by simple modification to the previously learned letter, followed by words using the letters that are learned, followed by sentences using the learned words. At every step, a text-to-speech system is used which articulates the letters and words. The learning app is based on a book called Tamil Karpom (P Nannan). The ideas from the book are adapted for learning Hindi.

Mandarin-English Code-switching Speech Recognition
Haihua Xu1, Van Tung Pham1,2, Zin Tun Kyaw1, Zhi Hao Lim1, Eng Siong Chng1,2 and Haizhou Li1
1Temasek Laboratories, Nanyang Technological University, Singapore
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
Mon-S&T-2-1-5, Time: 16:30-18:30
This work presents the development of a Mandarin-English code-switching speech recognition system. We demonstrate three key novelties in our system. First, we increase our lexicon coverage to 360K words, where phone sets of different languages are maintained separately. Secondly, we use a 15,000 hour of training data. Finally, a code-switching and code-switch corpus to develop the acoustic model. Finally, for language modelling, we applied context-aware text normalization and word-class language model. When testing on our internal code-switch close talk microphone recording, the system achieves recognition performance that can support real applications.

Mon-P-2-1: Spoken Dialogue Systems and Conversational Analysis
Hall 4-6, Poster-1; 16:30-18:30; Monday, 3 September, 2018
Chair: Helena Moniz

Joint Learning of Domain Classification and Out-of-Domain Detection with Dynamic Class Weighting for Satisficing False Acceptance Rates
Joo-Kyung Kim and Young-Bum Kim
Amazon Alexa
Mon-P-2-1-1, Time: 16:30-18:30
In domain classification for spoken dialog systems, correct detection of out-of-domain (OOD) utterances is crucial because it reduces confusion and unnecessary interaction costs between users and the systems. Previous work usually utilizes OOD detectors that are trained separately from in-domain (IND) classifiers and confidence thresholding for OOD detection given target evaluation scores. In this paper, we introduce a neural joint learning model for domain classification and OOD detection, where dynamic class weighting is used during the model training to satisfice a given OOD false acceptance rate (FAR) while maximizing the domain classification accuracy. Evaluating on two domain classification tasks for the utterances from a large spoken dialogue system, we show that our approach significantly improves the domain classification performance with satisficing given target FARs.

Analyzing Vocal Tract Movements During Speech Accommodation
Sankar Mukherjee1, Thierry Legour2, Leonardo Lancia2, Pauline Hilt3, Alice Tomassini1, Luciano Fadiga2,3, Alessandro D’Ausilio1,3, Leonardo Badino1 and Noel Nguyen2
1Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
2Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
3Section of Human Physiology, University of Ferrara, Italy
Mon-P-2-1-2, Time: 16:30-18:30
When two people engage in verbal interaction, they tend to accommodate on a variety of linguistic levels. Although recent attention has focused on the acoustic characteristics of convergence in speech, the underlying articulatory mechanisms remain to be explored. Using 3D electromagnetic articulography (EMA), we simultaneously recorded articulatory movements in two speakers engaged in an interactive verbal game, the domino task. In this task, the two speakers take turn in chaining bi-syllabic words according to a rhyming rule. By using a robust speaker identification strategy, we identified for which specific words speakers converged or diverged. Then, we explored the different vocal tract features characterizing speech accommodation. Our results suggest that tongue movements tend to slow down during convergence whereas maximal jaw opening during convergence and divergence differs depending on syllable position.

Cross-Lingual Multi-Task Neural Architecture for Spoken Language Understanding
Yujiang Li1,2, Xuemin Zhao1, Weniun Xu1 and Yonghong Yan1,2,3
1Key Laboratory of Speech Acoustic and Content Understanding, Institute of Acoustics, China
2University of Chinese Academy of Sciences, China
3Xinjiang Laboratory of Minority Speech and Language Information Processing, China
Mon-P-2-1-3, Time: 16:30-18:30
Cross-lingual spoken language understanding (SLU) systems traditionally require machine translation services for language portability and liberation from human supervision. However, restriction exists in parallel corpora and model architectures. Assuming reliable data are provided with human-supervision, which encourages non-parallel corpora and alleviate translation errors, this paper aims to explore cross-lingual knowledge transfer from multiple levels by taking advantage of neural architectures. We first investigate a joint model of slot filling and intent determination for SLU which alleviates the out-of-vocabulary problem and explicitly models dependencies between output labels by combining character and word representations, bidirectional Long Short-Term Memory and conditional random fields together, while attention-based classifier is introduced for intent determination. Knowledge transfer is further operated on character-level and sequence-level, aiming to share morphological and phonological information between languages with similar alphabets by sharing character representations and characterize the sequence with language-general and language-specific knowledge adaptively acquired by separate encoders. Experimental results on the MIT-Restaurant-Corpus and ATIS corpora in different languages demonstrate the effectiveness of the proposed methods.
Statistical Model Compression for Small-Footprint Natural Language Understanding
Grant P. Strimel, Kanthashree Mysore Sathyendra and Stanislav Peshterliev
Alexa Machine Learning, Amazon.com
Mon-P-2-1-4, Time: 16:30-18:30
In this paper we investigate statistical model compression applied to natural language understanding (NLU) models. Small-footprint NLU models are important for enabling offline systems on hardware restricted devices and for decreasing on-demand model loading latency in cloud-based systems. To compress NLU models, we present two main techniques, parameter quantization and perfect feature hashing. These techniques are complementary to existing model pruning strategies such as L1 regularization. We performed experiments on a large scale NLU system. The results show that our approach achieves 14-fold reduction in memory usage compared to the original models with minimal predictive performance impact.

Comparison of an End-to-End Trainable Dialogue System with a Modular Statistical Dialogue System
Norbert Braunsschweiler and Alexandros Papangelis
Toshiba Research Europe Limited, Cambridge Research Laboratory, Cambridge, UK
Mon-P-2-1-5, Time: 16:30-18:30
This paper presents a comparison of two dialogue systems: one is end-to-end trainable and the other uses a more traditional, modular architecture. End-to-end trainable dialogue systems recently attracted a lot of attention because they offer several advantages over traditional systems. One of them is the avoidance to train each system module independently, by creating a single network architecture which maps an input to the corresponding output without the need for intermediate representations. While the end-to-end system investigated here had been tested in a text-in-out scenario it remained an open question how the system would perform in a speech-in-out scenario, with noisy input from a speech recognizer and output speech generated by a speech synthesizer.

A Discriminative Acoustic-Prosodic Approach for Measuring Local Entrainment
Megan Willi1, Stephanie A. Borrie1, Tyson S. Barrett2, Ming Tu1 and Visar Berisha1
1Arizona State University, Tempe, AZ, USA
2Utah State University, Logan, UT, USA
Mon-P-2-1-6, Time: 16:30-18:30
Acoustic-prosodic entrainment describes the tendency of humans to align or adapt their speech acoustics to each other in conversation. This alignment of spoken behavior is important for the interpretation of conversational success. However, modeling the subtle nature of entrainment in spoken dialogue continues to pose a challenge. In this paper, we propose a straightforward definition for local entrainment in the speech domain and operationalize an algorithm to identify acoustic-prosodic features that capture entrainment. Our approach is to use a sliding window over the current utterance and identify the features that capture entrainment most effectively. We evaluate the method using the derived features to drive a classifier aiming to predict an objective measure of conversational success (i.e., low versus high), on a corpus of task-oriented conversations. The proposed entrainment approach achieves 72% classification accuracy using a Naive Bayes classifier, outperforming three previously established approaches evaluated on the same conversational corpus.

Investigating Speech Features for Continuous Turn-Taking Prediction Using LSTMs
Matthew Roddy1, Gabriel Skantze2 and Naomi Harte1
1ADAPT Centre, School of Engineering, Trinity College Dublin, Ireland
2Department of Speech Music and Hearing, KTH, Stockholm, Sweden
Mon-P-2-1-7, Time: 16:30-18:30
This paper presents a multi-class classification of correction dialog turns using machine learning. The classes are determined by the type of the introduced recognition errors while performing WoZ trials and creating the multilingual corpus. Three datasets were obtained using different sets of acoustic-prosodic features on the multilingual dialogue corpus.

The classification experiments were done using different machine learning paradigms: Decision Trees, Support Vector Machines and Deep Learning. After careful experiments setup and optimization on the hyper-parameter space, the obtained classification results were analyzed and compared in the terms of accuracy, precision, recall and F1 score. The achieved results are comparable with those obtained in similar experiments on different tasks and speech databases.

Classification of Correction Turns in Multilingual Dialogue Corpus
Ivan Kraljevski and Diane Hirschfeld
voice INTER connect GmbH, Dresden, Germany
Mon-P-2-1-8, Time: 16:30-18:30
This paper presents a multi-class classification of correction dialog turns using machine learning. The classes are determined by the type of the introduced recognition errors while performing WoZ trials and creating the multilingual corpus. Three datasets were obtained using different sets of acoustic-prosodic features on the multilingual dialogue corpus.

The classification experiments were done using different machine learning paradigms: Decision Trees, Support Vector Machines and Deep Learning. After careful experiments setup and optimization on the hyper-parameter space, the obtained classification results were analyzed and compared in the terms of accuracy, precision, recall and F1 score. The achieved results are comparable with those obtained in similar experiments on different tasks and speech databases.

Contextual Slot Carryover for Disparate Schemas
Chetan Naik, Arpit Gupta, Hancheng Ge, Mathias Lambert and Ruhi Sarikaya
Amazon Alexa Machine Learning
Mon-P-2-1-9, Time: 16:30-18:30
In the slot-filling paradigm, where a user can refer back to slots in the context during the conversation, the goal of the contextual understanding system is to resolve the referring expressions to the appropriate slots in the context. In large-scale multi-domain systems, this presents two challenges - scaling to a very large and potentially unbounded set of slot values and dealing with diverse schemas. We present a neural network architecture that addresses the slot value scalability challenge by reformulating the contextual interpretation as a decision to carryover a slot from a set of possible candidates. To deal with heterogeneous schemas, we introduce a simple data-driven method for transforming the candidate slots. Our experiments show that our approach can scale to multiple domains and provides competitive results over a strong baseline.

Notes
Capsule Networks for Low Resource Spoken Language Understanding

Vincent Renkens and Hugo van Hamme
Department Electrical Engineering-ESAT, KULeuven
Kasteelpark Arenberg 10, Bus 2441, B-3001 Leuven Belgium

Mon-P-2-1-10, Time: 16:30-18:30

Designing a spoken language understanding system for command-and-control applications can be challenging because of a wide variety of domains and users or because of a lack of training data. In this paper we discuss a system that learns from scratch from user demonstrations. This method has the advantage that the same system can be used for many domains and users without modifications and that no training data is required prior to deployment. The user is required to train the system, so for a user friendly experience it is crucial to minimize the required amount of data. In this paper we investigate whether a capsule network can make efficient use of the limited amount of available training data. We compare the proposed model to an approach based on Non-negative Matrix Factorisation which is the state-of-the-art in this setting and another deep learning approach that was recently introduced for end-to-end spoken language understanding. We show that the proposed model outperforms the baseline models for three command-and-control applications: controlling a small robot, a vocally guided card game and a home automation task.

Intent Discovery Through Unsupervised Semantic Text Clustering

Padmasundari and Srinivas Bangalore Interactions LLC

Mon-P-2-1-11, Time: 16:30-18:30

Conversational systems need to understand spoken language to be able to converse with a human in a meaningful coherent manner. This understanding (Spoken Language understanding - SLU) of the human language is operationalized through identifying intents and entities. While methods that rely on labeled data for SLU, creating large supervised data sets is extremely tedious and time consuming. This paper presents a practical approach to automate the process of intent discovery on unlabeled data sets of human language text through clustering techniques. We explore a range of representations for the texts and various clustering methods to validate the clustering stability through quantitative metrics like Adjusted Random Index (ARI). A final alignment of the clusters to the semantic intent is determined through consensus labelling. Our experiments on public datasets demonstrate the effectiveness of our approach generating homogeneous clusters with 89% cluster accuracy, leading to better semantic intent alignments. Furthermore, we illustrate that the clustering offer an alternate and effective way to mine sentence variants that can aid the bootstrapping of SLU models.

Multimodal Polynomial Fusion for Detecting Driver Distraction

Yuluń Du, Alan W Black, Louis-Philippe Morency and Maxine Eskenazi
Language Technologies Institute, Carnegie Mellon University, USA

Mon-P-2-1-12, Time: 16:30-18:30

Distracted driving is deadly, claiming 3,477 lives in the U.S. in 2015 alone. Although there has been a considerable amount of research on modeling the distracted behavior of drivers under various conditions, accurate automatic detection using multiple modalities and especially the contribution of using the speech modality to improve accuracy has received little attention. This paper introduces a new multimodal dataset for distracted driving behavior and discusses automatic distraction detection using features from three modalities: facial expression, speech and car signals. Detailed multimodal feature analysis shows that adding more modalities monotonically increases the predictive accuracy of the model. Finally, a simple and effective multimodal fusion technique using a polynomial fusion layer shows superior distraction detection results compared to the baseline SVM and neural network models.

Engagement Recognition in Spoken Dialogue via Neural Network by Aggregating Different Annotators’ Models

Koji Inoue, Divesh Lala, Katsuya Takanashi and Tatsuya Kawahara
Graduate School of Informatics, Kyoto University, Japan

Mon-P-2-1-13, Time: 16:30-18:30

This paper addresses engagement recognition based on four multimodal listener behaviors - backchannels, laughing, eye-gaze and head nodding. Engagement is an indicator of how much a user is interested in the current dialogue. Multiple third-party annotators give ground truth labels of engagement in a human-robot interaction corpus. Since perception of engagement is subjective, the annotations are sometimes different between individual annotators. Conventional methods directly use integrated labels, such as those generated through simple majority voting and do not consider each annotator’s recognition. We propose a two-stage engagement recognition where each annotator’s recognition is modeled and the different annotators’ models are aggregated to recognize the integrated label. The proposed neural network consists of two parts. The first part corresponds to each annotator’s model which is trained with the corresponding labels independently. The second part aggregates the different annotators’ models to obtain one integrated label. After each part is pre-trained, the whole network is fine-tuned through back-propagation of prediction errors. Experimental results show that the proposed network outperforms baseline models which directly recognize the integrated label without considering differing annotations.

A First Investigation of the Timing of Turn-taking in Ruuli

Tuurik Buanzur1, Margaret Zellers2, Saudah Namyalow3 and Alena Witzlack-Makarevich1
1Institut für Skandinavistik, Frisistik, und Allgemeine Sprachwissenschaft, University of Kiel, Germany
2Department of African Languages, Makerere University, Kampala, Uganda

Mon-P-2-1-14, Time: 16:30-18:30

Turn-taking behavior in conversation is reported to be universal among cultures, although the language-specific means used to accomplish smooth turn-taking are likely to differ. Previous studies investigating turn-taking have primarily focused on languages which are already heavily-studied. The current work investigates the timing of turn-taking in question-response sequences in naturalistic conversations in Ruuli, an under-studied Bantu language spoken in Uganda. We extracted sequences involving wh-questions and polar questions and measured the duration of the gap or overlap between questions and their following responses, additionally differentiating between different response types such as affirmative (i.e. type-conforming) or negative (i.e. non-type-conforming) responses to polar questions. We find that the timing of responses to various question types in Ruuli is consistent with timings that have been reported for a variety of other languages, with a mean gap duration between questions and responses of around 259 ms. Our findings thus emphasize the universal nature of turn-taking behavior in human interaction, despite Ruuli’s substantial structural differences from languages in which turn-taking has been previously studied.

Mon-P-2-2: Spoofing Detection

Hall 4-6: Poster-2, 16:30-18:30; Monday, 3 September, 2018
Chair: Emre Vilmaz

Spoofing Detection Using Adaptive Weighting Framework and Clustering Analysis

Yuanjun Zhao, Roberto Togneri and Victor Sreearam
School of Electrical, Electronic and Computer Engineering, The University of Western Australia (UWA), Australia

Notes
Mon-P-2-2-1, Time: 16:30-18:30

Security of Automatic Speaker Verification (ASV) systems against imposters are now focusing on anti-spoofing countermeasures. Under the broad threat of various speech spoofing techniques, ASV systems can easily be ‘fooled’ by spoofed speech which sounds as real as human-beings. As two effective solutions, the Constant Q Cepstral Coefficients (CQCC) and the Scattering Cepstral Coefficients (SCC) perform well on the detection of artificial speech signals, especially for attacks from speech synthesis (SS) and voice conversion (VC). However, for spoofing subsets generated by different approaches, a low Equal Error Rate (EER) cannot be maintained. In this paper, an adaptive weighting based standalone detector is proposed to address the selective detection degradation. The clustering property of the genuine and the spoofed subsets are analysed for the selection of suitable weighting factors. With a Gaussian Mixture Model (GMM) classifier as the back-end, the proposed detector is evaluated on the ASVSpoof 2015 database. The EERs of 0.01% and 0.20% are obtained on the known and the unknown attacks, respectively. This presents an essential complementation between the CQCC and the SCC and also promotes the future research on generalized countermeasures.

Exploration of Compressed ILPR Features for Replay Attack Detection

Sarfaraz Jelil, Sishir Kalita, S R Mahadeva Prasanna and Rohit Sinha
1Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
2Department of Electrical Engineering, Indian Institute of Technology Dharwad, Dharwad-580011, India

Mon-P-2-2-2, Time: 16:30-18:30

This paper deals with the problem of detecting replay attacks on speaker verification systems. In literature, apart from the acoustic features, source features have also been successfully used for this task. In existing source features, only the information around glottal closure instants (GCIs) have been utilized. We hypothesize that the feature derived by capturing the temporal dynamics between two GCIs would be more discriminative for such task. Motivated by that, in this work we explore the use of discrete cosine transform compressed integrated linear prediction residual (ILPR) features for discriminating between genuine and replayed signals. A spoof detection system is built using the compressed ILPR feature and a Gaussian mixture model (GMM) classifier: A baseline system is also built using constant-Q cepstral coefficient feature with GMM back-end. These systems are tested on the ASVSpoof 2017 Version 2.0 database. On fusing the systems developed using acoustic and proposed source features an equal error rate of 9.41% is achieved on the evaluation set.

Detection of Replay-Spoofing Attacks Using Frequency Modulation Features

Tharshini Gunendradasan, Buddhi Wickramasinghe, Ngoc Phu Le, Eliaathmy Ambikairajah and Julien Epps
1School of Electrical Engineering and Telecommunications, UNSW, Australia
2ATP Research Laboratory, DATA61, CSIRO, Australia

Mon-P-2-2-3, Time: 16:30-18:30

Prevention of malicious spoofing attacks is currently acknowledged as a priority area of investigation for the deployment of automatic speaker verification systems. Various features of speech signals have been used to fight counterfeit attacks. Among the different spoofing attack variants, replay attacks pose a significant threat as they do not require any expert knowledge and are difficult to detect. This paper proposes the use of a spectral centroid based frequency modulation (FM) features that we term spectral centroid modulation (SCM) features extracted from the same front-end as SCM features are also investigated as complementary features. Evaluations on the ASVSpoof 2017 dataset indicate that the proposed SCM features with a Gaussian Mixture Model (GMM) back-end is highly capable of discriminating between genuine and replayed speech, providing an equal error rate improvement greater than 60% relative to the CQCC baseline system from the ASVSpoof 2017 challenge. Interestingly, experiments also reveal that the proposed SCM features exhibit an increased variance for replay spoofed speech relative to genuine speech, particularly for the lowest and highest frequency subbands.

Effectiveness of Speech Demodulation-Based Features for Replay Detection

Madhu Kamble, Hemlata Tak and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, Gujarat, India

Mon-P-2-2-4, Time: 16:30-18:30

Replay attack presents a great threat to Automatic Speaker Verification (ASV) system. The speech can be modeled as amplitude and frequency modulated (AM-FM) signals. In this paper, we explore speech demodulation-based features using Hilbert transform (HT) and Teager Energy Operator (TEO) for replay detection. In particular, we propose features, namely, HT-based Instantaneous Amplitude (IA) and Instantaneous Frequency (IF) Cosine Coefficients (i.e., HT-IAACC and HT-IFCC) and Energy Separation Algorithm (ESA)-based features (i.e., ESA-IAACC and ESA-IFCC). For adapting instantaneous energy w.r.t. given sampling frequency, ESA requires 3 samples whereas HT requires relatively large number of samples and thus, ESA gives high time resolution. The experiments were performed on ASVspoof 2017 Challenge database for replay spoof speech detection (SSD) and the experimental results shows that ESA-based features gave lower EER. In addition, linearly-spaced Gabor filterbank gave lower EER than Butterworth filterbank. To explore possible complementary information using amplitude and frequency, we have used score-level fusion of IA and IF. With HT-based feature set, the score-level fusion gave EER of 5.24% (dev) and 10.03% (eval), whereas ESA-based feature set reduced the EER to 2.01% (dev) and 9.64% (eval).

Novel Variable Length Energy Separation Algorithm Using Instantaneous Amplitude Features for Replay Detection

Madhu Kamble and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, Gujarat, India

Mon-P-2-2-5, Time: 16:30-18:30

Voice-based speaker authentication or Automatic Speaker Verification (ASV) system is now becoming practical reality after several decades of research. However, still this technology is very much susceptible to various spoofing attacks. Among various spoofing attacks, replay is the most challenging attack. In this paper, we propose a novel feature set based on our recently introduced Variable length Energy Separation Algorithm (VESA) during INTERSPEECH 2017. The key idea of this paper is to capture the Instantaneous Amplitude (IA) obtained from the instantaneous energy fluctuations. The replay speech is affected by acoustic environment and distortions of intermediate device. Thus, the noise added in replayed speech is important to detect. The Amplitude Modulations (AM) are more susceptible to noise and multipath interferences that may result due to replay mechanism. The experiments are performed on various dependency index (DI) and lower EER of 6.12% and 11.94% is found on dev and eval set, respectively, of ASV Spoof 2017 Challenge database. Furthermore, we compare our results with CQCC, LFCC, MFCC and VESA-IFCC feature sets. The score-level fusion VESA-IFCC and proposed feature set further reduced the EER to 0.19% and 7.11% on dev and eval set, respectively.

Feature with Complementarity of Statistics and Principal Information for Spoofing Detection

Jichen Yang, Changhui You and Qianhua He
1School of Electronic and Information Engineering, South China University of Technology, China
2Institute for Infocomm Research, A*STAR, Singapore

Mon-P-2-2-6, Time: 16:30-18:30

Voice-based speaker authentication or Automatic Speaker Verification (ASV) system is now becoming practical reality after several decades of research. However, still this technology is very much susceptible to various spoofing attacks. Among various spoofing attacks, replay is the most challenging attack. In this paper, we propose a novel feature set based on our recently introduced Variable length Energy Separation Algorithm (VESA) during INTERSPEECH 2017. The key idea of this paper is to capture the Instantaneous Amplitude (IA) obtained from the instantaneous energy fluctuations. The replay speech is affected by acoustic environment and distortions of intermediate device. Thus, the noise added in replayed speech is important to detect. The Amplitude Modulations (AM) are more susceptible to noise and multipath interferences that may result due to replay mechanism. The experiments are performed on various dependency index (DI) and lower EER of 6.12% and 11.94% is found on dev and eval set, respectively, of ASV Spoof 2017 Challenge database. Furthermore, we compare our results with CQCC, LFCC, MFCC and VESA-IFCC feature sets. The score-level fusion VESA-IFCC and proposed feature set further reduced the EER to 0.19% and 7.11% on dev and eval set, respectively.

Feature with Complementarity of Statistics and Principal Information for Spoofing Detection

Jichen Yang, Changhui You and Qianhua He
1School of Electronic and Information Engineering, South China University of Technology, China
2Institute for Infocomm Research, A*STAR, Singapore

Mon-P-2-2-6, Time: 16:30-18:30

Voice-based speaker authentication or Automatic Speaker Verification (ASV) system is now becoming practical reality after several decades of research. However, still this technology is very much susceptible to various spoofing attacks. Among various spoofing attacks, replay is the most challenging attack. In this paper, we propose a novel feature set based on our recently introduced Variable length Energy Separation Algorithm (VESA) during INTERSPEECH 2017. The key idea of this paper is to capture the Instantaneous Amplitude (IA) obtained from the instantaneous energy fluctuations. The replay speech is affected by acoustic environment and distortions of intermediate device. Thus, the noise added in replayed speech is important to detect. The Amplitude Modulations (AM) are more susceptible to noise and multipath interferences that may result due to replay mechanism. The experiments are performed on various dependency index (DI) and lower EER of 6.12% and 11.94% is found on dev and eval set, respectively, of ASV Spoof 2017 Challenge database. Furthermore, we compare our results with CQCC, LFCC, MFCC and VESA-IFCC feature sets. The score-level fusion VESA-IFCC and proposed feature set further reduced the EER to 0.19% and 7.11% on dev and eval set, respectively.
Constant-Q transform (CQT) has demonstrated its effectiveness in anti-spoofing feature analysis for automatic speaker verification. This paper introduces a statistics-plus-principal information feature where a short-term spectral statistics information (STSSI), octave-band principal information (OPI) and full-band principal information (FPI) are proposed on the basis of CQT. Firstly, in contrast to conventional utterance-level long-term statistic information, STSSI reveals the spectral statistics at frame-level, moreover it provides a feasibility condition for model training with only small training database is available. Secondly, OPI emphasizes the principal information for octave-bands, STSSI and OPI creates a strong complementarity to enhance the anti-spoofing feature. Thirdly, FPI is also of complementary effect with OPI. With the statistical property over CQT spectral domain and the principal information through discrete cosine transform (DCT), the proposed statistics-plus-principal feature shows reasonable advantage of the complementary trait for spoofing detection. In this paper, we setup deep neural network (DNN) classifiers for evaluation of the features. Experiments show the effectiveness of the proposed feature as compared to many conventional features on ASVspoof 2017 and ASVspoof 2015 corpus.

Multiple Phase Information Combination for Replay Attacks Detection
Dongbo Li1, Longbiao Wang1, Jianwu Dang1, Meng Liu1, Zeyan Oo1, Seichi Nakagawa1, Haotian Guan2 and Xiangang Li*1
1Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
2Japan Advanced Institute of Science and Technology, Ishikawa, Japan
*Corresponding author

In recent years, the performance of Automatic Speaker Verification (ASV) systems has been improved significantly. However, they are still affected by different kind of spoofing attacks. In this paper, we propose a method that fused different phase features and amplitude features to detect replay attacks. We propose the mel-scale relative phase feature and apply source-filter vocal tract feature in phase domain for replay attacks detection. These two phase-based features are combined to get complementary information. In addition to these phase characteristics, constant Q cepstral coefficients (CQCCs) are used. The proposed methods are evaluated using the ASVspoof 2017 challenge database and Gaussian mixture model was used as the back-end model. The proposed approach achieved 55.6% relative error reduction rate than the conventional magnitude-based feature.

Frequency Domain Linear Prediction Features for Replay Spoofing Attack Detection
Buddhi Wickramasinghe1,2, Saad Irtza1, Eliathamby Ambikairajah1,2 and Julien Epps1,2
1School of Electrical Engineering and Telecommunications, UNSW Australia
2Data61,CSIRO, Sydney, Australia

Automatic speaker verification (ASV) systems are vulnerable to various types of spoofing attacks such as speech synthesis, voice conversion and replay attacks. Recent research has highlighted the need for more effective countermeasures for replay attacks, which can be very challenging to detect, however replayed speech has previously shown frequency band-specific differences when compared with genuine speech. In this paper, we propose the use of long-term temporal envelopes of subband signals using a frequency domain linear prediction (FDLP) framework. This flexible framework makes use of temporal envelope information, which has not previously been investigated for replay spoofing detection. Evaluations of the proposed system and its fusion with other subsystems were carried out on the ASVspoof 2017 database. Interestingly, smoother temporal envelopes, based on very long windows of up to 1 second, seem to be most successful and show good prospects for performance improvements via fusion.

Auditory Filterbank Learning for Temporal Modulation Features in Replay Spoof Speech Detection
Hardik Sailor, Madhu Kamble and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar-382007, Gujarat, India

In this paper, we present a standalone replay spoof speech detection (SSD) system to classify the natural vs. replay speech. The replay speech spectrum is known to be affected in the higher frequency range. In this context, we propose to exploit an auditory filterbank learning using Convolutional Restricted Boltzmann Machine (ConvRBM) with the pre-emphasized speech signals. Temporal modulations in amplitude (AM) and frequency (FM) are extracted from the ConvRBM subbands using the Energy Separation Algorithm (ESA). ConvRBM-based short-time AM and FM features are developed using cepstral processing, denoted as AM-ConvRBM-CC and FM-ConvRBM-CC. Proposed temporal modulation features performed better than the baseline Constant-Q Cepstral Coefficients (CQCC) features. On the evaluation set, an absolute reduction of 7.48% and 5.28% in Equal Error Rate (EER) is obtained using AM-ConvRBM-CC and FM-ConvRBM-CC, respectively compared to our CQCC baseline. The best results are achieved by combining scores from AM and FM cues (0.82% and 8.89% EER for development and evaluation set, respectively). The statistics of AM-FM features are analyzed to understand the performance gap and complementary information in both the features.

Deep Siamese Architecture Based Replay Detection for Secure Voice Biometric
Kaavya Sriskandaraja1,2, Vidhyasaharan Sethu1 and Eliathamby Ambikairajah1,2
1School of Electrical Engineering and Telecommunications, UNSW Australia
2DATA61,CSIRO, Sydney, Australia

Replay attacks are the simplest and the most easily accessible form of spoofing attacks on voice biometric systems and can be hard to detect by systems designed to identify spoofing attacks based on synthesised speech. In this paper, we propose a novel approach to evaluate the similarities between pairs of speech samples to detect replayed speech based on a suitable embedding learned by deep Siamese architectures. Specifically, we train a deep Siamese network to identify pairs of genuine speech samples and pairs of replayed speech samples as being ‘similar’ and mixed pairs of genuine and replayed speech to be identified as ‘dissimilar’. Siamese networks are particularly suited to this task and have been shown to be effective in problems where intra-class variability is large and the number of training samples per class is relatively small. The internal low-dimensional embedding learnt by the Siamese network to accomplish this task is then used as the basis for replay detection. The proposed approach outperforms state-of-the-art systems when evaluated on the ASVspoof 2017 challenge corpus without relying on fusion with other sub-systems.

A Deep Identity Representation for Noise Robust Spoofing Detection
Alejandro Gómez Alainés1, Antonio M. Peinado1, Jose A. Gonzalez2 and Angel Gomez1
1University of Granada, Granada, Spain
2University of Malaga, Malaga, Spain

The issue of the spoofing attacks which may affect automatic speaker verification systems (ASVs) has recently received an increased attention.
End-To-End Audio Replay Attack Detection Using Deep Convolutional Networks with Attention
Francis Tom1,2, Mohit Jain1,3 and Prasenjit Dey1
1IBM Research, India
2IIT Kharagpur, India
3University of Washington, Seattle USA
Mon-P-2-2-12, Time: 16:30-18:30

With automatic speaker verification (ASV) systems becoming increasingly popular, the development of robust countermeasures against spoofing is needed. Replay attacks pose a significant threat to the reliability of ASV systems because of the relative difficulty in detecting replayed speech and the ease with which such attacks can be mounted. In this paper, we propose an end-to-end deep learning framework for audio replay attack detection. Our proposed approach uses a novel visual attention mechanism on time-frequency representations of utterances based on group delay features, via deep residual learning (an adaptation of ResNet-18 architecture). Using a single model system, we achieve a perfect Equal Error Rate (EER) of 0% on both the development as well as the evaluation set of the ASVSpoof 2017 dataset, against a previous best of 0.12% on the development set and 2.76% on the evaluation set reported in the literature. This highlights the efficacy of our feature representation and attention-based architecture in tackling the challenging task of audio replay attack detection.

Decision-level Feature Switching as a Paradigm for Replay Attack Detection
Saranya M S and Hema Murthy
Indian Institute of Technology Madras
Mon-P-2-2-13, Time: 16:30-18:30

A pre-recorded audio sample of an authentic speaker presented to a voice-based biometric system is termed as a replay attack. Such attacks can be detected by identifying the characteristics of the recording device and environment. An analysis of different recording devices indicates that each recording device affects the spectrum differently. It is also observed that each feature captures specific characteristics of recording devices. In particular, Mel Filterbank Slope (MFS) captures low-frequency information corresponding to that of the low-quality recording devices, while Linear Filterbank Slope (LFS) captures high-frequency information corresponding to that of a high-quality recording device. The proposed approach uses MFS and LFS along with Mel Frequency Cepstral Coefficients (MFCC) and Constant-Q Cepstral Coefficients (CQCC) in a Decision-level Feature Switching (DLFS) paradigm to determine whether a given utterance is spoofed. The obtained results surpass the state-of-the-art Light Convolutional Neural Network (LCNN) based replay detection system with a relative improvement of 7.43% on the ASVspoof-2017 evaluation dataset.

Modulation Dynamic Features for the Detection of Replay Attacks
Gajan Suthokumar1,2, Vidhyasaharan Sethu1, Chamith Wijenayake1 and Eliaithamby Ambikairajah1,2
1School of Electrical Engineering and Telecommunications, UNSW Australia
2DATA61, CSIRO, Sydney, Australia
Mon-P-2-2-14, Time: 16:30-18:30

The development of automatic systems that can detect replayed speech has emerged as a significant research challenge for securing voice biometric systems and is the focus of this paper. Specifically, this paper proposes two novel features to capture the static and dynamic characteristics of the signal from the modulation spectrum, which complement short term spectral features for use in replay detection. The modulation spectral centroid frequency feature is proposed as a vector representation of the first order spectral moments of the modulation spectrum. In conjunction to this, the long term spectral average serves to capture the static characteristics of the modulation spectrum. The proposed system, employing a GMM back-end, was evaluated on the ASVSpoof 2017 dataset and found to yield an EER of 6.54%.
In this paper, we tackle the singing voice phoneme segmentation problem. Objective evaluations related to feature distortion and phonetic representational capability were performed by studying the properties of the mel-frequency cepstral coefficient (MFCC) representations computed from different spectral estimation methods under noisy conditions using the TIMIT database. The results show that the proposed time-regularized LP approach exhibits superior MFCC distortion behavior while simultaneously having the greatest average separability of different phoneme categories in comparison to the other methods.

Auditory Filterbank Learning Using ConvRBM for Infant Cry Classification
Hardik B. Sailor and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar-382007, India

Mon-P-2-3-3, Time: 16:30-18:30

The infant cry classification is a socially-relevant problem where the task is to classify the normal vs. pathological cry signals. Since the cry signals are very different from the speech signals in terms of temporal and spectral content, there is a need for better feature representation for infant cry signals. In this paper, we propose to use unsupervised auditory filterbank learning using Convolutional Restricted Boltzmann Machine (ConvRBM). Analysis of the subband filters shows that most of the subband filters are Fourier-like basis functions. The infant cry classification experiments were performed on the two databases, namely, DA-IICT Cry and Baby Chilanto. The experimental results show that the proposed features perform better than the standard Mel Frequency Cepstral Coefficients (MFCC) using various statistically meaningful performance measures. In particular, our proposed ConvRBM-based features obtained an absolute improvement of 2% and 0.58% in the classification accuracy on the DA-IICT Cry and the Baby Chilanto database, respectively.

Effectiveness of Dynamic Features in INCA and Temporal Context-INCA
Nirmesh Shah and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar-382007, India

Mon-P-2-3-4, Time: 16:30-18:30

Non-parallel Voice Conversion (VC) has gained significant attention since last one decade. Obtaining corresponding speech frames from both the source and target speakers before learning the mapping function in the non-parallel VC is a key step in the standalone VC task. Obtaining such corresponding pairs, is more challenging due to the fact that both the speakers may have uttered different utterances from same or the different languages. Iterative combination of a Nearest Neighbor search step and a Conversion step Alignment (INCA) and its variant Temporal Context (TC)-INCA are popular unsupervised alignment algorithms. The INCA and TC-INCA iteratively learn the mapping function after getting the Nearest Neighbor (NN) aligned pairs from the intermediate converted and the target spectral features. In this paper, we propose to use dynamic features along with static features to calculate the NN aligned pairs in both the INCA and TC-INCA algorithms (since the dynamic features are known to play a key role to differentiate major phonetic categories). We obtained an average relative improvement of 13.75% and 5.39% with our proposed Dynamic INCA and Dynamic TC-INCA, respectively. This improvement is also positively reflected in the quality of converted voices.

Singing Voice Phoneme Segmentation by Hierarchically Inferring Syllable and Phoneme Onset Positions
Rong Gong and Xavier Serra
Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain

Mon-P-2-3-5, Time: 16:30-18:30

In this paper, we tackle the singing voice phoneme segmentation problem in the singing training scenario by using language-independent information - onset and prior coarse duration. We propose a two-step method. In the first step, we jointly calculate the syllable and phoneme onset detection functions (ODFs) using a convolutional neural network (CNN). In the second step, the syllable and phoneme boundaries and labels are inferred hierarchically by using a duration-informed hidden Markov model (HMM). To achieve the inference, we incorporate the a priori duration model as the transition probabilities and the ODFs as the emission probabilities into the HMM. The proposed method is designed in a language-independent way such that no phoneme class labels are used. For the model training and evaluation, we collect a new jingju (also known as Beijing or Peking opera) solo singing voice dataset and manually annotate the boundaries and labels at phrase, syllable and phoneme levels. The dataset is publicly available. The proposed method is compared with a baseline model based on hidden semi-Markov model (HSMM) forced alignment. The evaluation results show that the proposed method outperforms the baseline by a large margin regarding both segmentation and onset detection tasks.

Novel Empirical Mode Decomposition Cepstral Features for Replay Spoof Detection
Prasad Tapkir and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India

Mon-P-2-3-6, Time: 16:30-18:30

The advances in Automatic Speaker Verification (ASV) system for voice biometric purpose comes with the danger of spoofing attacks. The replay attack is the most accessible attack, where the attacker imitates speaker’s identity by replaying the pre-recorded speech samples of the target speaker. Most of the conventional features, such as Mel Frequency Cepstral Coefficients (MFCC), Instantaneous Frequency Cepstral Coefficients (IFCC), etc. uses filterbank structure for feature extraction purpose. In this paper, we propose a novel Empirical Mode Decomposition Cepstral Coefficient (EMDCC) feature set, where the filterbank in MFCC is replaced with the Empirical Mode Decomposition (EMD) to obtain the subband signals. The propose feature set takes advantage of using EMD that acts as a dyadic filterbank and handles the nonlinear and non-stationary nature of the speech signal. The stand-alone EMDCC feature set gives the Equal Error Rate (EER) of 28.06% compared to the baseline CGCC and MFCC system with EER of 29.18% and 31.3%, respectively on the evaluation set of ASV Spoof 2017 Challenge database. Furthermore, the proposed feature set is fused with the Linear Frequency Modified Group Delay Cepstral Coefficient (LFMGDCC) at score level and we obtain a reduced EER of 18.36% on evaluation set.

Novel Linear Frequency Residual Cepstral Features for Replay Attack Detection
Hemlata Tak and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar, Gujarat, India

Mon-P-2-3-7, Time: 16:30-18:30

Replay attack poses the most difficult challenge for the development of countermeasures for spoofed speech detection (SSD) system. Earlier researchers mainly used vocal tract-based (segmental) information for replay detection. However, during replay, excitation source-based information also gets affected (in particular, degradation in pitch source harmonics at higher frequency regions) due to recording environment and replay devices. Hence, in addition to the vocal tract-based system information, we have also explored the excitation source-based informations for SSD. In particular, we have used Linear Frequency Residual Cepstral Coefficients (LFRCF) for replay detection. The objective of this paper is to explore possible complementary excitation (glottal) source information present in the Linear Prediction residual-based features. Experiments performed on the ASV Spoof 2017 Challenge database with Gaussian Mixture Model (GMM) and Deep Neural Networks (DNN) classifier shows that when we combined the source and system-based information, we obtained an average 28.77% and 42.72% relative decrease in Equal Error Rate (EER) on development and evaluation set, respectively. Furthermore, when we perform score-level fusion of feature sets (for a fixed classifier) followed by a classifier-level fusion of GMM and CNN (for a fixed feature set), we obtained reduced EER of 2.40% and 9.06% on dev and eval set, respectively.
Notes
Analysis of Variational Mode Functions for Robust Detection of Vowels
Surbhi Sakshi, Avinash Kumar and Gayadhar Pradhan
Department of Electronics and Communication Engineering
National Institute of Technology Patna, India

Mon-P-2-3-13, Time: 16:30-18:30
In this work, initially the speech signal is decomposed into variational mode functions (VMFs) with the aid of variational mode decomposition (VMD). Each decomposed VMF represents different frequency band of the input speech signal. An approximate speech signal is then reconstructed by using a set of selected VMFs whose center frequency predominantly corresponds to the frequency range of the vowels. In the reconstructed speech signal, energy due to the high frequency unvoiced sound units and noises is suppressed. Consequently, over an analysis frame, the mean of the square magnitude (MSM) of the sample points is significantly higher for the vowels than other sound units. Further, the MSM at each time instant is non-linearly mapped (NLM) using a negative exponential functions to enhance the transitions at the onset and the offset points of vowels and suppress small fluctuations. The NLM-MSM is used as a front-end feature for discriminating vowels in a given speech signal. The experiments conducted on TIMIT database show that, the proposed approach outperforms the existing methods for the task of detecting vowels in a given speech signal under clean and noisy test scenarios.

Mon-P-2-4: Sequence Models for ASR
Hall 4-6: Poster-4, 16:30-18:30, Monday, 3 September, 2018
Chair: Kate Knill

Improving Attention Based Sequence-to-Sequence Models for End-to-End English Conversational Speech Recognition
Chao Weng1, Jia Cui1, Guangsen Wang2, Jun Wang2, Chengzhu Yu1, Dan Su1 and Dong Yu1
1Tencent AI Lab, Bellevue, USA
2Tencent AI Lab, Shenzhen, China
Mon-P-2-4-1, Time: 16:30-18:30
In this work, we propose two improvements to attention based sequence-to-sequence models for end-to-end speech recognition systems. For the first improvement, we propose to use an input-feeding architecture which feeds not only the previous context vector but also the previous decoder hidden state information as inputs to the decoder. The second improvement is based on a better hypothesis generation scheme for sequential minimum Bayes risk (MBR) training of sequence-to-sequence models where we introduce softmax smoothing into N-best generation during MBR training. We conduct the experiments on both Switchboard+300hrs and Switchboard+Fisher-2000hrs datasets and observe significant gains from both proposed improvements. Together with other training strategies such as dropout and scheduled sampling, our best model achieved WERs of 8.3%/15.5% on the Switchboard/CallHome subsets of Eval2000 without any external language models which is highly competitive among state-of-the-art English conversational speech recognition systems.

Segmental Encoder-Decoder Models for Large Vocabulary Automatic Speech Recognition
Eugen Beck, Mirko Hannemann, Patrick Dötsch, Ralf Schlüter and Hermann Ney
Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52062 Aachen, Germany
Mon-P-2-4-2, Time: 16:30-18:30
It has been known for a long time that the classic Hidden-Markov-Model (HMM) derivation for speech recognition contains assumptions such as independence of observation vectors and weak duration modeling that are practical but unrealistic. When using the hybrid approach this is amplified by trying to fit a discriminative model into a generative one. Hidden Conditional Random Fields (CRFs) and segmental models (e.g. Semi-Markov CRFs / Segmental CRFs) have been proposed as an alternative, but for a long time have failed to get traction until recently. In this paper we explore different length modeling approaches for segmental models, their relation to attention-based systems. Furthermore we show experimental results on a handwriting recognition task and to the best of our knowledge the first reported results on the Switchboard 300th speech recognition corpus using this approach.

Acoustic Modeling with DFSMN-CTC and Joint CTC-CE Learning
ShiLiang Zhang and Ming Lei
Machine Intelligence Technology, Alibaba Group
Mon-P-2-4-3, Time: 16:30-18:30
Recently, the connectionist temporal classification (CTC) based acoustic models have achieved comparable or even better performance, with much higher decoding efficiency, than the conventional hybrid systems in LVCSR tasks. For CTC-based models, it usually uses the LSTM-type networks as acoustic models. However, LSTMs are computationally expensive and sometimes difficult to train with CTC criterion. In this paper, inspired by the recent DFSMN works, we propose to replace the LSTMs with DFSMN in CTC-based acoustic modeling and explore how this type of non-recurrent models behave when trained with CTC loss. We have evaluated the performance of DFSMN-CTC using both context-independent (CI) and context-dependent (CD) phones as target labels in many LVCSR tasks with various amount of training data. Experimental results shown that DFSMN-CTC acoustic models using either CI-Phones or CD-Phones can significantly outperform the conventional hybrid models that trained with CD-Phones and cross-entropy (CE) criterion. Moreover, a novel joint CTC and CE training method is proposed, which enables to improve the stability of CTC training and performance. In a 20000 hours Mandarin recognition task, joint CTC-CE trained DFSMN can achieve a 11.0% and 30.1% relative performance improvement compared to DFSMN-CE models in a normal and fast speed test set respectively.

End-to-End Speech Command Recognition with Capsule Network
Jaesung Bae and Dae-Shik Kim
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)
Mon-P-2-4-4, Time: 16:30-18:30
In recent years, neural networks have become one of the common approaches used in speech recognition(SR), with SR systems based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) achieving the state-of-the-art results in various SR benchmarks. Especially, since CNNs are capable of capturing the local features effectively, they are applied to tasks which have relatively short-term dependencies, such as keyword spotting or phoneme-level sequence recognition. However, one limitation of CNNs is that, with max-pooling, they do not consider the pose relationship between low-level features. Motivated by this problem, we apply the capsule network to capture the spatial relationship and pose information of speech spectrogram features in both frequency and time axes. We show that our proposed end-to-end SR system with capsule networks on one-second speech commands dataset achieves better results on both clean and noise-added test than baseline CNN models.

End-to-End Speech Recognition from the Raw Waveform
Neil Zeghidour1,2, Nicolas Usunier1, Gabriel Synnaeve1, Ronan Collobert1 and Emmanuel Dupoux2
1Facebook A.I. Research, Paris, France; New York & Menlo Park, USA
2CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France
State-of-the-art speech recognition systems rely on fixed, hand-crafted features such as mel-filterbanks to preprocess the waveform before the training pipeline. In this paper, we study end-to-end systems trained directly from the raw waveform, building on two alternatives for trainable replacements of mel-filterbanks that use a convolutional architecture. The first one is inspired by gammatone filterbanks (Hoshen et al., 2015; Sainath et al., 2015) and the second one by the scattering transform (Zeghidour et al., 2017). We propose two modifications to these architectures and systematically compare them to mel-filterbanks, on the Wall Street Journal dataset. The first modification is the addition of an instance normalization layer, which greatly improves on the gammatone-based trainable filterbanks and speeds up the training of the scattering-based filterbanks. The second one relates to the low-pass filter used in these approaches. These modifications consistently improve performances for both approaches and remove the need for a careful initialization in scattering-based trainable filterbanks. In particular, we show a consistent improvement in word error rate of the trainable filterbanks relatively to comparable mel-filterbanks. It is the first time end-to-end models trained from the raw signal significantly outperform mel-filterbanks on a large vocabulary task with clean recording conditions.

A Multistage Training Framework for Acoustic-to-Word Model
Chengzhu Yu, Chunlei Zhang, Chao Weng, Jia Cui and Dong Yu
Tencent AI Lab, Bellevue, USA

Acoustic-to-word (A2W) prediction model based on Connectionist Temporal Classification (CTC) criterion has gained increasing interest in recent studies. Although previous studies have shown that A2W system could achieve competitive Word Error Rate (WER), there is still performance gap compared with the conventional speech recognition system when the amount of training data is not exceptionally large. In this study, we empirically investigate advanced model initializations and training strategies to achieve competitive speech recognition performance on 300 hour subset of the Switchboard task (SWB-300Hr). We first investigate the use of hierarchical CTC pretraining for improved model initialization. We also explore curriculum training strategy to gradually increase the target vocabulary size from 10k to 20k. Finally, joint CTC and Cross Entropy (CE) training techniques are studied to further improve the performance of A2W system. The combination of hierarchical-CTC model initialization, curriculum training and joint CTC-CE training translates to a relative of 12.1% reduction in WER. Our final A2W system evaluated on Hub5-2000 test set achieves a WER of 11.4/20.8 for Switchboard and CallHome parts without using language model and decoder.

Syllable-Based Sequence-to-Sequence Speech Recognition with the Transformer in Mandarin Chinese
Shiyu Zhou1,2; Linhao Dong1,2; Shuang Xu1 and Bo Xu1
1Institute of Automation, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

Sequence-to-sequence attention-based models have recently shown very promising results on automatic speech recognition (ASR) tasks, which integrate an acoustic, pronunciation and language model into a single neural network. In these models, the Transformer, a new sequence-to-sequence attention-based model relying entirely on self-attention without using RNNs or convolutions, achieves a new single-model state-of-the-art BLEU on neural machine translation (NMT) tasks. Since the outstanding performance of the Transformer, we extend it to speech and concentrate on it as the basic architecture of sequence-to-sequence attention-based model on Mandarin Chinese ASR tasks. Furthermore, we investigate a comparison between syllable based model and context-independent phoneme (CI-phoneme) based model with the Transformer in Mandarin Chinese. Additionally, a greedy cascading decoder with the Transformer is proposed for mapping CI-phoneme sequences and syllable sequences into word sequences. Experiments on HKUST datasets demonstrate that syllable based model with the Transformer performs better than CI-phoneme based counterpart, and achieves a character error rate (CER) of 28.77%, which is competitive to the state-of-the-art CER of 28.0% by the joint CTC-attention based encoder-decoder network.

Densely Connected Networks for Conversational Speech Recognition
Kyu Han, Aakshay Chandrashekar, Jungsuk Kim and Ian Lane
Capio Inc., Belmont, CA, USA

Multi-Head Decoder for End-to-End Speech Recognition
Tomoki Hayashi1, Shinji Watanabe2, Tomoki Toda1 and Kazuya Takeda1
1Nagoya University
2Johns Hopkins University

Compressing End-to-End ASR Networks by Tensor-Train Decomposition
Takuma Mori1, Andros Tjandra1,2, Sakriani Sakti1,2 and Satoshi Nakamura1,2
1Graduate School of Information Science, Nara Institute of Science and Technology, Japan
2RIKEN, Center for Advanced Intelligence Project, AIP, Japan

End-to-end deep learning has become a popular framework for automatic speech recognition (ASR) tasks and it has proven itself to be a powerful solution. Unfortunately, network structures commonly have millions of parameters and large computational resources are required to make this approach feasible for training and running such networks. Moreover, many applications still prefer lightweight models of ASR that can run efficiently on mobile or wearable devices. To address this challenge, we propose an approach that can reduce the number of ASR parameters. Specifically, we perform Tensor-Train decomposition on the weight matrix of the gated recurrent unit (TT-GRU) in the end-to-end ASR framework. Experimental results on LibriSpeech data reveal that the compressed ASR with TT-GRU can maintain good performance while greatly reducing the number of parameters.
Speech2Vec: A Sequence-to-Sequence Framework for Learning Word Embeddings from Speech
Yu-An Chung and James Glass
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Mon-P-2-4-11, Time: 16:30-18:30
In this paper, we propose a novel deep neural network architecture, Speech2Vec, for learning fixed-length vector representations of audio segments excised from a speech corpus, where the vectors contain semantic information pertaining to the underlying spoken words and are close to other vectors in the embedding space. Here, their corresponding underlying spoken words are semantically similar. The proposed model can be viewed as a speech version of Word2Vec. Its design is based on a RNN Encoder-Decoder framework and borrows the methodology of skipgrams or continuous bag-of-words for training. Learning word embeddings directly from speech enables Speech2Vec to make use of the semantic information carried by speech that does not exist in plain text. The learned word embeddings are evaluated and analyzed on 13 widely used word similarity benchmarks and outperform word embeddings learned by Word2Vec from the transcriptions.

Extending Recurrent NeuralAligner for Streaming End-to-End Speech Recognition in Mandarin
Lin-hao Dong1,2, Shi-yu Zhou1,2, Wei Chen1 and Bo Xu1
1Institute of Automation, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China
Mon-P-2-4-12, Time: 16:30-18:30
End-to-end models have been showing superiority in Automatic Speech Recognition (ASR). At the same time, the capacity of streaming recognition has become a growing requirement for end-to-end models. Following these trends, an encoder-decoder recurrent neural network called Recurrent Neural Aligner (RNA) has been freshly proposed and shown its competitiveness on two English ASR tasks. However, it is not clear if RNA can be further improved and applied to other spoken language. In this work, we explore the applicability of RNA in Mandarin Chinese and present four effective extensions: In the encoder, we redesign the temporal downsampling and introduce a powerful convolutional structure. In the decoder, we utilize a novel method to smooth the output distribution and conduct joint training with a language model. On two Mandarin Chinese conversational telephone speech recognition (MTS) datasets, our Extended-RNA obtains promising performance. Particularly, it achieves 27.7% character error rate (CER), which is superior to current state-of-the-art result on the popular HKUST task.

Mon-P-2-5: Source Separation and Spatial Analysis
Hall 4-6, Poster-5, 16:30-18:30; Monday, 3 September, 2018
Chair: Mathew Magimai Doss

Joint Noise and Reverberation Adaptive Learning for Robust Speaker DOA Estimation with an Acoustic Vector Sensor
Disong Wang and Yuxian Zou
ADSPLAB/Intelligent Lab, School of ECE, Peking University, Shenzhen, 518055, China
Mon-P-2-5-1, Time: 16:30-18:30
Deep neural network (DNN) based DOA estimation (DNN-DOAest) methods report superior performance but the degradation is observed under stronger additive noise and room reverberation conditions. Motivated by our previous work with an acoustic vector sensor (AVS) and the great success of DNN based speech denoising and dereverberation (DNN-DDS), a unified DNN framework for robust DOA estimation task is thoroughly investigated in this paper. First, a novel DOA cue termed as sub-band inter-sensor data ratio (5b-ISDR) is proposed to efficiently represent DOA information for training a DNN-DOAest model. Second, a speech-aware DNN-DDS is presented, which takes extra time-frequency points dominated by speech signals as additional input to facilitate the training to predict complex ideal ratio masks. Lastly, by stacking the DNN-DDAest on the DNN-DDS with a joint part, the unified network is jointly fine-tuned to serve as a pre-processing front-end to adaptively generate "clean" speech features that are easier to be correctly classified by the following DNN-DDAest for robust DOA estimation. Experimental results on simulated and recorded data confirm the effectiveness and superiority of our proposed methods under different noise and reverberations compared with baseline methods.

Multiple Concurrent Sound Source Tracking Based on Observation-Guided Adaptive Particle Filter
Hong Liu, Haipeng Lan, Bing Yang and Cheng Pang
Key Laboratory of Machine Perception, Peking University, Shenzhen Graduate School
Mon-P-2-5-2, Time: 16:30-18:30
Particle filter (PF) has been proved to be an effective tool to track sound sources. In traditional PF, a pre-defined dynamic model is used to model source motion, which tends to be mismatched due to the uncertainty of source motion. Besides, non-stationary interferences pose a severe challenge to source tracking. To this end, an observation-guided adaptive particle filter (OAPF) is proposed for multiple concurrent sound source tracking. Firstly, sensor signals are processed in the time-frequency domain to obtain the direction of arrival (DOA) observations of sources. Then, by updating particle states with these DOA observations, angular distances between particles and observations are reduced to guide particles to directions of sources. Thirdly, particle weights are updated by an interference-adaptive likelihood function to reduce the impacts of interferences. At last, with the updated particles and the corresponding weights, OAPF is utilized to determine the final DOAs of sources. Experimental results demonstrate that our method achieves favorable performance for multiple concurrent sound source tracking in noisy environments.

Harmonic-Percussive Source Separation of Polyphonic Music by Suppressing Impulsive Noise Events
Gurunath Reddy M, K. Sreenivasa Rao and Partha Pratim Das
Indian Institute of Technology, Kharagpur, India
Mon-P-2-5-3, Time: 16:30-18:30
In recent years, harmonic-percussive source separation methods are gaining importance because of their potential applications in many music information retrieval tasks. The goal of the decomposition methods is to achieve near real-time separation, distortion and artifact free component spectrograms and their equivalent time domain signals for potential music applications. In this paper, we propose a decomposition method based on filtering/suppressing the impulsive interference of percussive source on the harmonic components and impulsive interference of the harmonic source on the percussive components by modifying moving average filter in the Fourier frequency domain. The significant advantage of the proposed method is that it minimizes the artifacts in the separated signal spectrograms. In this work, we have proposed Affine and Gain masking methods to separate the harmonic and percussive components to achieve minimal spectral leakage. The objective measures and separated spectrograms showed that the proposed method is better than the existing rank-order filtering based harmonic-percussive separation methods.

Speaker Activity Detection and Minimum Variance Beamforming for Source Separation
Enna Ceolini, Jithendar Anumula, Adrian Huber, Ilya Kiselev and Shih-Chii Liu
Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
Mon-P-2-5-4, Time: 16:30-18:30
This work proposes a framework that renders minimum variance
beamforming blind allowing for source separation in real world environments with an ad-hoc multi-microphone setup using no assumptions other than knowing the number of speakers. The framework allows for multiple active speakers at the same time and estimates the activity of every single speaker at flexible time resolution. These estimated speaker activities are subsequently used for the calibration of the beamforming algorithm. This framework is tested with three different speaker activity detection (SAD) methods, two of which use classical algorithms and one that is event-driven. Our methods, when tested in real world reverberant scenarios, can achieve very high signal-to-interference ratio (SIR) of around 20 dB and sound quality of 0.85 in short-time objective intelligibility (STOI) close to optimal beamforming results of 22 dB SIR and 0.89 in STOI.

Sparsity-Constrained Weight Mapping for Head-Related Transfer Functions Individualization from Anthropometric Features
Xiaoke Qi1 and Jianhua Tao2,3
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China
2CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, China
3School of Artificial Intelligence, University of Chinese Academy of Sciences, China
Mon-P-2-5-5, Time: 16:30-18:30
Head-related transfer functions (HRTFs) describe the propagation of sound waves from the sound source to ear drums, which contain most of information for localization. However, HRTFs are highly individual-dependent and thus because of the difference of anthropometric features between subjects, individualization of HRTFs is a great challenge for accurate localization perception in virtual auditory displays (VAD). In this paper, we propose a sparsity-constrained weight mapping method, termed SWM to obtain individual HRTFs. The key idea behind SWM is to obtain optimal weights to combine HRTFs from the training subjects based on the relationship of anthropometric features between the target subject and the training subjects. To this end, SWM learns two sparse representations between the target subject and the training subjects in terms of anthropometric features and HRTFs, respectively. A non-negative sparse model is used for this purpose when considering the non-negative property of the anthropometric features. Then, we build a mapping between the two weight vectors using a nonlinear regression. Furthermore, an iterative data extension method is proposed in order to increase training samples for mapping model. The objective and subjective experimental results show that the proposed method outperforms other methods in terms of log-spectral distortion (LSD) and localization accuracy.

Speech Source Separation Using ICA in Constant Q Transform Domain
Dheeraj Sai D.V.L.N, Kishor K.S and Sri Rama Murty Kodukula
Department of Electrical Engineering, Indian Institute of Technology, Hyderabad
Mon-P-2-5-6, Time: 16:30-18:30
In order to separate individual sources from convoluted speech mixtures, complex-domain independent component analysis (ICA) is employed on the individual frequency bins of time frequency representations of the speech mixtures, obtained using short-time Fourier transform (STFT). The frequency components computed using STFT are separated by constant frequency difference with a constant frequency resolution. However, it is well known that the human auditory mechanism offers better resolution at lower frequencies. Hence, the perceptual quality of the extracted sources critically depends on the separation achieved in the lower frequency components. In this paper, we propose to perform source separation on the time-frequency representation computed though constant Q transform (CQT), which offers non uniform logarithmic binning in the frequency domain. Complex-domain ICA is performed on the individual bins of the CQT in order to get separated components in each frequency bin which are suitably scaled and permuted to obtain separated sources in the CQT domain. The estimated sources are obtained by applying inverse constant Q transform to the scaled and permuted sources. In comparison with the STFT based frequency domain ICA methods, there has been a consistent improvement of 3 dB or more in the Signal to Interference Ratios of the extracted sources.

Multi-talker Speech Separation Based on Permutation Invariant Training and Beamforming
Lu Yin1,2, Ziang Wang1,2, Risheng Xia1, Junfeng Li1,2 and Yonghong Yan1,2,3
1Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences
2University of Chinese Academy of Sciences
3Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
Mon-P-2-5-7, Time: 16:30-18:30
The recently proposed Permutation Invariant Training (PIT) technique addresses the label permutation problem for multi-talker speech separation. It has shown to be effective for the single-channel separation case. In this paper, we propose to extend the PIT-based technique to the multichannel multi-talker speech separation scenario. PIT is used to train a neural network that outputs masks for each separate speaker which is followed by a Minimum Variance Distortionless Response (MVDR) beamformer. The beamformer utilizes the spatial information of different speakers and alleviates the performance degradation due to misaligned labels. Experimental results show that the proposed PIT-MVDR-based technique leads to higher Signal-to-Distortion Ratios (SDRs) compared to the single-channel speech separation method when tested on two-speaker and three-speaker mixtures.

Expectation-Maximization Algorithms for Itakura-Saito Nonnegative Matrix Factorization
Paul Magron and Tuomas Virtanen
Laboratory of Signal Processing, Tampere University of Technology, Finland
Mon-P-2-5-8, Time: 16:30-18:30
This paper presents novel expectation-maximization (EM) algorithms for estimating the nonnegative matrix factorization model with Itakura-Saito divergence. Indeed, the common EM-based approach exploits the space-alternating generalized EM (SAGE) variant of EM but it usually performs worse than the conventional multiplicative algorithm. We propose to explore more exhaustively those algorithms, in particular the choice of the methodology (standard EM or SAGE variant) and the latent variable set (full or reduced). We then derive four EM-based algorithms, among which three are novel. Speech separation experiments show that one of those novel algorithms using a standard EM methodology and a reduced set of latent variables outperforms its SAGE variants and competes with the conventional multiplicative algorithm.

Subband Weighting for Binaural Speech Source Localization
Karthik Girija Ramesan1, Parth Suresh2 and Prasanta Kumar Ghosh3
1Electrical Engineering, Indian Institute of Science (IISc), Bengaluru-560012, India
2Computer Science and Engineering, TKM College of Engineering, Kollam-691005, India
Mon-P-2-5-9, Time: 16:30-18:30
We consider the task of speech source localization from a binaural recording using interaural time difference (ITD). A typical approach is to process binaural speech using gammatone filters and calculate frame-level ITD in each subband. The ITDs in each gammatone subband are statistically modelled using Gaussian mixture models (GMMs) for every direction during training. Given a binaural test-speech, the source is localized using maximum likelihood (ML) criterion. In this work, we propose a subband weighting scheme where subband likelihoods are weighted based on their reliability. We measure the reliability of a subband using the average frame level localization error obtained for the respective subbands.
These reliability values are used as the weights for each subband likelihood prior to combining the likelihoods for ML estimation. We also introduce non-linear warping of these weights to accommodate and analyse a larger space of possible subband weights. Experiments on Subject 003 from the CIPIC database reveal that weighting the subbands is better than the unweighted scheme of combining likelihoods.

Plenary Talk-1

Hall 3, 8:30-9:30, Tuesday, 4 September, 2018
Chair: Hema Murthy

Universal Tendencies for Cross-Linguistic Prosodic Tendencies: A Review and Some New Proposals

Jacqueline Vaisseière
Professor Emeritus, Université Sorbonne Nouvelle, France

Tue-Plenary-1, Time: 08:30-09:30

The present talk aims first to review the literature on similar tendencies regularly observed in typologically unrelated languages. The tendencies concern the use of fundamental frequency (F0), including declination line as the reference line, tone, tone sequence, word boundary, and emotional neutral utterance. The second part of the talk will present particular patterns: 1) the different centers of articulatory “effort” at the syllable level; 2) the suggestion of the existence of an unmarked strong-long pattern, neither trochaic nor iambic, at the word level in languages native to this area; 3) the regrouping of one or more words into a prosodic phrase by the application of two established principles: a) the “hat-pattern” principle (Hart) favoring initial high-rising and final low-falling F0, and b) the intensive or the temporal rhythmic basic tendencies (Woodrow, Fraisse) favoring a more intense, stronger, more precisely articulated beginning and a lengthened ending; 4) the existence of a multilayer rhythm at the utterance level composed by the repetition/alternation of integrated Gestalts at the levels of the syllable, word, and phrases. One or two Gestalts will prevail perceptually depending on a) the language, b) the style, and c) the rate of speech. The impressionistic evidence of a particular type of language-dependent “rhythm” depends on the listener’s expectations, related to his maternal language and the languages he already masters, and up to a certain extent, to his pre-existing theoretical beliefs.

Tue-O-1-1: Acoustic Model Adaptation

Hall 3, 10:00-12:00, Tuesday, 4 September, 2018
Chairs: Rich Schwartz and Thomas Hain

Learning to Adapt: A Meta-learning Approach for Speaker Adaptation

Ondřej Klejch, Joachim Fainberg and Peter Bell
Centre for Speech Technology Research, University of Edinburgh, Edinburgh EH8 9AB, UK

Tue-O-1-1-1, Time: 10:00-10:20

The performance of automatic speech recognition systems can be improved by adapting an acoustic model to compensate for the mismatch between training and testing conditions, for example by adapting to unseen speakers. The success of speaker adaptation methods relies on selecting weights that are suitable for adaptation and using good adaptation schedules to update these weights in order not to overfit to the adaptation data. In this paper we investigate a principled way of adapting all the weights of the acoustic model using a meta-learning. We show that the meta-learner can learn to perform supervised and unsupervised speaker adaptation and that it outperforms a strong baseline adapting LHUC parameters when adapting a DNN AM with 1.5M parameters. We also report initial experiments on adapting TDNN AMs, where the meta-learner achieves comparable performance with LHUC.

Speaker Adaptation and Adaptive Training for Jointly Optimised Tandem Systems

Yu Wang, Chao Zhang, Mark Gales and Philip Woodland
Cambridge University Engineering Dept, Trumpington St, Cambridge CB2 1PZ, UK

Tue-O-1-1-2, Time: 10:20-10:40

Speaker independent (Si) Tandem systems trained by joint optimisation of bottleneck (BN) deep neural networks (DNN) models and Gaussian mixture models (GMMs) have been found to produce similar word error rates (WERs) to Hybrid DNN systems. A key advantage of using GMMs is that existing speaker adaptation methods, such as maximum likelihood linear regression (MLLR), can be used which to account for diverse speaker variations and improve system robustness. This paper investigates speaker adaptation and adaptive training (SAT) schemes for jointly optimised Tandem systems. Adaptation techniques investigated include constrained MLLR (CMLLR) transforms based on BN features for SAT as well as MLLR and parameterised sigmoid functions for unsupervised test-time adaptation. Experiments using English multi-genre broadcast (MGB3) data show that CMMLR SAT yields a 4% relative WER reduction over jointly trained Tandem and Hybrid SI systems and further reductions in WER are obtained by system combination.

Comparison of BLSTM-Layer-Specific Affine Transformations for Speaker Adaptation

Markus Kitza, Ralf Schlüter and Hermann Ney
Lehrstuhl Informatik 6 - Human Language Technology and Pattern Recognition, RWTH Aachen University

Tue-O-1-1-3, Time: 10:40-11:00

Bidirectional Long Short-Term Memory (BLSTM) Recurrent Neural Networks (RNN) acoustic models have demonstrated superior performance over Deep Neural Networks (DNN) models in speech recognition and many other tasks. Although, a lot of work has been reported on DNN model adaptation, very little has been done on BLSTM model adaptation.

This work presents a systematic study on the adaptation of BLSTM acoustic models by means of learning affine transformations within the neural network on small amounts of unsupervised adaptation data.

Through a series of experiments on two major speech recognition benchmarks (Switchboard and CHiME-4), we investigate the significance of the position of the transformation in a BLSTM network using a separate transformation for the forward- and backward-direction. We observe that applying affine transformations result in consistent relative word error rate reductions ranging from 6% to 11% depending on the task and the degree of mismatch between training and test data.

Correlational Networks for Speaker Normalization in Automatic Speech Recognition

Rini A Sharon, Sandeep Reddy Kothinti and Umesh Srinivasan
Indian Institute of Technology Madras, India

Tue-O-1-1-4, Time: 11:00-11:20

In this paper, we propose using common representation learning (CRL) for speaker normalization in automatic speech recognition (ASR). Conventional methods like feature space maximum likelihood linear regression (FMLLR) require two pass decode and their performance is often limited by the amount of data during test. While i-vectors do not require two-pass decode, a significant number of input frames are required for estimation. Hence, as an alternative, a regression model employing correlational neural networks (CorrNet) for multi-view CRL is proposed. In this approach, the CorrNet training methodology treats normalized and un-normalized features as two parallel views of the same speech data. Once trained, this network generates frame-wise FMLLR-like features, thus overcoming the limitations.
Machine Speech Chain with One-shot Speaker Adaptation
Andros Tjandra, Sakriani Sakti and Satoshi Nakamura
Nara Institute of Science and Technology, Graduate School of Information Science, Japan
RIKEN, Center for Advanced Intelligence Project AIP, Japan
Tue-O-1-1-5, Time: 11:20-11:40

In previous work, we developed a closed-loop speech chain model based on deep learning, in which the architecture enabled the automatic speech recognition (ASR) and text-to-speech synthesis (TTS) components to mutually improve their performance. This was accomplished by the two parts teaching each other using both labeled and unlabeled data. This approach could significantly improve model performance within a single-speaker speech dataset, but only a slight increase could be gained in multi-speaker tasks. Furthermore, the model is still unable to handle unseen speakers. In this paper, we present a new speech chain mechanism by integrating a speaker recognition model inside the loop. We also propose extending the capability of TTS to handle unseen speakers by implementing one-shot speaker adaptation. This enables TTS to mimic voice characteristics from one speaker to another with only a one-shot speaker sample, even from a text without any speaker information. In the speech chain loop mechanism, ASR also benefits from the ability to further learn an arbitrary speaker’s characteristics from the generated speech waveform, resulting in a significant improvement in the recognition rate.

Domain Adaptation Using Factorized Hidden Layer for Robust Automatic Speech Recognition
Khe Chai Sim, Arun Narayanan, Ananya Misra, Anshuman Tripathi, Golan Pundak, Tara Sainath, Parisa Haghani, Bo Li and Michiel Bacchiani
Google, USA
Tue-O-1-1-6, Time: 11:40-12:00

Domain robustness is a challenging problem for automatic speech recognition (ASR). In this paper, we consider speech data collected for different applications as separate domains and investigate the robustness of acoustic models trained on multi-domain data on unseen domains. Specifically, we use Factorized Hidden Layer (FHL) as a compact low-rank representation to adapt a multi-domain ASR system to unseen domains. Experimental results on two unseen domains show that FHL is a more effective adaptation method compared to selectively fine-tuning part of the network, without dramatically increasing the model parameters. Furthermore, we found that using singular value decomposition to initialize the low-rank bases of an FHL model leads to a faster convergence and improved performance.

Tue-O-1-2: Statistical Parametric Speech Synthesis
Hall 1; 10:00-12:00, Tuesday, 4 September, 2018
Chairs: K Sreenivasa Rao and Andrew Breen

Waveform-Based Speaker Representations for Speech Synthesis
Moquan Wan, Gilles Degottrix and Mark J.F. Gales
Cambridge University Engineering Department, UK

Speaker adaptation is a key aspect of building a range of speech processing systems, for example personalised speech synthesis. For deep-learning based approaches, the model parameters are hard to interpret, making speaker adaptation more challenging. One widely used method to address this problem is to extract a fixed length vector as speaker representation and use this as an additional input to the task-specific model. This allows speaker-specific output to be generated, without modifying the model parameters. However, the speaker representation is often extracted in a task-independent fashion. This allows the same approach to be used for a range of tasks, but the extracted representation is unlikely to be optimal for the specific task of interest. Furthermore, the features from which the speaker representation is extracted are usually pre-defined, often a standard speech representation. This may limit the available information that can be used. In this paper, an integrated optimisation framework for building a task specific speaker representation, making use of all the available information, is proposed. Speech synthesis is used as the example task. The speaker representation is derived from raw waveform, incorporating text information via an attention mechanism. This paper evaluates and compares this framework with standard task-independent forms.

Incremental TTS for Japanese Language
Tomoya Yangaita, Sakriani Sakti1,2 and Satoshi Nakamura1,2
1Graduate School of Information Science, Nara Institute of Science and Technology, Japan
2RIKEN, Center for Advanced Intelligence Project AIP, Japan
Tue-O-1-2-2, Time: 10:20-10:40

Simultaneous lecture translation requires speech to be translated in real time before the speaker has spoken an entire sentence since a long delay will create difficulties for the listeners trying to follow the lecture. The challenge is to construct a full-fledged system with speech recognition, machine translation and text-to-speech synthesis (TTS) components that could produce high-quality speech translations on the fly. Specifically for a TTS, this poses problems as a conventional framework commonly requires language-dependent contextual linguistics of a full sentence to produce a natural-sounding speech waveform. Several studies have proposed ways for an incremental TTS (ITTS), in which it can estimate the target prosody from only partial knowledge of the sentence. However, most investigations are being done only in French, English and German. French is a syllable-timed language and the others are stress-timed languages. The Japanese language, which is a mora-timed language, has not been investigated so far. In this paper, we evaluate the quality of Japanese synthesized speech based on various linguistic and temporal incremental units. Experimental results reveal that an accent phrase incremental unit (a group of moras) is essential for a Japanese ITTS as a trade-off between quality and synthesis units.

Transfer Learning Based Progressive Neural Networks for Acoustic Modeling in Statistical Parametric Speech Synthesis
Ruibo Fu1,2, Jianhua Tao1,2, Yibin Zheng1,3 and Zhengqi Wen1
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
Tue-O-1-2-3, Time: 10:40-11:00

The fundamental frequency and the spectrum parameters of the speech are correlated thus one of their learned mapping from the linguistic features can be leveraged to help determine the other. The conventional methods treated all the acoustic features as one stream for acoustic modeling. And the multi-task learning methods were applied to acoustic modeling with several targets in a global cost function. To improve the accuracy of the acoustic model, the progressive deep neural networks (PDNN) is applied for acoustic modeling in statistical parametric speech synthesis (SPSS) in our method. Each type of the acoustic features is modeled in different sub-
networks with its own cost function and the knowledge transfers through lateral connections. Each sub-network in the PDNN can be trained step by step to reach its own optimum. Experiments are conducted to compare the proposed PDNN-based SPSS system with the standard DNN methods. The multi-task learning (MTL) method is also applied to the structure of PDNN and DNN as the contrast experiment of the transfer learning. The computational complexity, prediction sequences and quantity of hierarchies of the PDNN are investigated. Both objective and subjective experimental results demonstrate the effectiveness of the proposed technique.

Min-Jae Hwang1,2, Eunwoo Song1,2, Jin-Seob Kim1 and Hong-Goo Kang1

1Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
2NAVER Corp., Seongnam, Korea

Tue-01-2-4, Time: 11:00-11:20

In this paper, we propose a unified training framework for the generation of glottal signals in deep learning (DL)-based parametric speech synthesis systems.

The glottal vocoding-based speech synthesis system, especially the modeling-by-generation (MbG) structure that we proposed recently, significantly improves the naturalness of synthesized speech by faithfully representing the noise component of the glottal excitation with an additional DL structure.

Because the MbG method introduces a multistage processing pipeline, however, its training process is complicated and inefficient.

To alleviate this problem, we propose a unified training approach that directly generates speech parameters by merging all the required models, such as acoustic, glottal and noise models into a single unified network.

Considering the fact that noise analysis should be performed after training the glottal model, we also propose a stochastic noise analysis method that enables noise modeling to be included in the unified training process by iteratively analyzing the noise component in every epoch.

Both objective and subjective test results verify the superiority of the proposed algorithm compared to conventional methods.

Acoustic Modeling Using Adversarially Trained Variational Recurrent Neural Network for Speech Synthesis

Joun Yeop Lee1, Sung Jun Cheon1, Byoung Jin Choi1, Nam Soo Kim1 and Eunwoo Song2

1Department of Electrical and Computer Engineering and INMC, Seoul National University, Korea
2NAVER Corp., Seongnam, Korea

Tue-01-2-5, Time: 11:20-11:40

In this paper, we propose a variational recurrent neural network (VRNN) based method for modeling and generating speech parameter sequences. In recent years, the performance of speech synthesis systems has been improved over conventional techniques thanks to deep learning-based acoustic models. Among the popular deep learning techniques, recurrent neural networks (RNNs) has been successful in modeling time-dependent sequential data efficiently. However, due to the deterministic nature of RNNs prediction, such models do not reflect the full complexity of highly structured data, like natural speech. In this regard, we propose adversarially trained variational recurrent neural network (AdVRNN) which use VRNN to better represent the variability of natural speech for acoustic modeling in speech synthesis. Also, we apply adversarial learning scheme in training AdVRNN to overcome oversmoothing problem. We conducted comparative experiments for the proposed VRNN with the conventional gated recurrent unit which is one of RNNs, for speech synthesis system. It is shown that the proposed AdVRNN based method performed better than the conventional GRU technique.

On the Application and Compression of Deep Time Delay Neural Network for Embedded Statistical Parametric Speech Synthesis

Yibin Zheng1,2, Jianhua Tao1,2, Zhengyi Wen1 and Ruibo Fu1,2

1National Laboratory of Pattern Recognition, Institute of Automation, CAS, China
2School of Artificial Intelligence, University of Chinese Academy of Science, China

Tue-01-2-6, Time: 11:40-12:00

Acoustic models based on long short-term memory (LSTM) recurrent neural networks (RNNs) were applied to statistical parametric speech synthesis (SPSS) and shown significant improvements. However, the model complexity and inference time cost of RNNs are much higher than feed-forward neural networks (FNN) due to the sequential nature of the learning algorithm, thus limiting its usage in many runtime applications. In this paper, we explore a novel application of deep time delay neural network (TDNN) for embedded SPSS, which requires low disk footprint, memory and latency. The TDNN could model long short-term temporal dependencies with inference cost comparable to standard FNN. Temporal subampling enabled by TDNN could reduce computational complexity. Then we compress deep TDNN using singular value decomposition (SVD) to further reduce model complexity, which are motivated by the goal of building embedded SPSS systems which can be run efficiently on mobile devices. Both objective and subjective experimental results show that, the proposed deep TDNN with SVD compression could generate synthesized speech with better speech quality than FNN and comparable speech quality to LSTM, while drastically reduce model complexity and speech parameter generation time.

Tue-01-3-1: Emotion Modeling

Hall 2; 10:00-12:00; Tuesday, 4 September, 2018

Chairs: Carlos Busso and Elmar Noeth

Integrating Recurrence Dynamics for Speech Emotion Recognition

Ethymios Tzinis1,2, Georgios Paraskevopoulos1,2, Christos Baziotis1 and Alexandros Potamianos1,2

1School of Electrical & Computer Engineering, National Technical University of Athens, Greece
2Behavioral Signal Technologies, Los Angeles, CA, USA

Tue-01-3-1, Time: 10:00-10:20

We investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionalities over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, e.g., [1], we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline [1]. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.

Towards Temporal Modelling of Categorical Speech Emotion Recognition

Wenjing Han1, Huabin Ruan1, Xiaomin Chen1, Zhixiang Wang1

1Automation, CAS, China
2School of Computer Science, University of Chinese Academy of Science, China

Tue-01-3-2, Time: 10:20-10:40

We also investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionalities over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, e.g., [1], we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline [1]. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.

Towards Temporal Modelling of Categorical Speech Emotion Recognition

Wenjing Han1, Huabin Ruan1, Xiaomin Chen1, Zhixiang Wang1

1Automation, CAS, China
2School of Computer Science, University of Chinese Academy of Science, China

Tue-01-3-2, Time: 10:20-10:40

We also investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionalities over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, e.g., [1], we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline [1]. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.

Towards Temporal Modelling of Categorical Speech Emotion Recognition

Wenjing Han1, Huabin Ruan1, Xiaomin Chen1, Zhixiang Wang1

1Automation, CAS, China
2School of Computer Science, University of Chinese Academy of Science, China

Tue-01-3-2, Time: 10:20-10:40

We also investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionalities over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, e.g., [1], we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline [1]. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.

Towards Temporal Modelling of Categorical Speech Emotion Recognition

Wenjing Han1, Huabin Ruan1, Xiaomin Chen1, Zhixiang Wang1

1Automation, CAS, China
2School of Computer Science, University of Chinese Academy of Science, China

Tue-01-3-2, Time: 10:20-10:40

We also investigate the performance of features that can capture nonlinear recurrence dynamics embedded in the speech signal for the task of Speech Emotion Recognition (SER). Reconstruction of the phase space of each speech frame and the computation of its respective Recurrence Plot (RP) reveals complex structures which can be measured by performing Recurrence Quantification Analysis (RQA). These measures are aggregated by using statistical functionalities over segment and utterance periods. We report SER results for the proposed feature set on three databases using different classification methods. When fusing the proposed features with traditional feature sets, e.g., [1], we show an improvement in unweighted accuracy of up to 5.7% and 10.7% on Speaker-Dependent (SD) and Speaker-Independent (SI) SER tasks, respectively, over the baseline [1]. Following a segment-based approach we demonstrate state-of-the-art performance on IEMOCAP using a Bidirectional Recurrent Neural Network.
Notes for valence, we perform an empirical analysis to explore the nature of consistent for arousal and dominance. However, the optimum dropout rate of regression models for valence, arousal and dominance as a function of regularization can lead to better results for valence. This study focuses using attributes such as arousal, valence and dominance. Regularization plays a key role in improving the prediction of emotions and the performance for arousal and dominance, the prediction results for valence using acoustic features are significantly lower. We hypothesize that higher regularization is needed for valence to force the network to learn global patterns that generalize across speakers.

Emotion Recognition from Human Speech Using Temporal Information and Deep Learning

Emotion Recognition from Human Speech Using Temporal Information and Deep Learning

John Kim1 and Rolf A. Saurous2
1Menlo School, Atherton, CA, USA
2Google Inc. Mountain View, CA, USA

To model the categorical speech emotion recognition task in a temporal manner, the first challenge arising is how to transfer the categorical label for each utterance into a label sequence. To settle this, we make a hypothesis that an utterance is consisting of emotional and non-emotional segments and these non-emotional segments correspond to silent regions, short pauses, transitions between phonemes, unvoiced phonemes, etc.

With this hypothesis, we propose to treat an utterance’s label sequence as a chain of two states: the emotional state denoting the emotional frame and Null denoting the non-emotional frame. Then, we exploit a recurrent neural network-based connectionist temporal classification model to automatically label and align an utterance’s emotional segments with emotional labels, while non-emotional segments with Nulls. Experimental results on the IEMOCAP corpus validate our hypothesis and also demonstrate the effectiveness of our proposed method compared to the state-of-the-art algorithms.

Role of Regularization in the Prediction of Valence from Speech

Kusha Sridhar, Srinivas Parthasarathy and Carlos Busso
Multimodal Signal Processing(MSP) lab, Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson TX 75080, USA

Regularization plays a key role in improving the prediction of emotions using attributes such as arousal, valence and dominance. Regularization is particularly important with deep neural networks (DNNs), which have millions of parameters. While previous studies have reported competitive performance for arousal and dominance, the prediction results for valence using acoustic features are significantly lower. We hypothesize that higher regularization can lead to better results for valence. This study focuses on exploring the role of dropout as a form of regularization for valence suggesting the need for higher regularization. We analyze the performance of regression models for valence, arousal and dominance as a function of the dropout probability. We observe that the optimum dropout rates are consistent for arousal and dominance. However, the optimum dropout rate for valence is higher. To understand the need for higher regularization for valence, we perform an empirical analysis to explore the nature of emotional cues conveyed in speech. We compare regression models with speaker-dependent and speaker-independent partitions for training and testing. The experimental evaluation suggests stronger speaker dependent traits for valence. We conclude that higher regularization is needed for valence to force the network to learn global patterns that generalize across speakers.
Amélie Rochet-Callépin
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPI-Saab, 38000 Grenoble, France
*Institute of Engineering Univ. Grenoble Alpes

Tue-O-1-4-1, Time: 10:00-10:20
Auditory-motor adaptation and transfer paradigms are increasingly used to explore speech motor control as well as phonological representations underlying speech production. Auditory-motor adaptation is generally assumed to occur at a sensory-motor level. However, few studies suggested that linguistic or contextual factors such as the modality of presentation of stimuli influences adaptation.

The present study investigates the influence of the modality of stimuli presentation (written word vs. a picture representing the same word) on auditory-motor adaptation and transfer. In this speech production experiment, speakers’ auditory feedback was altered online, inducing adaptation. We contrasted the magnitude of adaptation in these two different modalities and we assessed transfer from /pe/ to the French word /pepel/ in the same vs. different modality of presentation, using a mixed 2 x 2 subject design.

The magnitude of adaptation was not different between modalities. This observation contrasts with recent findings showing an effect of the modality (a written word vs. a go signal on adaptation). Moreover, transfer did occur from one modality to the other and transfer pattern depended on the modality of transfer stimuli. Overall, the results suggest that picture naming and word reading rely on sensory-motor representations that may be linked to contextual (or surface) characteristics.

Measuring the Band Importance Function for Mandarin Chinese with a Bayesian Adaptive Procedure
Yufan Du¹, Yi Shen², Hongying Yang¹, Xihong Wu¹ and Jing Chen¹
¹Department of Machine Intelligence, Speech and Hearing Research Center and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
²Department of Speech and Hearing Sciences, Indiana University Bloomington, 200 S Jordan Ave., Bloomington, IN 47405

Tue-O-1-4-2, Time: 10:20-10:40
A speech intelligibility index (SI) based band importance function (BIF) for Mandarin monosyllabic words spoken by a female speaker was derived with an adaptive procedure in this work. The adaptive procedure, namely the quick-band-importance-function (qBIF) procedure, optimized the stimulus on each trial according listeners’ performance on proceeding trials in an iterative fashion. This method greatly improved the efficiency of data collection. Test-retest experiments were conducted and confirmed the reliability of this adaptive procedure at a group level. The BIF derived in this work showed generally consistence with the BIF derived with the traditional paradigm with noticeable differences at certain frequencies.

Wide Learning for Auditory Comprehension
Elmez Shahafi-Bajestan and R. Harald Baayen
Quantitative Linguistics, Eberhard Karls Universität Tübingen, Tübingen, Germany

Tue-O-1-4-3, Time: 10:40-11:00
Classical linguistic, cognitive and engineering models for speech recognition and human auditory comprehension post representations for sounds and words that mediate between the acoustic signal and interpretation. Recent advances in automatic speech recognition have shown, using deep learning, that state-of-the-art performance is obtained without such units. We present a cognitive model of auditory comprehension based on wide rather than deep learning that was trained on 20 to 80 hours of TV news broadcasts. Just as deep network models, our model is an end-to-end system that does not make use of phonemes and phonological wordform representations. Nevertheless, it performs well on the difficult task of single word identification (model accuracy 11.37%, Mozilla DeepSpeech: 4.45%). The architecture of the model is a simple two-layered wide neural network with weighted connections between the acoustic frequency band features as inputs and lexical outcomes (pointers to semantic vectors) as outputs. Model performance shows hardly any degradation when trained on speech in noise rather than on clean speech. Performance was further enhanced by adding a second network to a standard wide network. The present word recognition module is designed to become part of a larger system modeling the comprehension of running speech.

Analyzing Reaction Time Sequences from Human Participants in Auditory Experiments
Louis ten Bosch¹,², Mirjam Ernestus¹ and Lou Boves¹
¹Radboud University Nijmegen, NL
²Max Planck Institute for Psycholinguistics

Tue-O-1-4-4, Time: 11:00-11:20
Sequences of reaction times (RT) produced by participants in an experiment are not only influenced by the stimuli, but by many other factors as well, including fatigue, attention, experience, IQ, handedness, etc. These confounding factors result in long-term effects (such as a participant’s overall reaction capability) and in short- and medium-time fluctuations in RTs (often referred to as ‘local speed effects’). Because stimuli are usually presented in a random sequence different for each participant, local speed effects affect the underlying ‘true’ RTs of specific trials in different ways across participants. To be able to focus statistical analysis on the effects of the cognitive process under study, it is necessary to reduce the effect of confounding factors as much as possible. In this paper we propose and compare techniques and criteria for doing so, with focus on reducing ‘filtering’ the local speed effects. We show that filtering matters substantially for the significance analyses of predictors in linear mixed effect regression models. The performance of filtering is assessed by the average between-participant correlation between filtered RT sequences and by Akaïke’s Information Criterion, an important measure of the goodness-of-fit of linear mixed effect regression models.

Prediction of Perceived Speech Quality Using Deep Machine Listening
Jasper Ooster¹,², Rainer Huber³ and Bernd T. Meyer¹,³
¹Medizinische Physik, Carl von Ossietzky Universität, Oldenburg, Germany
²Fraunhofer IDMT - Hearing, Speech and Audio Technology, Oldenburg, Germany
³Cluster of Excellence Hearing4all, Germany

Tue-O-1-4-5, Time: 11:20-11:40
Subjective ratings of speech quality (SQ) are essential for evaluating algorithms for speech transmission and enhancement. In this paper we explore a non-intrusive model for SQ prediction based on the output of a deep neural net (DNN) from a regular automatic speech recognizer. The degradation of phoneme probabilities obtained from the net is quantified with the mean temporal distance proposed earlier for multi-stream ASR. The SQ predicted with this method is compared with average subject ratings from the TCD-VoIP speech quality database that covers several effects of SQ degradation that can occur in VoIP applications such as clipping, packet loss, echo effects, background noise and competing speakers. Our approach is tailored to speech and therefore not applicable when quality is degraded by a competing speaker, which is reflected by an insignificant correlation between model output and subjective SQ. In all other conditions mentioned above, the model reaches an average correlation of r=0.87, which is higher than the correlation achieved with the baseline ITU-T P.563 (r=0.71) and the American National Standard ANIQUE+ (r=0.75). Since the most robust ASR system is not necessarily the best model to predict SQ, we investigate the effect of the amount of training data on quality prediction.

Prediction of Subjective Listening Effort from Acoustic Data with Non-Intrusive Deep Models
Paul Kranzusch¹,², Rainer Huber³ and Melanie Krüger², Birger Kollmeier⁴ and Bernd T. Meyer¹,³
¹Medizinische Physik, Carl von Ossietzky Universität, Oldenburg, Germany
²Fraunhofer IDMT - Hearing, Speech and Audio Technology, Oldenburg, Germany
³Cluster of Excellence Hearing4all, Germany
⁴Max Planck Institute for Psycholinguistics

Notes

144
Tue-O-1-4-6, Time: 11:40-12:00

The effort of listening to spoken language is a highly important perceptive measure for the design of speech enhancement algorithms and hearing-aid processing. In previous research, we proposed a model that quantifies the phoneme output probabilities obtained from a deep neural net (DNN), which resulted in accurate predictions for unseen speech samples. However, high correlations between subjective ratings and model output were observed in known noise types, which is an unrealistic assumption in real-life scenarios. This paper explores non-intrusive listening effort prediction in unseen noisy environments. A set of different noise types are used for training a standard automatic speech recognition (ASR) system. Model predictions are produced by measuring the mean temporal distance of phoneme vectors from the DNN and compared to subjective ratings of hearing-impaired and normal-hearing listener responses group in three databases that cover a variety of noise types and signal enhancement algorithms. We obtain an average correlation of 0.88 and outperform three baseline measures in most conditions.

Tue-O-1-5: Multimodal Dialogue Systems

MR G.03-G.04; 10:00-12:00; Tuesday, 4 September, 2018

Chairs: Alexandros Potamianos and Helen Meng

A Case Study on the Importance of Belief State Representation for Dialogue Policy Management

Margarita Kotri, Vassilios Diakoloukas, Alexandros Papangelis, Michail Lagoudakis and Yannis Stylianou.

1Speech Technology Group, Toshiba Research Cambridge, UK
2School of Electrical & Computer Engineering, Technical University of Crete, Greece
3Department of Computer Science, University of Crete, Greece

Tue-O-1-5-1, Time: 10:00-10:20

A key component of task-oriented dialogue systems is the belief state representation, since it directly affects the policy learning efficiency. In this paper, we propose a novel, binary, compact, yet scalable belief state representation (268 dimensions) with the domain-independent representation (57 dimensions) and the proposed representation (13 or 4 dimensions). To test these representations, the recently introduced Advantage Actor Critic (A2C) algorithm is exploited. The latter has not been tested before for any representation apart from the verbose one. We study the effect of the belief state representation within A2C under 0%, 15%, 30% and 45% semantic error rate and conclude that the novel binary representation in general outperforms both the domain-independent and the verbose belief state representation. Further, the robustness of the binary representation is tested under more realistic scenarios with mismatched semantic error rates, within the A2C and DQN algorithms. The results indicate that the proposed compact, binary representation performs better or similarly to the other representations, being an efficient and promising alternative to the full belief.

Prediction of Turn-taking Using Multitask Learning with Prediction of Backchannels and Fillers

Kohei Hara, Koji Inoue, Katsuya Takanashi and Tatsuya Kawahara

School of Informatics, Kyoto University, Japan

Tue-O-1-5-2, Time: 10:20-10:40

We address prediction of turn-taking considering related behaviors such as backchannels and fillers. Backchannels are used by listeners to acknowledge that the current speaker can hold the turn. On the other hand, fillers are used by prospective speakers to indicate a will to take a turn. We propose a turn-taking model based on multitask learning in conjunction with prediction of backchannels and fillers. The multitask learning of LSTM neural networks shared by these tasks allows for efficient and generalized learning and thus improves prediction accuracy. Evaluations with two kinds of dialogue corpora of human-robot interaction demonstrate that the proposed multitask learning scheme outperforms the conventional single-task learning.

Conversational Analysis Using Utterance-level Attention-based Bidirectional Recurrent Neural Networks

Chandrakant Bothe, Sven Magg, Cornelius Weber and Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg, Vogt-Koellin-Str. 30, 22527 Hamburg, Germany

Tue-O-1-5-3, Time: 10:40-11:00

Recent approaches for dialogue act recognition have shown that context from preceding utterances is important to classify the subsequent one. It was shown that the performance improves rapidly when the context is taken into account. We propose an utterance-level attention-based bidirectional recurrent neural network (Utt-Att-BiRNN) model to analyze the importance of preceding utterances to classify the current one. In our setup, the BiRNN is given the input set of current and preceding utterances. Our model outperforms previous models that use only preceding utterances as context on the used corpus. Another contribution of our research is a mechanism to discover the amount of information in each utterance to classify the subsequent one and to show that context-based learning not only improves the performance but also achieves higher confidence in the recognition of dialogue acts. We use character- and word-level features to represent the utterances.

The results are presented for character and word feature representations and as an ensemble model of both representations. We found that when classifying short utterances, the closest preceding utterances contribute to a higher degree.

A Comparative Study of Statistical Conversion of Face to Voice Based on Their Subjective Impressions

Yasuhiro Usugi, Daisuke Saito and Nobuaki Minematsu

Graduate School of Engineering, The University of Tokyo

Vogt-Koellin-Str. 30, 22527 Hamburg, Germany

Tue-O-1-5-4, Time: 11:00-11:20

Recently, various types of Voice-based User Interfaces (VUIs) including smart speakers have been developed to be on the market. However, many of the VUIs use only synthetic voices to provide information for users. To realize a more natural interface, one feasible solution will be personifying VUIs by adding visual features such as face, but what kind of face is suited to a given quality of voice or what kind of voice quality is suited to a given face? In this paper, we test methods of statistical conversion from face to a given quality of voice or what kind of voice quality is suited to a given face? In this paper, we test methods of statistical conversion from face to voice based on their subjective impressions. To this end, six combinations of two types of voice features, one type of speech features, and three types of conversion models are tested using a parallel corpus developed based on subjective mapping from face features to voice features. The experimental results show that each subject judge one specific and subject-dependent voice quality as suited to different faces and that the optimal number of mixtures of voice features is different from the numbers of mixtures of voice features tested.

Follow-up Question Generation Using Pattern-based Seq2seq with a Small Corpus for Interview Coaching

Ming-Hsiang Su, Chung-Hsien Wu, Run-Yi Huang, Qian-Bei Hong and Huai-Hung Huang

1Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan
2PhD Program for Multimedia Systems and Intelligent Computing,
National Cheng Kung University and Academia Sinica, Taiwan

Tue-0-1-5-5, Time: 11:20-11:40

Interview is a vital part of recruitment process and is especially challenging for the beginners. In an interactive and natural interview, the interviewers ask follow-up questions or request further elaborations when they are not satisfied with the interviewee's initial response. In this study, as only a small interview corpus is available, a pattern-based sequence to sequence (Seq2seq) model is adopted for follow-up question generation. First, word clustering is employed to automatically transform the question/answer sentences into sentence patterns, in which each sentence pattern is composed of word classes, to decrease the complexity of the sentence structures. Next, the convolutional neural tensor network (CNTN) is used to select a target sentence in an interviewee's answer turn for follow-up question generation. In order to generate the follow-up question pattern, the selected target sentence pattern is fed to a Seq2seq model to obtain the corresponding follow-up question pattern. Then the word class positions in the generated follow-up question sentence pattern is filled in with the words using a word class table obtained from the training corpus. Finally, the n-gram language model is used to rank the candidate follow-up questions and choose the most suitable one as the response to the interviewee. This study collected 3390 follow-up question and answer sentence pairs for training and evaluation. Five-fold cross validation was employed and the experimental results show that the proposed method outperformed the traditional word-based method and achieved a more favorable performance based on a statistical significance test.

Coherence Models for Dialogue

Alessandra Cervone, Evgeny Stepakov and Giuseppe Riccardi

Signals and Interactive Systems Lab, DISI, University of Trento, Italy

Tue-0-1-5-6, Time: 11:40-12:00

Coherence across multiple turns is a major challenge for state-of-the-art dialogue models. Arguably the most successful approach to automatically learning text coherence is the entity grid, which relies on modelling patterns of distribution of entities across multiple sentences of a text. Originally applied to the evaluation of automatic summaries and the news genre, among its many extensions, this model has also been successfully used to assess dialogue coherence.

Nevertheless, both the original grid and its extensions do not model intents, a crucial aspect that has been studied widely in the literature in connection to dialogue structure.

We propose to augment the original grid document representation for dialogue with the intentional structure of the conversation. Our models outperform the original grid representation on both text discrimination and insertion, the two main standard tasks for coherence assessment across three different dialogue datasets, confirming that intents play a key role in modeling dialogue coherence.

Tue-SS-1-1: Special Session: Speech Recognition for Indian Languages

MR 1.01-1.02, 10:00-12:00, Tuesday, 4 September, 2018

Chairs: Pedro Moreno, Eugene Weinstein, Sarah Abu Sharkh, Haruko Ishikawa, Daan van Esch, Rita Singh and Preethi Jyothi

Introduction

Tue-SS-1-1-1, Time: 10:00-10:10

Indian Languages ASR: A Multilingual Phone Recognition Framework with IPA Based Common Phone-set, Predicted Articulatory Features and Feature Fusion

Manjunath K E¹, K. Sreenivasa Rao², Dinesh Babu Jayagopi³ and V Ramasubramanian¹

¹International Institute of Information Technology - Bangalore (IIIT-B), Bangalore, India

²Indian Institute of Technology Kharagpur, Kharagpur, India

Tue-SS-1-1-2, Time: 10:10-10:15

In this study, a multilingual phone recognition system for four Indian languages - Kannada, Telugu, Bengali and Odia - is described. International phonetic alphabets are used to derive the transcription. Multilingual Phone Recognition System (MPRS) is developed using the state-of-the-art DNNs. The performance of MPRS is improved using the Articulatory Features (AFs). DNNs are used to predict the AFs for place, manner, roundness, frontness and height AF groups. Further, the MPRS is also developed using oracle AFs and their performance is compared with that of predicted AFs. Oracle AFs are used to set the best performance realizable by AFs predicted from MFCCs and by DNNs. In the MPRS, we have also explored the use of phone posterior to further boost the performance of MPRS. We show that oracle AFs by feature fusion with MFCs offer a remarkably low target of PER of 10.4%, which is 24.7% absolute reduction compared to baseline MPRS with MFCs alone. The best performing system using predicted AFs has shown 2.8% reduction in absolute PER (8% reduction in relative PER) compared to baseline MPRS.

Rapid Collection of Spontaneous Speech Corpora Using Telephonic Community Forums

Agha Ali Raza¹, Awais Athar², Shan Randhawa³, Zain Tariq⁴, Muhammad Bilal Saleem¹, Haris Bin Zia¹, Umar Safi⁵ and Roni Rosenfeld⁵

¹Information Technology University, Lahore, Pakistan

²European Bioinformatics Institute (EMBL-EBI), Cambridge, UK

³Carnegie Mellon University, Pittsburgh, PA, USA

Tue-SS-1-1-3, Time: 10:15-10:20

We present a novel technique for rapid collection of spontaneous speech data over mobile phone channel using telephonic community forums. Our public forum allows users to post audio messages, listen to messages posted by others, post votes and audio comments and share content with friends through subsidized phone calls. The entertainment aspects and sharing features of the forum lead to its viral spread in Pakistan. Within 8 months, it reached 11,017 users and gathered 1,207 hours of speech data comprising 57,454 audio-posts and 130,685 audio-comments, spanning Urdu and 9 regional languages. We trained an ASR using just 9.5 hours of the corpus to obtain 24.19% WER. Community forums automatically overcome common spontaneous speech data collection challenges like speaker recruitment, natural speech elicitation, content diversity, informed consent, sampling real-world ambient noise and reach (for geographically remote linguistic communities). This technique is especially useful for gathering speech corpora for under-resourced languages hence enabling the development of speech recognition, keyword spotting, speaker ID and noise classification systems (among others) for such languages. It also allows rapid, automatic preservation of spoken languages and oral aspects of culture. This technique can be extended to collect speech data for endangered languages, oral cultures and linguistic minorities.

Effect of TTS Generated Audio on OOV Detection and Word Error Rate in ASR for Low-resource Languages

Savitha Murthy¹, Dinkar Sitaram¹ and Sunayana Sitaram²

¹PES University, Bangalore, India

²Microsoft Research, Bangalore, India

Tue-SS-1-1-4, Time: 10:20-10:25

Out-of-Vocabulary (OOV) detection and recovery is an important aspect of reducing Word Error Rate (WER) in Automatic Speech Recognition (ASR). In this paper, we evaluate the effect on WER for a low-resource language ASR system using OOV detection and recovery. We use a small seed corpus of continuous speech and improve the vocabulary by incorporating the detected OOV words. We use a syllable-model to detect and learn OOV words and, augment the word-model with these words leading to improved...
Development of Large Vocabulary Speech Recognition System with Keyword Search for Manipuri
Tanvina Patel, Krishna D. N. Noor Fathima, Nisar Shah, Mahima C., Deepak Kumar and Anuroop Iyengar
Cogknit Semantics, Bangalore, India
Tue-SS-1-1-5, Time: 10:25-10:30
Research in Automatic Speech Recognition (ASR) has witnessed a steep improvement in the past decade (especially for English language) where the variety and amount of training data available is huge. In this work, we develop an ASR and Keyword Search (KWS) system for Manipuri, a low-resource Indian Language. Manipuri (also known as Meitei), is a Tibeto-Burman language spoken predominantly in Manipur (a northeastern state of India). We collect and transcribe telephonic read speech data of 90+ hours from 300+ speakers for the ASR task. Both state-of-the-art Gaussian Mixture-Hidden Markov Model (GMM-HMM) and Deep Neural Network-Hidden Markov Model (DNN-HMM) based architectures are developed as a baseline. Using the collected data, we achieve better performance using DNN-HMM systems, i.e., 13.57% WER for ASR and 7.64% EER for KWS. The KALDI speech recognition tool-kit is used for developing the systems. The Manipuri ASR system along with KWS is integrated as a visual interface for demonstration purpose. Future systems will be improved with more amount of training data and advanced forms of acoustic models and language models.

Robust Mizo Continuous Speech Recognition
Abhishek Dewi1, Biswajit Dev Sarma2, Wendy Lathminghlu3, Lalnunsiami Ngente1, Parimsita Gogoi1, Priyankoo Sarmah1, S.R. Mahadeva Prasanna1, Rohit Sinha3 and Nirmala S.R. 1
1GUIST, Gauhati University, Guwahati-781014, India, 2DUIET, Dibrugarh University, Dibrugarh-786004, India, 3Indian Institute of Technology Guwahati, Guwahati-781039, India, 4Indian Institute of Technology Dharwad, Dharwad-580011, India
Tue-SS-1-1-6, Time: 10:30-10:35
Mizo is an under-resourced tonal language that is mainly spoken in North-East India. It has 4 canonical tones along with a tone-sandhi. In Mizo language, a majority of the words contain tone information. As a result of that, it exhibits higher acoustic variability like other tonal languages in the world. In this work, we investigate the impact of tonal information on robust Mizo continuous speech recognition (CSR). First, separate baseline CSR systems are developed employing the Mel-frequency cepstral coefficient (MFCC) based acoustic features and salient acoustic modeling paradigms. For further improvement, the tonal information has been incorporated in each of the CSR systems. For this purpose, 3-dimensional tonal features are derived which include pitch, pitch-difference and probability of voicing values. Our experimental study reveals that with the inclusion of tonal information, the robustness of Mizo CSR system gets enhanced across all acoustic modeling paradigms. This trend is attributed to lesser degradation in the fundamental frequency information than the vocal tract information under noisy conditions.

Semi-supervised and Active-learning Scenarios: Efficient Acoustic Model Refinement for a Low Resource Indian Language
Maharajan Chellappiyadharshini, Anoop Toffy, Srinivasa Raghavan K.M. and V Ramasubramanian
International Institute of Information Technology Bangalore
Tue-SS-1-1-7, Time: 10:35-10:40
We address the problem of efficient acoustic-model refinement (continuous retraining) using semi-supervised and active learning for a low resource Indian language, wherein the low resource constraints are having i) a small labeled corpus from which to train a baseline ‘seed’ acoustic model and ii) a large training corpus without orthographic labeling or from which to perform a data selection for manual labeling at low costs. The proposed semi-supervised learning decodes the unlabeled large training corpus using the seed model and through various protocols, selects the decoded utterances with high reliability using confidence levels (that correlate to the WER of the decoded utterances) and iterative bootstrapping. The proposed active learning protocol uses confidence level based metric to select the decoded utterances from the large unlabeled corpus for further labeling. The semi-supervised learning protocols can offer a WER reduction, from a poorly trained seed model, by as much as 50% of the best WER-reduction realizable from the seed model’s WER, if the large corpus were labeled and used for acoustic-model training. The active learning protocols allow that only 60% of the entire training corpus be manually labeled, to reach the same performance as the entire data.

Automatic Speech Recognition with Articulatory Information and a Unified Dictionary for Hindi, Marathi, Bengali and Oriya
Debadatta Dash1, Myungjong Kim1, Kristin Tepliansky2 and Jun Wang2,3
1Speech Disorders & Technology Lab, Department of Bioengineering, 2Callier Center for Communication Disorders, The University of Texas at Dallas, TX, USA
Tue-SS-1-1-8, Time: 10:40-10:45
Despite the continuous progress of Automatic Speech recognition (ASR) technologies, these systems for Indian languages are still in infancy stage due to a multitude of challenges involved, including resource deficiency. This paper addressed this challenge with four Indian languages, Hindi, Marathi, Bengali and Oriya by integrating articulatory information into acoustic features, thereby compensating the low resource property of these languages for improved performance. Articulatory movements were recorded during speech production using an electromagnetic articulograph and trained together with acoustic features to build automatic speech recognizers for these languages. Both speaker-dependent and -independent recognition experiments were conducted by adopting three ASR models: Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM), Deep Neural Network (DNN)-HMM and Long Short Term Memory recurrent neural network (LSTM)-HMM. A cross-language similarity was discerned in both acoustic and articulatory domains in the pairs of Oriya-Bengali and Hindi-Marathi. Based on these observations, a multi-lingual, multi-modal speech recognizer was built by constructing a unified dictionary consisting of common and unique phonemes of all the four languages, which reduced the phoneme error rates.

Poster Session
Tue-SS-1-1-9, Time: 10:45-11:30
Discussion
Tue-SS-1-1-10, Time: 11:30-12:00
Captaina: Integrated Pronunciation Practice and Data Collection Portal
Aku Rouhe\(^1\), Reima Karhila\(^1\), Aija Elg\(^1\), Minnaleena Toivola\(^2\), Peter Smit\(^1\), Anna-Riikka Smolander\(^2\) and Mikko Kurimo\(^1\)
\(^1\)Aalto University
\(^2\)Helsinki University

Tue-S&T-1-1-1, Time: 10:00-12:00
We demonstrate Captaina, computer assisted pronunciation training portal. It is aimed at university students, who read passages aloud and receive automatic feedback based on speech recognition and phoneme classification. Later their teacher can provide more accurate feedback and comments through the portal.

The system enables better independent practice. It also acts as a data collection method. We aim to gather both good quality second language speech data with segmentations and the teacher given evaluations of pronunciation.

auMina™ – Enterprise Speech Analytics
Umesh Sachdev, Rajagopal Jayaraman and Zainab Millwala
Uniphore Software Systems, Chennai, India

Tue-S&T-1-1-2, Time: 10:00-12:00
This paper gives an overview of a commercially viable product, auMina™ – an Enterprise Speech Analytics solution. It details out the features and capabilities of the product and the different business outcomes which can be derived from this Speech Analytics solution.

HoloCompanion: An MR Friend for EveryOne
Annam Naresh\(^1\), Rushabh Gandhi\(^2\), Mallikarjuna Rao Bellamkonda\(^1\) and Mithun Das Gupta\(^1\)
\(^1\)Microsoft, Hyderabad, India
\(^2\)BITS, Hyderabad, India

Tue-S&T-1-1-3, Time: 10:00-12:00
Chat bots are becoming ubiquitous in our day to day life. The advent of the summer of AI has brought us all in close contact with intelligent agents such as Cortana, Siri and Alexa. We envisage a world, where these bots have their physical existence within the realm of Mixed Reality (MR). We present the first 3D chat-bot called the HoloCompanion. This bot has a personality, can chat with anyone and about any topic and has articulated lip, eye and head movements.

akeira™ – Virtual Assistant
Umesh Sachdev, Rajagopal Jayaraman and Zainab Millwala
Bellamkonda\(^1\) and Mithun Das Gupta\(^1\)
Uniphore Software Systems, Chennai, India

Tue-S&T-1-1-4, Time: 10:00-12:00
This paper gives an overview of a commercially viable product, akeira™ – Voice Virtual Assistant. It also details out the features, capabilities and benefits of this intuitive Virtual Assistant.

Brain-Computer Interface using Electroencephalogram Signatures of Eye Blinks
Srihari Maruthachalam\(^1\), Sidarth Aggarwal\(^1\), Mari Ganesh Kumar\(^1\), Mriganka Sur\(^2\) and Hema Murthy\(^1\)
\(^1\)Department of Computer Science and Engineering, Indian Institute of Technology, Madras

\(^2\)Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge

Tue-S&T-1-1-5, Time: 10:00-12:00
The objective of this work is to develop a personalized eye blink based communicator device. The eye blink is detected using a single channel Electroencephalogram (EEG) system with a Bluetooth interface. Eye blinks have predominant signatures in EEG. Different patterns based on these signatures are used to map alphanumeric characters on a virtual keyboard and words are generated. Voice module is incorporated into the app on the android device for better accessibility of the device by including Text To Speech synthesizer (TTS) at the back-end to produce speech output.

Voice Comparison and Rhythm: Behavioral Differences between Target and Non-target Comparisons
Moez Ajili\(^1\), Jean-François Bonastre\(^1\) and Solange Rossato\(^1\)
\(^1\)LIA-CERI, University Of Avignon, Avignon, France

Tue-P-1-1-1, Time: 10:00-12:00
It is common to see voice recordings being presented as a forensic trace in court. Generally, a forensic expert is asked to analyze both suspect and criminal’s voice samples in order to indicate whether the evidence supports the prosecution (same-speaker) or defence (different-speakers) hypotheses. This process is known as Forensic Voice Comparison (FVC).

Since the emergence of the DNA typing model, the likelihood-ratio (LR) framework has become the golden standard in forensic sciences. The LR not only supports one of the hypotheses but also quantifies the strength of its support. However, the LR accepts somepractical limitations due to its estimation process itself. It is particularly true when Automatic Speaker Recognition (ASPR) systems are considered as they are outputting a score in all situations regardless of the case specific conditions. Indeed, several factors are not taken into account by the estimation process like the quality and quantity of information in both voice recordings, their phonological content or also the speakers intrinsic characteristics. In our recent study, we showed the importance of the phonemic content and we highlighted interesting differences between inter-speakers effects and intra-speaker’s ones.

In this article, we wish to take our previous analysis a step farther and investigate the impact of rhythm variation separately on target and non-target trials.

Co-whitening of l-vectors for Short and Long Duration Speaker Verification
Longting Xu\(^1\), Kong Aik Lee\(^2\), Haizhou Li\(^1\) and Zhen Yang\(^3\)
\(^1\)Department of Electrical and Computer Engineering, National University of Singapore
\(^2\)Data Science Research Laboratories, NEC Corporation, Japan
\(^3\)Broadband Wireless Communication and Sensor Network Technology Key Lab, Nanjing University of Posts and Telecommunications, China

Tue-P-1-1-2, Time: 10:00-12:00
An i-vector is a fixed-length and low-rank representation of a speech utterance. It has been used extensively in text-independent speaker verification. Ideally, speech utterances from the same speaker would map to an unique i-vector. However, this is not the case due to some intrinsic and extrinsic factors like physical condition of the speaker, channel difference, noise and notably the duration of speech utterances. In particular, we found...
that i-vectors extracted from short utterances exhibit larger variance than that of long utterances. To address the problem, we propose a co-whitening approach, taking into account the duration, while maximizing the correlation between the i-vectors of short and long duration. The proposed co-whitening method was derived based on canonical correlation analysis (CCA). Experimental results on NIST SRE 2010 show that co-whitening is effective in compensating the duration mismatch, leading to a reduction of up to 13.07% in equal error rate (EER).

Compensation for Domain Mismatch in Text-independent Speaker Recognition
Fahimeh Bahmaninezhad and John H.L. Hansen
Center for Robust Speech Systems (CRSS), University of Texas at Dallas, Richardson, TX 75080

Tue-P-1-1-3, Time: 10:00-12:00
Domain mismatch continues to be a major research challenge for speaker recognition in naturalistic audio streams. This study presents a new technique for domain mismatch compensation within a text-independent speaker recognition scenario. The proposed method is designed for the NIST speaker recognition evaluation 2016 (SRE16) task, where speakers from training and evaluation data belong to different sets of languages. An i-vector/PLDA speaker recognition system is adopted for this study. To address the mismatch problem, we propose to append auxiliary features to the i-vectors. These auxiliary features are adapted representations of the i-vectors to the specific in-domain data; therefore, the new feature vector has two parts: (1) i-vectors which represent speaker identity and (2) auxiliary features which are representations of i-vectors in the in-domain data feature space (and may not contain speaker identity information). This new concatenated feature vector (we call this a-vector) is then post-processed with support vector discriminant analysis (SVDA) for further domain compensation. Evaluations based on the SRE16 confirm the effectiveness of the proposed technique. In terms of minimum C\text{p}primary cost, a-vector outperforms the i-vector consistently. Moreover, comparing to previous single systems introduced for SRE16, we achieved 8.5%-18% improvements in terms of equal error rate.

Joint Learning of J-Vector Extractor and Joint Bayesian Model for Text Dependent Speaker Verification
Ziqiang Shi, Liu Liu, Huibin Lin and Rujie Liu
Fujitsu Research and Development Center

Tue-P-1-1-4, Time: 10:00-12:00
J-vector and joint Bayesian have been proved to be very effective in text dependent speaker verification with short-duration speech. However current state-of-the-art framework often consider training the J-vector extractor and the joint Bayesian classifier separately. Such an approach will result in information loss for j-vector learning and also fail to exploit an end-to-end framework. In this paper we present a integrated approach to text dependent speaker verification, which consists of a siamese deep neural network that takes two variable length speech segments and maps them to the likelihood score and speaker/phrase labels, where the likelihood score as a loss guide is computed by a variant joint Bayesian model. The likelihood loss guide can constrain the j-vector extractor for improving the verification performance. Since the strengths of j-vector and joint Bayesian analysis appear complementary, the joint learning significantly outperforms traditional separate training scheme. Our experiments on the the public RSR2015 part I data corpus demonstrate that this new training scheme can produce more discriminative j-vectors and leading to performance improvement on the speaker verification task.

Latent Factor Analysis of Deep Bottleneck Features for Speaker Verification with Random Digit Strings
Ziqiang Shi, Huibin Lin, Liu Liu and Rujie Liu
Fujitsu Research and Development Center

Tue-P-1-1-5, Time: 10:00-12:00
Speaker verification with prompted random digit strings has been a challenging task due to very short test utterance. This work investigates how to combine methods from deep bottleneck features (DBF) and latent factor analysis (LFA) to result in a new state-of-the-art approach for such task. In order to provide a wider temporal context, a stacked DBF is extracted to replace the traditional MFCC feature in the derivation of the supervector representations and leads to a significant improvement for the speaker verification. The LFA is used to model these stacked DBFs in both digit and utterance scales. Based on this learned LFA model, two kinds of supervector representations are extracted for utterance and local digits respectively.

Since the strengths of DBF and LFA appear complementary, the combination significantly outperforms either of its components. Experiments have been conducted on the public RS2015 part III data corpus, the results showed that our approach can achieve 1.40% EER and 1.55% EER on male and female respectively.

VoxCeleb2: Deep Speaker Recognition
Joon Son Chung, Arsha Nagrani and Andrew Zisserman
Visual Geometry Group, Department of Engineering Science, University of Oxford, UK

Tue-P-1-1-6, Time: 10:00-12:00
The objective of this paper is speaker recognition under noisy and unconstrained conditions.

We make two key contributions. First, we introduce a very large-scale speaker recognition dataset collected from open-source media. Using a fully automated pipeline, we curate VoxCeleb2 which contains over a million utterances from over 6,000 speakers. This is several times larger than any publicly available speaker recognition dataset.

Second, we develop and compare Convolutional Neural Network (CNN) models and training strategies that can effectively recognise identities from voice under various conditions.

The models trained on the VoxCeleb2 dataset surpass the performance of previous works on a benchmark dataset by a significant margin.

Supervised I-vector Modeling - Theory and Applications
Shreyas Ramoji and Sriram Ganapathy
Learning and Extraction of Acoustic Patterns (LEAP) Lab, Electrical Engineering, Indian Institute of Science, Bengaluru, India

Tue-P-1-1-7, Time: 10:00-12:00
Over the last decade, the factor analysis based modeling of a variable length speech utterance into a fixed dimensional vector (termed as i-vector) has been prominently used for many tasks like speaker recognition, language recognition and even in speech recognition. The i-vector model is an unsupervised learning paradigm where the data is initially clustered using a Gaussian Mixture Universal Background Model (GMM-UBM). The adapted means of the Gaussian mixture components are dimensionally reduced using the Total Variability Matrix (TVM) where the latent variables are modeled with a single Gaussian distribution. In this paper, we propose to rework the theory of i-vector modeling using a supervised framework where the speech utterances are associated with a label. Class labels are introduced in the i-vector model using a mixture Gaussian prior. We show that the proposed model is a generalized i-vector model and the conventional i-vector model turns out to be a special case of this model. This model is applied for a language recognition task using the NIST Language Recognition Evaluation (LRE) 2017 dataset. In these experiments, the supervised i-vector model provides significant improvements over the conventional i-vector model (average relative improvements of 5% in terms of C_{avg}).

LOCUST - Longitudinal Corpus and Toolset for Speaker Verification
Evgeny Dmitriev1, Yulia Kim2, Anastasia Matveeva2, Claude Montacié1, Yannick Boulard3, Yadiva Sinyavskaya4, Yulia Zhukova5, Adam Zarazinski6, Egor Akhanov7, Ilya Viksni8, Andrei Shlykov9 and Maria Usova9
1Sorbonne University, France
Notes
On Convolutional LSTM Modeling for Joint Wake-Word Detection and Text Dependent Speaker Verification
Rajath Kumar1, Vaishnavi Yeruva1 and Siriram Ganapathy2
1Department of Electrical Engineering, Columbia University, New York, NY
2Learning and Extraction of Acoustic Pattern Lab, Indian Institute of Science

Tue-P-1-1, Time: 10:00-12:00
The task of personalized keyword detection system which also performs text dependent speaker verification (TDVS) has received substantial interest recently. Conventional approaches to this task involve the development of the TDVS and wake-up-word detection systems separately. In this paper, we show that TDVS and keyword spotting (KWS) can be jointly modeled using the convolutional long short term memory (CLSTM) model architecture, where an initial convolutional feature map is further processed by a LSTM recurrent network. Given a small amount of training data for developing the CLSTM system, we show that the model provides accurate detection of the presence of the keyword in spoken utterance. For the TDVS task, the MTL model can be well regularized using the CLSTM training examples for personalized wake up task. The experiments are performed for KWS wake up detection and TDVS using the combined speech recordings from Wall Street Journal (WSJ) and LibriSpeech corpus. In these experiments with multiple keywords, we illustrate that the proposed approach of MTL significantly improves the performance of previously proposed neural network based text dependent SV systems. We also experimentally illustrate that the CLSTM model provides significant improvements over previously proposed keyword detection systems as well (average relative improvements of 30% over previous approaches).

Cosine Metric Learning for Speaker Verification in the I-vector Space
Zhongxin Bai, Xiao-Lei Zhang and Jingdong Chen
Center for Intelligent Acoustics and Immersive Communications and School of Marine Science and Technology, Northwestern Polytechnical University

Tue-P-1-1-14, Time: 10:00-12:00
It is known that the equal-error-rate (EER) performance of a speaker verification system is determined by the overlap region of the decision scores of true and imposter trials. Also, the cosine similarity scores of the true or imposter trials produced by the state-of-the-art i-vector front-end approximate to a Gaussian distribution and the overlap region of the two classes of trials depends mainly on their between-class distance. Motivated by the above facts, this paper presents a cosine similarity learning (CML) framework for speaker verification, which combines classical compensation techniques and the cosine similarity scoring for improving the EER performance. CML minimizes the overlap region by enlarging the between-class distance while introducing a regularization term to control the within-class variance, which is initialized by a traditional channel compensation technique such as linear discriminant analysis. Experiments are carried out to compare the proposed CML framework with several traditional channel compensation baselines on the NIST speaker recognition evaluation data sets. The results show that CML outperforms all the studied initialization compensation techniques.

An Unsupervised Neural Prediction Framework for Learning Speaker Embeddings Using Recurrent Neural Networks
Arindam Jati and Panayiotis Georgiou
University of Southern California, Los Angeles, CA, USA

Tue-P-1-1-15, Time: 10:00-12:00
This paper presents an unsupervised training framework for learning a speaker-specific embedding using a Neural Predictive Coding (NPC) technique. We employ a Recurrent Neural Network (RNN) trained on unlabeled audio with multiple and unknown speaker change points. We assume short-term speaker stationarity and hence that speech frames in close temporal proximity originated from a single speaker. In contrast, two random short speech segments from different audio streams are assumed to originate from two different speakers. Based on this hypothesis, a binary classification scenario of predicting whether an input pair of short speech segments comes from the same speaker or not, is developed. An RNN based deep siamese network is trained and the resulting embeddings, extracted from a hidden layer representation of the network, are employed as speaker embeddings. The experimental results on speaker change point detection show the efficacy of the proposed method to learn short-term speaker-specific features. We also show the consistency of these features via a simple statistics-based utterance-level speaker classification task. The proposed method outperforms the MFCC baseline for speaker change detection and both MFCC and i-vector baselines for speaker classification.

Speech Enhancement Using the Minimum-probability-of-error Criterion
Jishnu Sadasivan1, Subhadip Mukherjee2 and Chandra Sekhar Seelamantula1
1Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560012, India
2Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India

Tue-P-1-2-2, Time: 10:00-12:00
We propose a novel speech denoising framework that uses a loss function in the frequency domain to train a convolutional neural network (CNN) in the time domain. At the training time, an extra operation is added after the speech enhancement network to convert the estimated signal in the time domain to the frequency domain. This operation is differentiable and is used to train the system with a loss in the frequency domain. This proposed approach replaces learning in the frequency domain, i.e., short-time Fourier transform (STFT) magnitude estimation, with learning in the original time domain. The proposed method is a spectral mapping approach in which the CNN first generates a time domain signal then computes its STFT that is used for spectral mapping. This way the CNN can exploit the additional domain knowledge about calculating the STFT magnitude from the time domain signal. Experimental results demonstrate that the proposed method substantially outperforms the other methods of speech enhancement. The proposed approach is easy to implement and applicable to related speech processing tasks that require spectral mapping or time-frequency (T-F) masking.

A New Framework for Supervised Speech Enhancement in the Time Domain
Ashutosh Pandey1 and DeLiang Wang1,2
1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA

Tue-P-1-2-1, Time: 10:00-12:00
This work proposes a new learning framework that uses a loss function in the frequency domain to train a convolutional neural network (CNN) in the time domain. At the training time, an extra operation is added after the speech enhancement network to convert the estimated signal in the time domain to the frequency domain. This operation is differentiable and is used to train the system with a loss in the frequency domain. This proposed approach replaces learning in the frequency domain, i.e., short-time Fourier transform (STFT) magnitude estimation, with learning in the original time domain. The proposed method is a spectral mapping approach in which the CNN first generates a time domain signal then computes its STFT that is used for spectral mapping. This way the CNN can exploit the additional domain knowledge about calculating the STFT magnitude from the time domain signal. Experimental results demonstrate that the proposed method substantially outperforms the other methods of speech enhancement. The proposed approach is easy to implement and applicable to related speech processing tasks that require spectral mapping or time-frequency (T-F) masking.

Notes
We consider discrete cosine transform (DCT) domain shrinkage, where the optimum shrinkage parameter is obtained by minimizing an estimate of the PE. A performance assessment for real-world noise types shows that for input signal-to-noise ratios (SNR) greater than 5 dB, the proposed MPE-based point-wise shrinkage estimators outperform three benchmark techniques in terms of segmental SNR and short-time objective intelligibility (STOI) scores.

Exploring the Relationship between Conic Affinity of NMF Dictionaries and Speech Enhancement Metrics
Pavlos Papadopoulos, Colin Vaz and Shrikanth Narayanan
Signal Analysis and Interpretation Lab, University of Southern California, USA

Tue-P-1-2-3, Time: 10:00-12:00
Nonnegative Matrix Factorization (NMF) has been successfully used in speech enhancement. In the training phase, NMF produces speech and noise dictionaries, whose elements are non-negative, while in the testing phase it estimates a non-negative activation matrix to express the enhanced speech signal as a conic combination of those dictionaries. This nonnegativity property enables us to interpret them as convex polyhedral cones that lie in the positive orthant. Conic affinity could be useful when designing NMF-based systems for unseen noise conditions, which operate by selecting an appropriate noise dictionary amongst a pool of potential candidates. To that end, we examine two conic affinity measures, one based on cosine similarity, while the other is based on euclidean distance from a point to a cone. Moreover, we construct an algorithm to show that conic affinity correlates with speech enhancement performance metrics.

Using Shifted Real Spectrum Mask as Training Target for Supervised Speech Separation
Yun Liu, Hui Zhang and Xueliang Zhang
Inner Mongolia Key Laboratory of Mongolian Information Processing Technology, Inner Mongolia University, Hohhot, China

Tue-P-1-2-4, Time: 10:00-12:00
Deep learning-based speech separation has been widely studied in recent years. Most of these kind approaches focus on recovering the magnitude spectrum of the target speech, but ignore the phase estimation. Recently, a method called shifted real spectrum (SRS) is proposed. Unlike the short-time Fourier transform (STFT), the SRS contains only real components which encode the phase information. In this paper, we propose several SRS-based masks and use them as the training target of deep neural networks. Experimental results show that the proposed target outperforms the commonly used masks computed on STFT in general.

Enhancement of Noisy Speech Signal by Non-Local Means Estimation of Variational Mode Functions
Nagapuri Srinivas, Gayadhar Pradhan and Syed Shahnawazuddin
Department of Electronics and Communication Engineering National Institute of Technology Patna, India

Tue-P-1-2-5, Time: 10:00-12:00
In this paper, a speech enhancement approach exploiting the efficacy of non-local means (NLM) estimation and variational mode decomposition (VMD) is proposed. The NLMestimation is effective in removing noises whenever non-local similarities are present among the samples of the signal under consideration. However, it suffers from the issue of under-averaging in those regions where amplitude and frequency variations are abrupt. Since speech is a non-stationary signal, the magnitude and frequency vary over the time. Consequently, NLM is not that effective in removing the noise components from the speech signal as observed in the case of image enhancement. To address this issue, the noisy speech signal is first decomposed into variational mode functions (VMFs) using VMD. Each of the VMFs represents a small portion of the overall frequency components of the signal. The VMFs are then combined into different groups depending on their similarities to reduce computational cost. Next, the non-local similarity present in each group of VMFs is exploited for an effective speech enhancement through NLM estimation. The enhancement performance of the proposed method is compared with two existing speech enhancement techniques. The experimental results presented in this study show that, the proposed method provides better speech enhancement performance.

Phase-locked Loop (PLL) Based Phase Estimation in Single Channel Speech Enhancement
Priya Pallavi and Ch V Rama Rao
Department of Electrical Engineering, National Institute of Technology Meghalaya

Tue-P-1-2-6, Time: 10:00-12:00
Conventional speech enhancement techniques are based on the modification of noisy spectral magnitude. In the reconstruction of the enhanced signal, noisy phase is combined with the modified noisy spectral magnitude. Recent studies on the importance of phase in enhancement process shows that the clean speech phase improves the quality of the enhanced signal. This work focuses on Phase-Locked Loop (PLL) based time-domain approach for estimating the clean speech phase from noisy speech signal. The proposed technique is compared with the conventional approaches where noisy phase is used in the reconstruction of the enhanced signal. Here, Log-Likelihood Ratio (LLR), Weighted Spectral Slope (WSS) distance and Perceptual Evaluation of Speech Quality (PESQ) are used as performance measures. From experimental results, it is observed that the speech quality and intelligibility improved significantly with the proposed method over existing methods.

Cycle-Consistent Speech Enhancement
Zhong Meng, Jin Yiu Li, Yifan Gong and Bing-Hwang (Fred) Juang
1. Microsoft AI and Research, Redmond, WA, USA
2. Georgia Institute of Technology, Atlanta, GA, USA

Tue-P-1-2-7, Time: 10:00-12:00
Feature mapping using deep neural networks is an effective approach for single-channel speech enhancement. Noisy features are transformed to the enhanced ones through a mapping network and the mean square errors between the enhanced and clean features are minimized. In this paper, we propose a cycle-consistent speech enhancement (CSE) in which an additional inverse mapping network is introduced to reconstruct the noisy features from the enhanced ones. A cycle-consistent constraint is enforced to minimize the reconstruction loss. Similarly, a backward cycle of mappings is performed in the opposite direction with the same networks and losses. With cycle-consistency, the speech structure is well preserved in the enhanced features while noise is effectively reduced such that the feature mapping network generalizes better to unseen data. In cases where only unpaired noisy and clean data is available for training, two discriminator networks are used to distinguish the reconstructed clean and noisy features from the real ones. The discrimination losses are jointly optimized with reconstruction losses through adversarial multi-task learning. Evaluated on the CHiME-3 dataset, the proposed CSE achieves 19.60% and 6.69% relative word error rate improvements respectively when using or without using parallel clean and noisy speech data.

Visual Speech Enhancement
Aviv Gabbay, Asap Shamir and Shmuel Peleg
School of Computer Science and Engineering The Hebrew University of Jerusalem, Jerusalem, Israel

Tue-P-1-2-8, Time: 10:00-12:00
When video is shot in noisy environment, the voice of a speaker seen in the video can be enhanced using the visible mouth movements, reducing background noise.

While most existing methods use audio-only inputs, improved performance is obtained with our visual speech enhancement, based on an audio-visual neural network.

We include in the training data videos to which we added the voice of the target speaker as background noise. Since the audio input is not sufficient to separate the voice of a speaker from his own voice, the trained model better exploits the visual input and generalizes well to different noise types.

The proposed model outperforms prior audio visual methods on two public lipreading datasets. It is also the first to be demonstrated on a dataset not designed for lipreading, such as the weekly addresses of Barack Obama.
Implementation of Digital Hearing Aid as a Smartphone Application
Saketh Sharma, Nitya Tiwari and Prem C. Pandey
Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
Tue-P-1-2-9, Time: 10:00-12:00

Hearing aids for persons with sensorineural hearing loss aim to compensate for degraded speech perception caused by frequency-dependent elevation of hearing thresholds, reduced dynamic range, abnormal loudness growth and increased temporal and spectral masking. A digital hearing aid is implemented as a smartphone application as an alternative to ASIC-based hearing aids. The implementation provides user-configurable processing for background noise suppression and dynamic range compression. Speech enhancement technique using spectral subtraction based on geometric approach and noise spectrum estimation based on dynamic quantile tracking is implemented to improve speech perception. To compensate for reduced dynamic range and frequency-dependent elevation of hearing thresholds, a sliding-band dynamic range compression technique is used. Both processing blocks are implemented for real-time processing using single FFT-based analysis-synthesis. Implementation as a smartphone application has been carried out using Nexus 5X with Android 7.1 Nougat OS. A touch-controlled graphical user interface enables the user to fine tune the processing parameters in an interactive and real-time mode. The audio latency is 4.5 ms, making it suitable for face-to-face communication.

Bone-Conduction Sensor Assisted Noise Estimation for Improved Speech Enhancement
Ching-Hua Lee, Bhaskar D. Rao and Harinath Garudadri
Department of Electrical and Computer Engineering
University of California, San Diego
Tue-P-1-2-10, Time: 10:00-12:00

State-of-the-art noise power spectral density (PSD) estimation techniques for speech enhancement utilize the so-called speech presence probability (SPP). However, in highly non-stationary environments, SPP-based techniques could still suffer from inaccurate estimation, leading to significant amount of residual noise or speech distortion. In this paper, we propose an alternative noise estimation approach based on dynamic quantile tracking for bone-conduction (BC) sensor, which is known to be relatively insensitive to the environmental noise compared to the regular air-conduction (AC) microphone. A strategy is suggested to utilize the BC sensor characteristics for assisting the AC microphone in better SPP-based noise estimation. To our knowledge, no previous work has incorporated the BC sensor in this noise estimation aspect. Consequently, the proposed strategy can possibly be combined with other BC sensor assisted speech enhancement techniques. We show the feasibility and potential of the proposed method for improving the enhanced speech quality by both objective and subjective tests.

Artificial Bandwidth Extension with Memory Inclusion Using Semi-supervised Stacked Auto-encoders
Pranod Bachhav, Massimiliano Todisco and Nicholas Evans
EURECOM, Sophia Antipolis, France
Tue-P-1-2-11, Time: 10:00-12:00

Artificial bandwidth extension (ABE) algorithms have been developed to improve quality when wideband devices receive speech signals from narrowband devices or infrastructure. The utilisation of contextual information in the form of dynamic features or explicit memory captured from neighbouring frames is common to ABE research, however the use of additional cues augments complexity and can introduce latency. Previous work shows that unsupervised, linear dimensionality reduction techniques help to reduce complexity. This paper reports a semisupervised, non-linear approach to dimensionality reduction using a stacke auto-encoder. In further contrast to previous work, it operates on raw spectra from which a low dimensional narrowband representation is learned in a data-driven manner. Three different objective speech quality measures show that the new features can be used with a standard regression model to improve ABE performance. Improvements in the mutual information between learned features and missing higher frequency components are also observed whereas improvements in speech quality are corroborated by informal listening tests.

Large Vocabulary Concatenative Resynthesis
Souni Maiti1, Joey Ching2 and Michael Mandel1,2
1Computer Science Program, the Graduate Center, CUNY, New York, USA
2Computer and Information Science, Brooklyn College, City University of New York
Tue-P-1-2-12, Time: 10:00-12:00

Traditional speech enhancement systems reduce noise by modifying the noisy signal, which suffer from two problems: under-suppression of noise and over-suppression of speech.

As an alternative, in this paper, we use the recently introduced concatenative resynthesis approach where we replace the noisy speech with its clean resynthesis.

The output of such a system can produce speech that is both noise-free and high quality. This paper generalizes our previous small-vocabulary system to large vocabulary. To do so, we employ efficient decoding techniques using fast approximate nearest neighbor (ANN) algorithms. Firstly, we apply ANN techniques on the original small vocabulary task and get 5X speedup. We then apply the techniques to the construction of a large vocabulary concatenative resynthesis system and scale the system up to 12X larger dictionary. We perform listening tests with five participants to measure subjective quality and intelligibility of the output speech.

Concatenative Resynthesis with Improved Training Signals for Speech Enhancement
Ali Raza Syed1, Viet Anh Trinh1 and Michael Mandel1,2
1The Graduate Center, CUNY, New York, NY, USA
2Brooklyn College, CUNY, New York, NY, USA
Tue-P-1-2-13, Time: 10:00-12:00

Noise reduction in speech signals remains an important area of research with potential for high impact in speech processing domains such as voice communication and hearing prostheses. We extend and demonstrate significant improvements to our previous work in synthesis-based speech enhancement, which performs concatenative resynthesis of speech signals for the production of noiseless, high quality speech. Concatenative resynthesis methods perform unit selection through learned non-linear similarity functions between short chunks of clean and noisy signals. These mappings are learned using deep neural networks (DNN) trained to predict high similarity for the exact chunk of speech that is contained within a chunk of noisy speech and low similarity for all other pairings. We find here that more robust mappings can be learned with a more efficient use of the available data by selecting pairings that are not exact matches, but contain similar clean speech that matches the original in terms of acoustic, phonetic and prosodic content. The resulting output is evaluated on the small vocabulary CHiME2-GRID corpus and outperforms our original baseline system in terms of intelligibility by combining phonetic similarity with similarity of acoustic intensity, fundamental frequency and periodicity.

Tue-P-1-3: Syllabification, Rhythm and Voice Activity Detection
Hall 4-6, Poster-3, 10:00-12:00, Tuesday, 4 September, 2018
Chair: Ajay Srinivasamurthy

Comparison of Syllabification Algorithms and Training Strategies for Robust Word Count Estimation across Different Languages and
Autoencoder-based joint learning approach. We show that learning framework. Moreover, we feed not only the enhanced feature but also the latent code from the DVAE into the VAD network. We show that VAD using the generated clean features. This can be implemented using raw audio perform better than those using Mel-frequency cepstral coefficients. The proposed model consists of two long short-term memory (LSTM) neural networks trained on acoustic features and automatic speech recognition corpora. The proposed technique shows a best case absolute improvement of 8.2% over the conventional IB based system in terms of diarization error rate.

Notes

1 Department of Signal Processing and Acoustics, Aalto University, Finland
2 Max Planck Institute for Psycholinguistics, Netherlands

A Comparison of Input Types to a Deep Neural Network-based Forced Aligner
Matthew C. Kelley and Benjamin V. Tucker
Department of Linguistics, University of Alberta, Edmonton, AB, Canada

Tue-P-1-3-2, Time: 10:00-12:00

The present paper investigates the effect of different inputs on the accuracy of a forced alignment tool built using deep neural networks. Both raw audio samples and Mel-frequency cepstral coefficients were compared as network inputs. A set of experiments were performed using the TIMIT speech corpus as training data and its accompanying test data set. The networks consisted of a series of convolutional layers followed by a series of bidirectional long short-term memory (LSTM) layers. The convolutional layers were trained first to act as feature detectors, after which their weights were frozen. Then, the LSTM layers were trained to model the temporal relations in the data. The current results indicate that networks using raw audio perform better than those using Mel-frequency cepstral coefficients and an off-the-shelf forced aligner. Possible explanations for why the raw audio networks perform better are discussed. We then lay out potential ways to improve the results of the networks and conclude with a comparison of human cognition to network architecture.

Joint Learning Using Denoising Variational Autoencoders for Voice Activity Detection
Youngmoon Jung, Younggwon Kim, Yeunjoo Choi and Hoirin Kim
School of Electrical Engineering, KAIST, Daejeon, South Korea

Tue-P-1-3-3, Time: 10:00-12:00

Voice activity detection (VAD) is a challenging task in very low signal-to-noise ratio (SNR) environments. To address this issue, a promising approach is to map noisy speech features to corresponding clean features and to perform VAD using the generated clean features. This can be implemented by concatenating a speech enhancement (SE) and a VAD network, whose parameters are jointly updated. In this paper, we propose denoising variational autoencoder-based (DVAE) speech enhancement in the joint learning framework. Moreover, we feed not only the enhanced feature but also the latent code from the DVAE into the VAD network. We show that the proposed joint learning approach outperforms conventional denoising autoencoder-based joint learning approach.

Information Bottleneck Based Percussion Instrument Diarization System for Taniavartanam Segments of Carnatic Music Concerts
Nauman Dawalatabad, Jom Kuriakose, Chandra Sekhar Chellu and Hema Murthy
Indian Institute of Technology Madras, India

Tue-P-1-3-4, Time: 10:00-12:00

An approach to diarize taniavartanam segments of a Carnatic music concert is proposed in this paper. Information bottleneck (IB) based approach used for speaker diarization is applied for this task. IB system initializes the segments to be clustered uniformly with fixed duration. The issue with diarization of percussion instruments in taniavartanam is that the stroke rate varies highly across the segments. It can double or even quadruple within a short duration, thus leading to variable information rate in different segments. To address this issue, the IB system is modified to use the stroke rate information to divide the audio into segments of varying durations. The unsupervised algorithms can still outperform it in challenging signal conditions on novel languages.

A Comparison of Input Types to a Deep Neural Network-based Forced Aligner
Matthew C. Kelley and Benjamin V. Tucker
Department of Linguistics, University of Alberta, Edmonton, AB, Canada

Tue-P-1-3-2, Time: 10:00-12:00

The present paper investigates the effect of different inputs on the accuracy of a forced alignment tool built using deep neural networks. Both raw audio samples and Mel-frequency cepstral coefficients were compared as network inputs. A set of experiments were performed using the TIMIT speech corpus as training data and its accompanying test data set. The networks consisted of a series of convolutional layers followed by a series of bidirectional long short-term memory (LSTM) layers. The convolutional layers were trained first to act as feature detectors, after which their weights were frozen. Then, the LSTM layers were trained to model the temporal relations in the data. The current results indicate that networks using raw audio perform better than those using Mel-frequency cepstral coefficients and an off-the-shelf forced aligner. Possible explanations for why the raw audio networks perform better are discussed. We then lay out potential ways to improve the results of the networks and conclude with a comparison of human cognition to network architecture.

Joint Learning Using Denoising Variational Autoencoders for Voice Activity Detection
Youngmoon Jung, Younggwon Kim, Yeunjoo Choi and Hoirin Kim
School of Electrical Engineering, KAIST, Daejeon, South Korea

Tue-P-1-3-3, Time: 10:00-12:00

Voice activity detection (VAD) is a challenging task in very low signal-to-noise ratio (SNR) environments. To address this issue, a promising approach is to map noisy speech features to corresponding clean features and to perform VAD using the generated clean features. This can be implemented by concatenating a speech enhancement (SE) and a VAD network, whose parameters are jointly updated. In this paper, we propose denoising variational autoencoder-based (DVAE) speech enhancement in the joint learning framework. Moreover, we feed not only the enhanced feature but also the latent code from the DVAE into the VAD network. We show that the proposed joint learning approach outperforms conventional denoising autoencoder-based joint learning approach.

Information Bottleneck Based Percussion Instrument Diarization System for Taniavartanam Segments of Carnatic Music Concerts
Nauman Dawalatabad, Jom Kuriakose, Chandra Sekhar Chellu and Hema Murthy
Indian Institute of Technology Madras, India

Tue-P-1-3-4, Time: 10:00-12:00

An approach to diarize taniavartanam segments of a Carnatic music concert is proposed in this paper. Information bottleneck (IB) based approach used for speaker diarization is applied for this task. IB system initializes the segments to be clustered uniformly with fixed duration. The issue with diarization of percussion instruments in taniavartanam is that the stroke rate varies highly across the segments. It can double or even quadruple within a short duration, thus leading to variable information rate in different segments. To address this issue, the IB system is modified to use the stroke rate information to divide the audio into segments of varying durations. The unsupervised algorithms can still outperform it in challenging signal conditions on novel languages.

A Comparison of Input Types to a Deep Neural Network-based Forced Aligner
Matthew C. Kelley and Benjamin V. Tucker
Department of Linguistics, University of Alberta, Edmonton, AB, Canada

Tue-P-1-3-2, Time: 10:00-12:00

The present paper investigates the effect of different inputs on the accuracy of a forced alignment tool built using deep neural networks. Both raw audio samples and Mel-frequency cepstral coefficients were compared as network inputs. A set of experiments were performed using the TIMIT speech corpus as training data and its accompanying test data set. The networks consisted of a series of convolutional layers followed by a series of bidirectional long short-term memory (LSTM) layers. The convolutional layers were trained first to act as feature detectors, after which their weights were frozen. Then, the LSTM layers were trained to model the temporal relations in the data. The current results indicate that networks using raw audio perform better than those using Mel-frequency cepstral coefficients and an off-the-shelf forced aligner. Possible explanations for why the raw audio networks perform better are discussed. We then lay out potential ways to improve the results of the networks and conclude with a comparison of human cognition to network architecture.

Joint Learning Using Denoising Variational Autoencoders for Voice Activity Detection
Youngmoon Jung, Younggwon Kim, Yeunjoo Choi and Hoirin Kim
School of Electrical Engineering, KAIST, Daejeon, South Korea

Tue-P-1-3-3, Time: 10:00-12:00

Voice activity detection (VAD) is a challenging task in very low signal-to-noise ratio (SNR) environments. To address this issue, a promising approach is to map noisy speech features to corresponding clean features and to perform VAD using the generated clean features. This can be implemented by concatenating a speech enhancement (SE) and a VAD network, whose parameters are jointly updated. In this paper, we propose denoising variational autoencoder-based (DVAE) speech enhancement in the joint learning framework. Moreover, we feed not only the enhanced feature but also the latent code from the DVAE into the VAD network. We show that the proposed joint learning approach outperforms conventional denoising autoencoder-based joint learning approach.
A feed-forward deep neural network (DNN) is then trained to combine the acoustic and 1-best embeddings, derived from the LSTMs, with features from the ASR decoder.

Experimental results show that ASR decoder, acoustic embeddings and 1-best embeddings yield an equal-error-rate (EER) of 9.3%, 10.9% and 20.1%, respectively.

Combination of the features resulted in a 44% relative improvement and a final EER of 5.2%.

Notes
Structured Word Embedding for Low Memory Neural Network Language Model
Kaiyu Shi and Kai Yu
Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
SpeechLab, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China
Tue-P-1-4-1, Time: 10:00-12:00
Neural network language model (NN LM), such as long short term memory (LSTM) LM, has been increasingly popular due to its promising performance. However, the model size of an uncompressed NN LM is still too large to be used in embedded or portable devices. The dominant part of memory consumption of NN LM is the word embedding matrix. Directly compressing the word embedding matrix usually leads to performance degradation. In this paper, a product quantization based structured embedding approach is proposed to significantly reduce memory consumption of word embeddings without hurting LM performance. Here, each word embedding vector is cut into partial embedding vectors which are then quantized separately. Word embedding matrix can then be represented by an index vector and a code-book tensor of the quantized partial embedding vectors. Experiments show that the proposed approach can achieve 10 to 20 times embedding parameter reduction rate with negligible performance loss.

Role Play Dialogue Aware Language Models Based on Conditional Hierarchical Recurrent Encoder-Decoder
Ryo Masumura, Tomohiro Tanaka, Atsushi Ando, Hirokazu Masatani and Yushi Aono
NTT Media Intelligence Laboratories, NTT Corporation, Japan
Tue-P-1-4-2, Time: 10:00-12:00
We propose role play dialogue-aware language models (RPDA-LMs) that can leverage interactive contexts in role play multi-turn dialogues for estimating the generative probability of words. Our motivation is to improve automatic speech recognition (ASR) performance in role play dialogues such as contact center dialogues and service center dialogues. Although long short-term memory recurrent neural network based language models (LSTM-RNN-LMs) can capture long-range contexts within an utterance, they cannot utilize sequential interactive information between speakers in multi-turn dialogues. Our idea is to explicitly leverage speakers’ roles of individual utterances, which are often available in role play dialogues, for neural language modeling. The RPDA-LMs are generated as a generative model conditioned by a role sequence of a target role play dialogue. We compose the RPDA-LMs by extending hierarchical recurrent encoder-decoder modeling so as to handle the role information. Our ASR evaluation in a contact center dialogue demonstrates that RPDA-LMs outperform LSTM-RNN-LMs and document-context LMs in terms of perplexity and word error rate. In addition, we verify the effectiveness of explicitly taking interactive contexts into consideration.

Efficient Keyword Spotting Using Time Delay Neural Networks
Samuel Myer and Vikrant Singh Tomar
Fluent.ai Inc., Montreal, Canada
Tue-P-1-4-3, Time: 10:00-12:00
This paper describes a novel method of live keyword spotting using a two-stage time delay neural network. The model is trained using transfer learning: initial training with phone targets from a large speech corpus is followed by training with keyword targets from a smaller data set. The accuracy of the system is evaluated on two separate tasks. The first is the freely available Google Speech Commands dataset. The second is an in-house task specifically developed for keyword spotting. The results show significant improvements in false accept and false reject rates in both clean and noisy environments when compared with previously known techniques. Furthermore, we investigate various techniques to reduce computation in terms of multiplications per second of audio. Compared to recently published work, the proposed system provides up to 89% savings on computational complexity.

Automatic DNN Node Pruning Using Mixture Distribution-based Group Regularization
Tsukasa Yoshida, Takaumi Moriya, Kazuho Watanabe, Yusuke Shinohara, Yoshikazu Yamaguchi and Yushi Aono
1NTT Media Intelligence Laboratories, NTT Corporation, Japan
2Department of Computer Science and Engineering, Toyohashi University of Technology, Japan
Tue-P-1-4-4, Time: 10:00-12:00
In this paper, we address a constrained training for deep neural network-based acoustic model size reduction. While the L2 regularizer is used as a modeling approach to shrinking parameters, we cannot cut down the unimportant parts because it does not assume any group structure. The Group Lasso regularizer is used for the model size reduction approach. Group Lasso can set arbitrary group parameters (e.g. the column vector norms of the parameter matrices) as unimportant parts and make the parameters sparse. Therefore, we can prune the unimportant parameters whose group parameter norm is nearly zero. However, Group Lasso does not suggest a clear rule for separating parameters close to zero and large in the group parameter space and hence is unsuitable for the model size reduction.

To solve these problems, we propose a mixture distribution-based regularizer which assumes distributions of norms in the group parameter space. We evaluate our method on a NTT real recorded voice search data containing 1600 hours. Our proposal achieves 27.0% reduction compared to the pruned model by Group Lasso while keeping recognition performance.

Conditional-Computation-Based Recurrent Neural Networks for Computationally Efficient Acoustic Modelling
Raffaele Tavarone and Leonardo Badino
Center for Translational Neurophysiology of Speech and Communication
Tue-P-1-4-5, Time: 10:00-12:00
The first step in Automatic Speech Recognition (ASR) is a fixed-rate segmentation of the acoustic signal into overlapping windows of fixed length. Although this procedure allows to achieve excellent recognition accuracy, it is far from being computationally efficient, in that it may produce a highly redundant signal (i.e. almost identical spectral vectors may span many observation windows) that converts into computational overload. The reduction of such overload can be very beneficial for application such as offline ASR on mobile devices.

In this paper we present a principled way for saving numerical operations being able by using conditional-computation methods in deep bidirectional Recurrent Neural Networks (RNNs) acoustic modelling.

The methods rely on learned binary neurons that allow hidden layers to be updated only when necessary or to keep their previous value.

We (i) evaluate, for the first time, conditional computation-based recurrent architectures on a speech recognition task and (ii) propose a novel model specifically designed for speech data that inherently builds a multi-scale temporal structure in the hidden layers.
Results on the TIMIT dataset show that conditional mechanisms in recurrent architectures can reduce hidden layer updates up to 40% at the cost of about 20% relative phone error rate increase.

Leveraging Translations for Speech Transcription in Low-resource Settings

Antonios Anastasopoulos and David Chiang

Department of Computer Science and Engineering, University of Notre Dame, IN, USA

Tue-P-1-4-6, Time: 10:00-12:00

Recently proposed data collection frameworks for endangered language documentation aim not only to collect speech in the language of interest, but also to collect translations into a high-resource language that will render the collected resource interpretable. We focus on this scenario and explore whether we can improve transcription quality under these extremely low-resource settings with the assistance of text translations. We present a neural multi-source model and evaluate several variations of it on three low-resource datasets. We find that our multi-source model with shared attention outperforms the baselines, reducing transcription character error rate by up to 12.3%.

Sequence-to-sequence Neural Network Model with 2D Attention for Learning Japanese Pitch Accents

Antoine Bruguier1, Heiga Zen1 and Arkady Arkhangorodsky1

1Google, Mountain View, USA
2Google, London, UK
3University of Toronto, Toronto, Canada

Tue-P-1-4-7, Time: 10:00-12:00

Many Japanese text-to-speech (TTS) systems use word-level pitch accents as one of the prosodic features. Combination of a pronunciation dictionary including lexical pitch accents and a statistical model representing the word accent sandhi is often used to predict pitch accents from a text. However, using human transcribers to build the dictionary and training data for the model is tedious and expensive. This paper proposes a neural pitch accent recognition model. This model combines the information from audio and its transcription (word sequence in hiragana characters) via two-dimensional attention and outputs word-level pitch accents. Experimental results show a reduction in the word pitch accent prediction error rate over that with text only. It lowers the load of human annotators when building a pronunciation dictionary. As the approach is general, it can be used to do pronunciation learning in other languages as well.

Task Specific Sentence Embeddings for ASR Error Detection

Sahar Ghannay, Yannick Estève and Nathalie Camelin

LIUM - University of Le Mans, France

Tue-P-1-4-8, Time: 10:00-12:00

This paper presents a study on the modeling of automatic speech recognition errors at the sentence level. We aim in this study to compensate certain phenomena highlighted by the analysis of the outputs generated by the ASR error detection system we previously proposed. We investigated three different approaches, that are based respectively on the use of sentence embeddings dedicated to ASR error detection task, a probabilistic contextual model and a bidirectional long short term memory (BLSTM) architecture. An approach to build task-specific sentence embeddings is proposed and compared to the Doc2vec approach. Experiments are performed on transcriptions generated by the LIUM ASR system applied to the ETAPA corpus. They show that the proposed sentence embeddings dedicated to ASR error detection achieve better results than generic sentence embeddings and that the integration of task-specific sentence embeddings in our system achieves better results than the probabilistic contextual model and BLSTM models.

Low-Latency Neural Speech Translation

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha, Matthias Sperber and Alex Waibel

Institute of Technology, Germany

Tue-P-1-4-9, Time: 10:00-12:00

Through the development of neural machine translation, the quality of machine translation systems has been improved significantly. By exploiting advancements in deep learning, systems are now able to better approximate the complex mapping from source sentences to target sentences. But with this ability, new challenges also arise. An example is the translation of partial sentences in low-latency speech translation. Since the model has only seen complete sentences in training, it will always try to generate a complete sentence, though the input may only be a partial sentence. We show that NMT systems can be adapted to scenarios where no task-specific training data is available. Furthermore, this is possible without losing performance on the original training data. We achieve this by creating artificial data and by using multi-task learning. After adaptation, we are able to reduce the number of corrections displayed during incremental output construction by 45%, without a decrease in translation quality.

Low-Resource Speech-to-Text Translation

Sameer Bansal1, Herman Kamper1, Karen Livescu1, Adam Lopez1 and Sharon Goldwater1

1School of Informatics, University of Edinburgh, UK
2Stellenbosch University, South Africa
3Toyota Technological Institute at Chicago, USA

Tue-P-1-4-10, Time: 10:00-12:00

Speech-to-text translation has many potential applications for low-resource languages, but the typical approach of cascading speech recognition with machine translation is often impossible, since the transcripts needed to train a speech recognizer are usually not available for low-resource languages. Recent work has found that neural encoder-decoder models can learn to directly translate foreign speech in high-resource scenarios, without the need for intermediate transcription. We investigate whether this approach also works in settings where both data and computation are limited. To make the approach efficient, we make several architectural changes, including a change from character-level to word-level decoding. We find that this choice yields crucial speed improvements that allow us to train with fewer computational resources, yet still performs well on frequent words. We explore models trained on between 20 and 160 hours of data and find that although models trained on less data have considerably lower BLEU scores, they can still predict words with relatively high precision and recall around 50% for a model trained on 50 hours of data, versus around 60% for the full 160 hour model. Thus, they may still be useful for some low-resource scenarios.

VoiceGuard: Secure and Private Speech Processing

Ferdinand Brasser1, Tommaso Frassetto1, Korbinian Riedhammer2, Ahmad-Reza Sadeghi2, Thomas Schneider2 and Christian Weint2

1Technische Universität Darmstadt, Germany
2University of Applied Sciences Rosenheim, Germany

Tue-P-1-4-11, Time: 10:00-12:00

With the advent of smart-home devices providing voice-based interfaces, such as Amazon Alexa or Apple Siri, voice data is constantly transferred to cloud services for automated speech recognition or speaker verification.

While this development enables intriguing new applications, it also poses significant risks: Voice data is highly sensitive since it contains biometric information of the speaker as well as the spoken words. This data may be abused if not protected properly, thus the security and privacy of billions of end-users is at stake.

We tackle this challenge by proposing an architecture, dubbed VoiceGuard, that efficiently protects the speech processing task inside a trusted execution environment (TEE). Our solution preserves the privacy of users while at the same time it does not require the service provider to reveal model parameters. Our architecture can be extended to enable user-specific models, such as feature extraction models (including iMLLR, i-vectors, or model transformations (e.g., custom output layers). It also generalizes to secure on-premise solutions, allowing vendors to securely ship their models to customers.
We provide a proof-of-concept implementation and evaluate it on the Resource Management and WSJ speech recognition tasks isolated with Intel SGX, a widely available TEE implementation, demonstrating even real time processing capabilities.

Perspective Talk-1

Hall 3; 12:00-12:30, Tuesday, 4 September, 2018

Chair: Ajay Srivivasamurthy

Deep Learning based Situated Goal-oriented Dialogue Systems

Dilek Hakkani-Tür

Research Scientist, Amazon, USA

Tue-Perspective-1, Time: 12:00-12:30

Interacting with machines in natural language has been a holy grail since the beginning of computers. Given the difficulty of understanding natural language, only in the past couple of decades, we started seeing real user applications for targeted/limited domains. More recently, advances in deep learning-based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational systems. In this talk, I'll review end-to-end dialogue systems research, with components for situated language understanding, dialogue state tracking, policy, and language generation. The talk will highlight novel approaches where dialogue is viewed as a collaborative game between a user and an agent in the presence of visual information, and will aim to summarize challenges for future research.

Industry Presentation-1

Hall 3; 12:30-13:00, Tuesday, 4 September, 2018

Chairs: Ananth Sankar and Hemant Patil

Presenters: Björn Hoffmeister and Sri Garimella

Company: Amazon

Industry Presentation-2

Hall 1; 12:30-13:00, Tuesday, 4 September, 2018

Chairs: Dhananjaya N Gowda and Dileep A D

Presenter: Bowen Zhou

Company: JD

Industry Presentation-3

Hall 2; 12:30-13:00, Tuesday, 4 September, 2018

Chairs: Gauri Deshpande and Rohit Sinha

Presenter: Samith Ramachandran

Company: Uniphone

Tue-O-2-1: Dereverberation

Hall 3; 14:30-16:30, Tuesday, 4 September, 2018

Chairs: Tom Bäckström and Rajababu Velmurugan

Single-channel Speech Dereverberation via Generative Adversarial Training

Chenxing Li1,2, Tieqiang Wang1,2, Shuang Xu1 and Bo Xu1

1 Institute of Automation, Chinese Academy of Sciences, Beijing, PR.China
2 University of Chinese Academy of Sciences, Beijing, P.R.China

Tue-O-2-1-1, Time: 14:30-14:50

In this paper, we propose a single-channel speech dereverberation system (DeReGAT) based on convolutional, bidirectional long short-term memory and deep feed-forward neural network (CBLDNN) with generative adversarial training (GAT). In order to obtain better speech quality instead of only minimizing a mean square error (MSE), GAT is employed to make the dereverberated speech indistinguishable form the clean samples. Besides, our system can deal with wide range reverberation and be well adapted to variant environments. The experimental results show that the proposed model outperforms weighted prediction error (WPE) and deep neural network-based systems. In addition, DeReGAT is extended to an online speech dereverberation scenario, which reports comparable performance with the offline case.

Single-channel Dereverberation Using Direct MMSE Optimization and Bidirectional LSTM Networks

Wolfgang Mack, Soumitro Chakrabarty, Fabian-Robert Stoter, Sebastian Braun, Bernd Edler and Emanuël Habets

International Audio Laboratories Erlangen, 91058 Erlangen, Germany

Tue-O-2-1-2, Time: 14:50-15:10

Dereverberation is useful in hands-free communication and voice controlled devices for distant speech acquisition. Single-channel dereverberation can be achieved by applying a time-frequency (TF) mask to the short-time Fourier transform (STFT) representation of a reverberant signal. Recent approaches have used deep neural networks (DNNs) to estimate such masks. Previously proposed DNN-based mask estimation methods train a DNN to minimize the mean-squared-error (MSE) between the desired and estimated masks. Recent TF mask estimation methods for signal separation directly minimize instead the MSE between the desired and estimated STFT magnitudes. We apply this direct optimization concept to dereverberation. Moreover, as reverberation exceeds the duration of a single STFT frame, we propose to use a bidirectional long short-term memory (LSTM) network which is able to take the relation between multiple STFT frames into account. We evaluated our method for different reverberation times and source-microphone distances using simulated as well as measured room impulse responses of different rooms. An evaluation of the proposed method and a comparison with a state-of-the-art method demonstrate the superiority of our approach and its robustness to different acoustic conditions.
In order to suppress the late reverberation in the spectral domain, many single-channel dereverberation techniques rely on an estimate of the late reverberation power spectral density (PSD). In this paper, we propose a novel approach to late reverberation PSD estimation using a denoising autoencoder (DA), which is trained to learn a mapping from the microphone signal PSD to the late reverberation PSD. Simulation results show that the proposed approach yields a high PSD estimation accuracy and generalizes well to unseen data. Furthermore, simulation results show that the proposed DA-based PSD estimate yields a higher PSD estimation accuracy and a similar dereverberation performance than a state-of-the-art statistical PSD estimate, which additionally also requires knowledge of the reverberation time.

A Non-convolutive NMF Model for Speech Dereverberation
Nikhil M, Rajababu Velmurugan and Preeti Rao
Indian Institute of Technology Bombay

Reverberation corrupts speech recorded using distant microphones, resulting in poor speech intelligibility. We propose a single-channel, supervised non-negative matrix factorization (NMF) based dereverberation method, in contrast to the convolutive NMF (CNMF) based methods in literature. Recent supervised approaches use a CNMF model for reverberation and a NMF model for clean speech spectrogram to obtain enhanced speech by directly estimating the clean speech activations. In the proposed method, with a separability assumption on the room impulse response (RIR) spectrogram, the reverb speech can be decomposed into bases and activations using conventional NMF. Using these reverb activations, the clean speech activations are estimated to obtain enhanced speech. The proposed model (i) helps in imposing meaningful constraints on the RIR in both frequency- and time-domains to achieve improved enhancement (ii) leads to a framework that can include a NMF model for noise. (iii) gives a better interpretation of the effects of reverberation in the NMF context. We evaluate and compare the enhancement performance of the algorithm on reverb and noisy conditions, simulated using TIMIT utterances and REVERB challenge RIRs. The proposed method performs better than existing C-NMF based methods in objective measures, such as cepstral distance (CD) and speech-to-reverberation modulation energy ratio (SRMR).

Cross-Corpora Convolutonal Deep Neural Network Dereverberation Preprocessing for Speaker Verification and Speech Enhancement
Peter Guziewich, Stephen Zahorian, Xiao Chen and Hao Zhang
Department of Electrical and Computer Engineering, Binghamton University, NY, USA

Deep neural network (DNN) dereverberation preprocessing has been shown to be a viable strategy for speech enhancement and increasing the accuracy of automatic speech recognition and automatic speaker verification. In this paper, an improved DNN technique based on convolutional neural networks is presented and compared to existing methods for speech enhancement and speaker verification in the presence of reverberation. This new technique is first shown to enhance speech quality as compared to other existing methods. Then, a more thorough set of experiments is presented that assesses cross-corpora speaker verification performance on data that contains real reverberation and noise. A discussion of the applicability and generalizability of such techniques is given.

Dereverberation and Beamforming in Robust Far-Field Speaker Recognition
Ladislav Mošner, Oldřich Plchot, Pavel Malějka, Ondřej Novotný and Jan Černocký
Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Czechia

This paper deals with robust speaker verification (SV) in far-field sensing. The robustness is verified on a subset of NIST SRE 2010 corpus retransmitted in multiple real rooms of different acoustics and captured with multiple microphones. We experimented with various data preprocessing steps including different approaches to dereverberation and beamforming applied to ad-hoc microphone arrays. We found that significant improvements in accuracy can be achieved with neural network based generalized eigenvalue beamformer preceded by weighted prediction error dereverberation. We also explored the effect of data augmentation by adding various real or simulated room acoustic properties to the Probabilistic Linear Discriminant Analysis (PLDA) training dataset. As a result, we developed a speaker recognition system whose performance is stable across different room acoustic conditions. It yields 41.4% relative improvement in performance over the system without multi-channel processing tested on the cleanest microphone data. With the best combination of data preprocessing and augmentation, we obtained a performance close to the one we achieved with the original clean test data.
Temporal Transformer Networks for Acoustic Scene Classification

Teng Zhang, Kaihai Zhang and Ji Wu
Multimedia Signal and Intelligent Information Processing Lab
Department of Electronic Engineering, Tsinghua University, Beijing, PR China

Tue-O-2-2-3, Time: 15:10-15:30

Neural networks have been proven to be powerful models for acoustic scene classification tasks, but are still limited by the lack of ability to be temporally invariant to the audio data. In this paper, a novel temporal transformer module is proposed to allow the temporal manipulation of data in neural networks. This module is composed of a Fourier transform layer for feature maps and a learnable feature reduction layer and can be inserted into existing convolutional neural network (CNN) and Long short-term memory (LSTM) models. Experiments on LITIS Rouen dataset and DCASE2016 dataset show that the proposed method leads to a significant improvement when compared with the existing neural networks. Our approach is able to perform significantly better than the state-of-the-art result on LITIS Rouen dataset, obtaining a relative reduction of 23.6% on classification error.

Temporal Attentive Pooling for Acoustic Event Detection

Xugang Lu1, Peng Shen1, Sheng Li1, Yu Tsao2 and Hisashi Kawai1
1National Institute of Information and Communications Technology, Japan
2Research Center for Information Technology Innovation, Academic Sinica, Taiwan

Tue-O-2-2-4, Time: 15:30-15:50

Deep convolutional neural network (DCNN) based model has been successfully applied to acoustic event detection (AED) due to its efficiency to explore temporal-frequency structure for feature representations. In most studies, the final representation either uses a temporal average- or max-pooling algorithm to accumulate local temporal features as a global representation for event classification. The temporal pooling algorithm in the DCNN is based on the assumption that the target label is assigned to all temporal locations (average pooling) or to only one temporal location with a maximum response (max-pooling). However, the acoustic event labels are holistic descriptions in a semantic level, it is difficult or even impossible to decide features from which temporal locations contribute to the event perception. In this study, we propose a weighted temporal-pooling algorithm to accumulate local temporal features for AED. The pooling algorithm integrates global and local attention modules in a convolutional recurrent neural network to integrate temporal features. Experiments on an AED task were carried out to evaluate the proposed model. Results showed that with the global and local attentions, a large gain was obtained.

R-CRNN: Region-based Convolutional Recurrent Neural Network for Audio Event Detection

Chieh-Chi Kao, Weiran Wang, Ming Sun and Chao Wang
Amazon Alexa

Tue-O-2-2-5, Time: 15:50-16:10

This paper proposes a Region-based Convolutional Recurrent Neural Network (R-CRNN) for audio event detection (AED). The proposed network is inspired by Faster-RCNN [1], a well-known region-based convolutional network framework for visual object detection. Different from the original Faster-RCNN, a recurrent layer is added on top of the convolutional network to capture the long-term temporal context from the extracted high-level features. While most of the previous works on AED generate predictions at frame level first and then use post-processing to predict the onset/offset timestamps of events from a probability sequence; the proposed method generates predictions at event level directly and can be trained end-to-end with a multi-task loss, which optimizes the classification and localization of audio events simultaneously. The proposed method is tested on DCASE 2017 Challenge dataset [2]. To the best of our knowledge, R-CRNN is the best performing single-model method among all methods without using ensembles both on development and evaluation sets. Compared to the other region-based network for AED (R-FCN [3]) with an event-based error rate (ER) of 0.18 on the development set, our method reduced the ER to half.

Detecting Media Sound Presence in Acoustic Scenes

Konstantinos Papayannis1-2, Justice Amoh1,2, Viktor Rozgic1, Shiva Sundaram1 and Chao Wang1
1Alexa Machine Learning, Amazon.com, Cambridge, MA, USA
2Department of Electrical and Electronic Engineering, Imperial College London, UK

Thu-O-2-2-6, Time: 16:10-16:30

Using speech to interact with electronic devices and access services is becoming increasingly common. Using such applications in our households poses new challenges for speech and audio processing algorithms as these applications should perform robustly in a number of scenarios. Media devices are very commonly present in such scenarios and can interfere with the user-device communication by contributing to the noise or simply by being mistaken as user issued voice commands. Detecting the presence of media sounds in the environment can help avoid such issues. In this work we propose a method for this task based on a parallel CNN-GRU-FC classifier architecture which relies on multi-channel information to discriminate between media and live sources. Experiments performed using 378 hours of in-house audio recordings collected by volunteers show an F1 score of 71% with a recall of 72% in detecting active media sources. The use of information from multiple channels gave a relative improvement of 16% to the F1 score when compared to using information from only a single channel.
Multimodal Speaker Segmentation and Diarization Using Lexical and Acoustic Cues via Sequence-to-sequence Neural Networks
Tae Jin Park and Panayiotis Georgiou
University of Southern California, Los Angeles, CA, USA
Tue-0-2-3-2, Time: 14:50-15:10

While there has been substantial amount of work in speaker diarization recently, there are few efforts in jointly employing lexical and acoustic information for speaker segmentation. Towards that, we investigate a speaker diarization system using a sequence-to-sequence neural network trained on both lexical and acoustic features. We also propose a loss function that allows for selecting not only the speaker change points but also the best speaker at any time by allowing for different speaker groupings. We incorporate Mel Frequency Cepstral Coefficients (MFCC) as an acoustic feature stream alongside lexical information that are obtained from conversations from the Fisher dataset. Thus, we show that acoustics provide complementary information to the lexical modality. The experimental results show that sequence-to-sequence system trained on both word sequences and MFCC can improve on speaker diarization result compared to the system that only relies on lexical modality or the baseline MFCC-based system. In addition, we test the performance of our proposed method with Automatic Speech Recognition (ASR) transcriptions. While the performance on ASR transcripts drops, the Diarization Error Rate (DER) of our proposed method still outperforms the traditional method based on Bayesian Information Criterion (BIC).

Combined Speaker Clustering and Role Recognition in Conversational Speech
Nikolaos Fliemotos, Pavlos Papadopoulos, James Gibson and Shrikanth Narayanan
Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
Tue-0-2-3-3, Time: 15:10-15:30

Speaker Role Recognition (SRK) is usually addressed either as an independent classification task, or as a subsequent step after a speaker clustering module. However, the first approach does not take speaker-specific variabilities into account, while the second one results in error propagation. In this work we propose the integration of an audio-based speaker clustering algorithm with a language-aided role recognizer into a meta-classifier which takes both modalities into account. That way, we can treat separately any speaker-specific and role-specific characteristics before combining the relevant information together. The method is evaluated on two corpora of different conditions with interactions between a clinician and a patient and it is shown that it yields superior results for the SRR task.

The ACLEW DiViMe: An Easy-to-use Diarization Tool
Adrien Le Franc1,2, Eric Riebling1, Julien Karadayi1,2, Yun Wang1, Camila Scaf1, Florian Metze1 and Alejandrina Cristia1
1LSCP, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
2Institut national de recherche en informatique et en automatique, Paris, France
Tue-0-2-3-4, Time: 15:30-15:50

We present "DiViMe", an open-source virtual machine aimed at packaging speech technology for real-life data and developed in the context of the “Analyzing Children’s Language Environments across the World” Project. This first release focuses on Speech Activity Detection, Speaker Diarization and their evaluation. The present paper introduces the set of included tools and the current workflow, which is focused on making minimal assumptions regarding users’ technical skills. Additionally, we show how the current DiViMe tools fare against three sets of challenging data. In a first experiment, we look at performance with samples extracted from daylong recordings gathered using the LENA(TM), system from English-learning children. We find that the performance of the tools currently in DiViMe is not far from that achieved by the lena proprietary software. In a second experiment, we generalize to other samples of child-centered daylong files, gathered with non-LENA(TM), hardware from non-English-learning children, showing that performance does not degrade in this condition. Finally, we report on performance in the DiHARD 2018 Challenge Test Data. Originally conceived in the “Speech Recognition Virtual Kitchen”, DiViMe is a promising platform for packaging speech technology tools for widespread re-use, with potential impact on both fundamental and applied speech and language research.

Notes
Productions in the Ruokeng Hui Chinese Dialect
Minghui Zhang1 and Fang Hu2
1Si-Mian Institute for Advanced Studies in Humanities, East China Normal University
2Institute of Linguistics, Chinese Academy of Social Sciences
Tue-O-2-4-1, Time: 14:30-14:50
This paper examines the interplay of glottalization and tones in tonal phonology of the Ruokeng Hui Chinese. Acoustic data from 10 native speakers were analyzed in terms of pitch (F0), duration, H1-H2, H1-A1/2/3, CPP, HNR, SHR, etc. Fine-grained phonetic details reveal the interactions between phonation and tones and shed light on the ongoing tonal change from a glottalized tone to a plain high falling tone in the Ruokeng dialect.

Speaker-specific Structure in German Voiceless Stop Voice Onset Times
Marc Antony Hullebusch1, Stephen Tobin1, and Adamantios Gafos2,3
1Deutscher Forschungsverband für Sprachwissenschaft, Germany
2Haskins Laboratories, New Haven, USA
Tue-O-2-4-2, Time: 14:50-15:10
Voice onset time (VOT), a primary cue for voicing in many languages including English and German, is known to vary greatly between speakers, but also displays robust within-speaker consistencies, at least in English. The current analysis extends these findings to German: VOT measures were investigated from voiceless alveolar and velar stops in CV syllables cueing a visual prompt to a cue-distraction task. Comparably to English, a considerate portion of German VOT variability can be attributed to the syllable’s vowel length and the stop’s place of articulation. Individual differences in VOT still remain irrespective of speech rate. However, significant correlations across places of articulation and between speaker-specific mean VOTs and standard deviations indicate that talkers employ a relatively unified VOT profile across places of articulation. This could allow listeners to more efficiently adapt to speaker-specific realisations.

Creak in the Respiratory Cycle
Kätlin Aare1,2, Partel Lippus1, Marcin Wlodarczak2 and Mattias Heldner3
1University of Tartu, Estonia
2Stockholm University, Sweden
Tue-O-2-4-3, Time: 15:10-15:30
Creakness is a well-known turn-taking cue and has been observed to systematically accompany phrase and turn ends in several languages. In Estonian, creaky voice is frequently used by all speakers without any obvious evidence for its systematic use as a turn-taking cue. Rather, it signals a lack of prominence and is favored by lengthening and later timing of phrases. In this paper, we analyze the occurrence of creak with respect to properties of the respiratory cycle. We show that creak is more likely to accompany longer exhalations. Furthermore, the results suggest there is little difference in lung volume values regardless of the presence of creak, indicating that creaky voice might be employed to preserve air over the course of longer utterances. We discuss the results in connection to processes of speech planning in spontaneous speech.

Acoustic Analysis of Whispy Voice Disguise in Mandarin Chinese
Cuiling Zhang1,2, Bin Li1, Si Chen1 and Yike Yang2
1Southwest University of Political Science & Law, Chongqing, China
2Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Chongqing, China
1City University of Hong Kong, Hong Kong S.A.R., China
2The Hong Kong Polytechnic University, Hong Kong S.A.R., China
Tue-O-2-4-4, Time: 15:30-15:50
This paper investigates the auditory and acoustical characteristics of whispy disguised voice and compares the patterns with those of normal (non-disguised) voices. It also evaluates effects of whispy disguise on forensic voice comparison. Recordings of eleven male college students' normal voices and whispy disguised voices were collected. All their normal and whispy speech was acoustically analyzed and compared. The parameters including average syllable duration, intensity, vowel formant frequency and long term average spectrum (LTAS) were measured and statistically analyzed. The effect of whispy voice disguise on speaker recognition by auditory perception and an automatic system were evaluated. Correlation and regression analyses were made on the parameters of whispy voice and normal voice. These simple regression models can be used for parameter compensation in forensic casework.

The Zurich Corpus of Vowel and Voice Quality, Version 1.0
Dieter Maurer1, Christian d’Heureuse1, Heidy Suter1, Volker Dello2, Daniel Friedrichs3 and Thayabaran Kathiresan4
1Institute for the Performing Arts and Film, Zurich University of the Arts, Switzerland
2Department of Computational Linguistics, University of Zurich, Switzerland
3Department of Speech, Hearing and Phonetic Sciences, University College London, United Kingdom
Tue-O-2-4-5, Time: 15:50-16:10
Existing databases of isolated vowel sounds or vowel sounds embedded in consonantal context generally document only limited variation of basic production parameters. Thus, concerning the possible variation range of vowel and voice quality-related sound characteristics, there is a lack of broad phenomenological and descriptive references that allow for a comprehensive understanding of vowel acoustics and for an evaluation of the extent to which corresponding existing approaches and models can be generalised. In order to contribute to the building up of such references, a novel database of vowel sounds that exceeds any existing collection by size and diversity of vocalic characteristics is presented here, comprised of c. 34,600 utterances of 70 speakers (64 non-professional speakers, children, women and men and 24 professional actors/actresses and singers of straight theatre, contemporary singing and European classical singing). The database focuses on sounds of the long Standard German vowels /i, y, e, a, o, u/ produced with varying basic production parameters such as phonation type, vocal effort, fundamental frequency, vowel context and speaking or singing style. In addition, a read text and, for professionals, songs are also included. The database is accessible for scientific use and further extensions are in progress.

Weighting of Coda Voicing Cues: Glottalisation and Vowel Duration
Joshua Penney1, Felicity Cox2, and Anita Szakay1,2
1Centre for Language Sciences, Department of Linguistics, Macquarie University, Australia
2ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Australia
Tue-O-2-4-6, Time: 16:10-16:30
Recent research suggests that a trading relationship may exist in speech production between vowel duration and glottalisation as cues to coda stop voicing in Australian English. Younger speakers have been shown to use glottalisation to signal voicelessness more than older speakers who instead make greater use of vowel duration. This suggests a sound change in progress for the voicing cues. In addition, the vowel duration cue to voicing is greater in inherently long vowel contexts compared to inherently short vowel contexts. We report on a perceptual study designed to examine whether the weighting of these two cues found in production is replicated in perception.

Older and younger listeners were presented with audio stimuli co-varying vowel duration and glottalisation in order to determine whether listeners maintain the given weighting of the two cues by adjusting their perception, production, or both. Preliminary results suggest that older listeners may be maintaining the weighting of the two cues found in production, whereas younger listeners may increase their reliance on vowel duration as the cues to coda stop voicing. These findings are consistent with existing perceptual and production research.
questions about the link between perception and production in sound change.

Tue-O-2-5: Cognition and Brain Studies

MR G.03-G.04, 14:30-16:30, Tuesday, 4 September, 2018

Chairs: Jessie Nixon and Mark Liberman

Revealing Spatiotemporal Brain Dynamics of Speech Production Based on EEG and Eye Movement

Bin Zhao, Jinfeng Huang, Gaoyan Zhang, Jianwu Dang, Minbo Chen, YingjianFu and Longbiao Wang

1Tianjin key Laboratory of Cognitive Computing and Application, Tianjin University, China
2Japan Advanced Institute of Science and Technology, Japan

Tue-O-2-5-1, Time: 14:30-14:50

To understand the neural circuits associated with speech production in oral reading, it is essential to describe the whole-range spatiotemporal brain dynamics in the processes including visual word recognition, orthography-phonology mapping, semantic accessing, speech planning, articulation, self-monitoring, etc. This has turned out to be extremely difficult because of demanding resolution in both spatial and temporal domains and advanced algorithms to eliminate severe contamination by articulatory movements. To tackle this hard target, we recruited 16 subjects in a sentence reading task and measured multimodal signals of electroencephalography (EEG), eye movement and speech simultaneously. The onset/offset of gazes and utterance were used for segmenting brain activation stages. Cortical modeling of causal interactions among anatomical regions was conducted on EEG signals through (i) independent component analysis to identify cortical regions of interest (ROIs); (ii) multivariate autoregressive modeling of representative cortical activity from each ROI; and (iii) quantification of the dynamic causal interactions among ROIs using the Short-time direct Directed Transfer function. The resulting brain dynamic model reveals a widely connected bilateral organization with left-lateralized semantic, orthographic and phonological sub-networks, right-lateralized prosody and motor sequencing sub-networks and bi-lateralized auditory and multisensory integration sub-networks that cooperate along interlaced and paralleled temporal stages for speech processing.

Neural Response Development During Distributional Learning

Natalie Boll-Avetisyan, Jessie S. Nixon, Tomas O. Lentz, Liqun Liu, Sandriek van Ommeren, Çağrı Çöltekin and Jacolien van Rij

1University of Potsdam, Germany
2University of Amsterdam, The Netherlands
3Western Sydney University, Australia
4Centre of Excellence for the Dynamics of Language, Australian Research Council, Australia
5Laboratoire Psychologie de la Perception, Université Paris Descartes, France
6University of Groningen, The Netherlands

Tue-O-2-5-2, Time: 14:50-15:10

We investigated online electrophysiological components of distributional learning, specifically of tones by listeners of a non-tonal language. German listeners were presented with a bimodal distribution of syllables with lexical tones from a synthesized continuum based on Cantonese level tones. Tones were presented in sets of four standards (within-category tokens) followed by a deviant (across-category token). Mismatch negativity (MMN) was measured. Earlier behavioral data showed that exposure to this bimodal distribution improved both categorical perception and perceptual acuity for level tones [1]. In the present study we present analyses of the electrophysiological response recorded during this exposure, i.e. the development of the MMN response during distributional learning. This development over time is analyzed using Generalized Additive Mixed Models and results showed that the MMN amplitude increased for both within- and across-category tokens, reflecting higher perceptual acuity accompanying category formation. This is evidence that learners zooming in on phonological categories undergo neural changes associated with more accurate phonetic perception.

Learning Two Tone Languages Enhances the Brainstem Encoding of Lexical Tones

Akshay Raj Maggu, Wenqing Zong, Vina Law and Patrick C. M. Wong

1The Chinese University of Hong Kong
2University of Toronto

Tue-O-2-5-3, Time: 15:10-15:30

Auditory brainstem encoding is influenced by experience-dependent factors such as language and music. Tone language speakers exhibit more robust brainstem encoding of lexical tones than non-tone language speakers. Studies suggest that the effects of experience with a tone language generalize to the brainstem encoding of lexical tones from other tone languages. However, the effects of learning two tone languages, with different tonal systems, on brainstem encoding of lexical pitch are unknown.

In the current study, we investigated whether or not the experience with two tone languages (Mandarin and Cantonese) enhances the brainstem encoding of lexical pitch, using frequency following response (FFR).

Mandarin has four lexical tones—high level, rising, dipping and falling while Cantonese has a richer tone system with three level tones (high, mid, low), two rising tones (high and low) and one falling tone. We compared speakers fluent in Cantonese vs. those fluent in both Cantonese and Mandarin on their brainstem encoding of Cantonese and Mandarin lexical tones. We found that the Cantonese–Mandarin speakers exhibited more robust brainstem encoding of the lexical tones as compared to Cantonese speakers. From the current findings, we conclude that learning two tone languages may enhance lexical pitch encoding at the brainstem.

Perceptual Sensitivity to Spectral Change in Australian English Close Front Vowels: An Electroencephalographic Investigation

Daniel Williams, Paolo Escudero and Adamantios Gafos

Linguistics Department, University of Potsdam, Germany
2MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
3ARC Centre of Excellence for the Dynamics of Language, Australia

Tue-O-2-5-4, Time: 15:30-15:50

Speech scientists have long noted that the qualities of naturally-produced vowels do not remain constant over their durations – regardless of being nominally "monophthongs" or "diphthongs". Recent acoustic corpora show that there are consistent patterns of first (F1) and second (F2) formant frequency change across different vowel categories. The three Australian English (AusE) close front vowels /i, ɪ, ɪə/ provide a striking example:

- /i/ whose trajectory terminates high in the F1 × F2 vowel space, are perceptually prominent, whereas centering vowels, e.g., /ɛ, ɛə/ whose trajectories end more centrally, are not. However, when TLs are modest, there is an asymmetry in perceptual sensitivity: closing TLs are more robust brainstem encoding of lexical tones than non-tone language speakers. Studies suggest that the effects of experience with a tone language generalize to the brainstem encoding of lexical tones from other tone languages. However, the effects of learning two tone languages, with different tonal systems, on brainstem encoding of lexical pitch are unknown.

In the current study, we investigated whether or not the experience with two tone languages (Mandarin and Cantonese) enhances the brainstem encoding of lexical pitch, using frequency following response (FFR).

Mandarin has four lexical tones—high level, rising, dipping and falling while Cantonese has a richer tone system with three level tones (high, mid, low), two rising tones (high and low) and one falling tone. We compared speakers fluent in Cantonese vs. those fluent in both Cantonese and Mandarin on their brainstem encoding of Cantonese and Mandarin lexical tones. We found that the Cantonese–Mandarin speakers exhibited more robust brainstem encoding of the lexical tones as compared to Cantonese speakers. From the current findings, we conclude that learning two tone languages may enhance lexical pitch encoding at the brainstem.

Notes

163
Effective Acoustic Cue Learning Is Not Just Statistical, It Is Discriminative
Jessie S. Nixon
Quantitative Linguistics, Eberhard Karls Universität Tübingen, Germany
Tue-SS-2-1-1, Time: 14:30-14:50
The recent advent of deep learning techniques in speech technology and in particular in automatic speech recognition has yielded substantial performance improvements. This suggests that deep neural networks (DNNs) are able to capture structure in speech data that older methods for acoustic modeling, such as Gaussian Mixture Models and shallow neural networks fail to uncover. In image recognition it is possible to link representations on the first couple of layers in DNNs to structural properties of images and to representations on early layers in the visual cortex. This raises the question whether it is possible to accomplish a similar feat with representations on DNN layers when processing speech input. In this paper we present three different experiments in which we attempt to untangle how DNNs encode speech signals and to relate these representations to phonetic knowledge, with the aim to advance conventional phonetic concepts and to choose the topology of a DNNs more efficiently. Two experiments investigate representations formed by auto-encoders. A third experiment investigates representations on convolutional layers that treat speech spectrograms as if they were images. The results lay the basis for future experiments with recursive networks.

Scalable Factorized Hierarchical Variational Autoencoder Training
Wei-Ning Hsu and James Glass
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Tue-SS-2-1-2, Time: 14:50-15:10
Deep generative models have achieved great success in unsupervised learning with the ability to capture complex nonlinear relationships between latent generating factors and observations. Among them, a factorized hierarchical variational autoencoder (FHVAE) is a variational inference-based model that formulates a hierarchical generative process for sequential data. Specifically, an FHVAE model can learn disentangled and interpretable representations, which have been proven useful for numerous speech applications, such as speaker verification, robust speech recognition and voice conversion. However, as we will elaborate in this paper, the training algorithm proposed in the original paper is not scalable to datasets of thousands of hours, which makes this model less applicable on a larger scale. After identifying limitations in terms of runtime, memory and hyperparameter optimization, we propose a hierarchical sampling training algorithm to address all three issues. Our proposed method is evaluated comprehensively on a wide variety of datasets, ranging from 3 to 1,000 hours and involving different types of generating factors, such as recording conditions and noise types. In addition, we also present a new visualization method for qualitatively evaluating the performance with respect to the interpretability and disentanglement. Models trained with our proposed algorithm demonstrate the desired characteristics on all the datasets.

State Gradients for RNN Memory Analysis
Lyan Verwimp, Hugo van Hamme, Vincent Renkens and Patrick Warmbaß
ESAT – PSI, KU Leuven, Belgium
Tue-SS-2-1-3, Time: 15:10-15:30
We present a framework for analyzing what the state in RNNs remembers from its input embeddings. Our approach is inspired by backpropagation, in the sense that we compute the gradients of the states with respect to the input embeddings. The gradient matrix is decomposed with Singular Value Decomposition to analyze which directions in the embedding space are best transferred to the hidden state space, characterized by the largest singular values. We apply our approach to LSTM language models and investigate to what extent and for how long certain classes of words are remembered on average for a certain corpus. Additionally, the extent to which a specific property or relationship is remembered by the RNN can be tracked by comparing a vector characterizing that property with the direction(s) in embedding space that are best preserved in hidden state space.

Exploring How Phone Classification Neural Networks Learn Phonetic Information by Visualising and Interpreting Bottleneck Features
Wei-Ning Hsu and James Glass
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Tue-SS-2-1-2, Time: 14:50-15:10
Deep generative models have achieved great success in unsupervised learning with the ability to capture complex nonlinear relationships between latent generating factors and observations. Among them, a factorized hierarchical variational autoencoder (FHVAE) is a variational inference-based model that formulates a hierarchical generative process for sequential data. Specifically, an FHVAE model can learn disentangled and interpretable representations, which have been proven useful for numerous speech applications, such as speaker verification, robust speech recognition and voice conversion. However, as we will elaborate in this paper, the training algorithm proposed in the original paper is not scalable to datasets of thousands of hours, which makes this model less applicable on a larger scale. After identifying limitations in terms of runtime, memory and hyperparameter optimization, we propose a hierarchical sampling training algorithm to address all three issues. Our proposed method is evaluated comprehensively on a wide variety of datasets, ranging from 3 to 1,000 hours and involving different types of generating factors, such as recording conditions and noise types. In addition, we also present a new visualization method for qualitatively evaluating the performance with respect to the interpretability and disentanglement. Models trained with our proposed algorithm demonstrate the desired characteristics on all the datasets.

Effective Acoustic Cue Learning Is Not Just Statistical, It Is Discriminative
Jessie S. Nixon
Quantitative Linguistics, Eberhard Karls Universität Tübingen, Germany
Tue-0-2-5-5, Time: 15:50-16:10
A growing statistical learning literature suggests that listeners extract statistical information from the linguistic environment. However, distributional frequency may be insufficient for important but relatively low-frequency cues. Acquisition of linguistic knowledge may rely not merely on co-occurrences but on predictive relationships between cues and their outcomes. The present study investigates effects of predictive temporal cue structure on acquisition of a non-native acoustic cue dimension.

During training, native English speakers saw coloured shape objects and heard spoken Min Chinese words with six different lexical tones. Tones were the only reliable cue to identifying the associated object. Words also contained a salient cue that did not discriminate between objects. Three tones occurred with high-frequency and three with low-frequency in training. The critical manipulation was the presentation order: either words, containing complex cue structure, preceded object outcomes (discriminative order) or objects preceded words (non-discriminative order).

Generalised linear mixed models showed accuracy was significantly higher in the discriminative order than the non-discriminative order. These results demonstrate that predictive cue structure can facilitate acquisition of a non-native cue dimension. Feedback from prediction error drives learners to ignore salient non-discriminative cues and effectively learn to use the target cue dimension.

Analyzing EEG Signals in Auditory Speech Comprehension Using Temporal Response Functions and Generalized Additive Models
Kimberley Mulder, Louis ten Bosch and Lou Boves
Center for Language Studies, Radboud University, Netherlands
Tue-O-2-5-6, Time: 16:10-16:30
Analyzing EEG signals recorded while participants are listening to continuous speech with the purpose of testing linguistic hypotheses is complicated by the fact that the signals simultaneously reflect exogenous acoustic excitation and endogenous linguistic processing. This makes it difficult to trace subtle differences that occur in mid-sentence position. We apply an analysis based on multivariate temporal response functions to uncover subtle mid-sentence effects. This approach is based on a per-stimulus estimate of the response of the neural system to speech input. Analyzing EEG signals predicted on the basis of the response functions might then bring to light condition specific differences in the filtered signals. We validate this approach by means of an analysis of EEG signals recorded with isolated word stimuli. Then, we apply the validated method to the analysis of the responses to the same words in the middle of meaningful sentences.

Information Encoding by Deep Neural Networks: What Can We Learn?
Louis ten Bosch1 2 and Lou Boves1
1Radboud University Nijmegen, NL
2Max Planck Institute for Psycholinguistics
Notes
In this paper, we explore 9-dimensional bottleneck features (BNFs) that have been shown in our earlier work to well represent speech in the context of speech recognition and 2-dimensional BNFs directly extracted from bottleneck neural networks. The 9-dimensional BNFs obtained from a phone classification neural network are visualised in 2-dimensional spaces using linear discriminant analysis (LDA) and t-distributed stochastic neighbour embedding (t-SNE). The 2-dimensional BNF space is analysed with regard to phonetic features. A back-propagation method is used to create “cardinal” features for each phone under a particular neural network. Both the visualisations of 9-dimensional and 2-dimensional BNFs show distinctions between most phone categories. Particularly, the 2-dimensional BNF space seems to be a union of phonetic category related subspaces that preserve local structures within each subspace where the organisations of phones appear to correspond to phone production mechanisms. By applying LDA to the features of higher dimensional non-bottleneck layers, we observe a triangular pattern which may indicate that silence, friction and voicing are the three main properties learned by the neural networks.

Memory Time Span in LSTMs for Multi-Speaker Source Separation
Jeroen Zegers and Hugo van Hamme
KU Leuven, Dept. ESAT, Belgium

With deep learning approaches becoming state-of-the-art in many speech (as well as non-speech) related machine learning tasks, efforts are being taken to delve into the new often considered black box. In this paper it is analysed how recurrent neural network (RNNs) cope with temporal dependencies by determining the relevant memory time span in a long short-term memory (LSTM) cell. This is done by breaking the state variable with a controlled lifetime and evaluating the task performance. This technique can be used for any task to estimate the time span the LSTM exploits in that specific scenario. The focus in this paper is on the task of separating speakers from overlapping speech. We discern two effects: A long term effect, probably due to speaker characterization and a short term effect, probably exploiting phone-size formant tracks.

Visualizing Phoneme Category Adaptation in Deep Neural Networks
Odette Scharenborg1,2, Sebastian Tiesmeyer1, Mark Hasegawa-Johnson1 and Najim Dehak4
1Centre for Language Studies, Radboud University, Nijmegen, the Netherlands
2Multimedia Computing Group, Delft University of Technology, Delft, the Netherlands
3ECE Department & Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA
4Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA

Both human listeners and machines need to adapt their sound categories whenever a new speaker is encountered. This perceptual learning is driven by lexical information. The aim of this paper is two-fold: investigate whether a deep neural network-based (DNN) ASR system can adapt to only a few examples of ambiguous speech as humans have been found to do; investigate a DNN’s ability to serve as a model of human perceptual learning. Crucially, we do so by looking at intermediate levels of phoneme category adaptation rather than at the output level. We visualize the activations in the hidden layers of the DNN during perceptual learning. The results show that, similar to humans, DNN systems learn speaker-adapted phone category boundaries from a few labeled examples. The DNN adapts its category boundaries not only by adapting the weights of the output layer, but also by adapting the implicit feature maps computed by the hidden layers, suggesting the possibility that human perceptual learning might involve a similar nonlinear distortion of a perceptual space that is intermediate between the acoustic input and the phonological categories. Comparisons between DNNs and humans can thus provide valuable insights into the way humans process speech and improve ASR technology.
In this work we present a mobile application for dissemination of agricultural commodity procurement and consumer prices. Disbursed information is crawled at daily basis from government authorized websites of agricultural marketing departments. The app incorporates mix media multiple access means in form of touch-type-see, touch-type-listen, speak-see and speak-listen modalities and also includes a robust Automatic Speech Recognition (ASR) engine in Bengali language to support real time voice queries. Colorful interactive app based user interface and ASR incorporated core client-server architecture altogether provides an efficient framework for serving registered users of different educational and economical background including people having little or no computer knowledge, semi-literate or illiterate rural people.

Visualizing Punctuation Restoration in Speech Transcripts with Prosgraph

Alp Öktem1, Mireia Farrús1 and Antonio Bonafonte1
1Universitat Pompeu Fabra, Spain
2Universitat Politècnica de Catalunya, Spain

Tue-S&T-2-1-4, Time: 14:30-16:30

We have developed a neural architecture that tests the effect of lexical, morphosyntactic and prosodic features in restoring punctuation in speech transcription. Having outperformed a baseline model in terms of precision and recall, we further extend our performance tests by attaching it in a speech recognition pipeline. The visual and interactive testing environment that we prepared helps us observe how our models generalizes in unseen data and also plan our next steps for improvement.

CACTAS - Collaborative Audio Categorization and Transcription for ASR Systems

Mithul Mathivanan, Kinnera Saranu, Abhishek Pandey and Jithendra Vepa
Samsung R&D Institute, India - Bangalore

Tue-S&T-2-1-5, Time: 14:30-16:30

We present a web based tool that allows collaborative analysis and/or transcription of audios with respect to Automatic Speech Recognition (ASR) systems. The tool presents a webpage consisting of audios and their corresponding references and hypotheses obtained offline. Several other information and features are provided that allow the audios to be categorized and references to be corrected efficiently in a collaborative way almost 10 times faster, without the need for prior knowledge on speech or ASR systems. The analysis can later be summarized and acted upon to improve or triage the ASR system.

Tue-P-2-1: Speech and Singing Production

Hall 4-6: Poster-1; 14:30-16:30; Tuesday, 4 September, 2018
Chair: T V Sreenivas

FACTS: A Hierarchical Task-based Control Model of Speech Incorporating Sensory Feedback

Benjamin Parrell1,2, Vikram Ramanarayanan1,2, Srikant Nagarajan1 and John Houde2
1Educational Testing Service R&D, San Francisco, CA
2University of California, San Francisco, CA

Tue-P-2-1-1, Time: 14:30-16:30

We present a computational model of speech motor control that integrates vocal tract state prediction with sensory feedback. This hierarchical model, called FACTS, incorporates both a high-level and low-level controller. The high-level controller orchestrates linguistically-relevant speech tasks, which are represented as desired contractions along the vocal tract (e.g., closure of the lips). The output of the high-level controller is passed to a low-level controller that can issue motor commands at the level of the speech articulators in order to accomplish the desired contractions. In order to generate these articulatory motor commands, this low-level articulatory controller relies on an estimate of the current state of the vocal tract. This estimate combines internal predictions about the consequences of issued motor commands with auditory and somatosensory feedback from the vocal tract using an Unscented Kalman Filter based state estimation method. FACTS is able to replicate important aspects of human speech behavior, in that it reproduces: (i) stable speech behavior in the presence of noisy motor and sensory systems, (ii) partial acoustic compensation to auditory feedback perturbations, (iii) complete compensations to mechanical perturbations only when they interfere with current production goals and (iv) the observed relationship between sensory acuity and response to sensory perturbations.

Sensorimotor Response to Tongue Displacement Imagery by Talkers with Parkinson’s Disease

William Katz1, Patrick Reidy1 and Divya Prabhakaran1
1University of Texas at Dallas
2Vanderbilt University, Tennessee

Tue-P-2-1-2, Time: 14:30-16:30

In a previous study, we asked healthy adult speakers to produce the word head under noise-masked (visual only) conditions and while watching videos of a 3D tongue avatar that gradually morphed from producing head to had. Results indicated that during the visual mismatch phases all participants entrained to the visually presented word, head, without being aware that their vowel quality had changed. Here, we explore whether similar effects occur for individuals with presumed sensor neural processing disorders, patients with Parkinson’s disease (PD). We also examine the effects of PD treatment on this entrainment behavior. Participants were 14 individuals with PD, with eight in ongoing speech/language therapy and six reporting no recent therapy. Participants heard pink noise over headphones and produced the word head under four viewing conditions: First, while viewing repetitions of head (baseline); next, during “morphed” videos shifting gradually from head to had (ramp); then videos of had (maximum hold); and finally videos of head (after effects). Analysis with a linear mixed effects model indicated a significant F1 difference between baseline and maximum hold phases for the productions of the treated PD group, but not for the untreated group. Implications for the causes and treatment of PD speech disorders are discussed.

Automatic Pronunciation Evaluation of Singing

Chitralekha Gupta1, Haizhou Li1 and Ye Wang1
1School of Computing and NUS Graduate School for Integrated Science and Engineering
2Department of Electrical and Computer Engineering
National University of Singapore

Tue-P-2-1-3, Time: 14:30-16:30

In this work, we develop a strategy to automatically evaluate pronunciation of singing. We apply singing-adapted automatic speech recognizer (ASR) in a two-stage approach for evaluating pronunciation of singing. First, we force-align the lyrics with the sung utterances to obtain the word boundaries. We improve the word boundaries by a novel lexical modification technique. Second, we investigate the performance of the phonetic posteriorgram (PPG) based template independent and dependent methods for scoring the aligned words. To validate the evaluation scheme, we obtain reliable human pronunciation evaluation scores using a crowd-sourcing platform. We show that the automatic evaluation scheme offers quality scores that are close to human judgments.

Classification of Nonverbal Human Produced Audio Events: A Pilot Study

Rachel E. Bouserhal1, Philippe Chabot1, Milton Sarria-Paja1, Patrick Cardinal1 and Jérémie Voix1

Notes
École de technologie supérieure, Departments of
1Mechanical Engineering and
2Software and Information Technology Engineering, 1100 Notre-
Dame St W, Montréal, Québec, Canada
3Universidad Santiago de Cali Calle 5 No 62-00 Pampalinda, Cali, Colombia
4Centre for Interdisciplinary Research in Music Media and
Technology, 527 Rue Sherbrooke O, Montréal, Québec, Canada

Tue-P-2-1-4, Time: 14:30-16:30
The accurate classification of nonverbal human produced audio events opens the door to numerous applications beyond health monitoring. Voluntary events, such as tongue clicking and teeth chattering, may lead to a novel way of silent interface command. Involuntary events, such as coughing and clearing the throat, may advance the current state-of-the-art in hearing health research. The challenge of such applications is the balance between the processing capabilities of a small intra-aural device and the accuracy of classification. In this pilot study, 10 nonverbal audio events are captured inside the ear canal blocked by an intra-aural device. The performance of three classifiers is investigated: Gaussian Mixture Model (GMMM), Support Vector Machine and Multi-Layer Perceptron. Each classifier is trained using three different feature vector structures constructed using the mel-frequency cepstral (MFCC) coefficients and their derivatives. Fusion of the MFCMs with the auditory-inspired amplitude modulation features (AAMF) is also investigated. Classification is compared between binaural and monaural training sets as well as for noisy and clean conditions. The highest accuracy is achieved at 75.45% using the GMM classifier with the binaural MFCC+AAMF clean training set. Accuracy of 75.47% is achieved by training and testing the classifier with the binaural clean and noisy dataset.

UltraFit: A Speaker-friendly Headset for Ultrasound Recordings in Speech Science
Lorenzo Spreafico1, Michael Pucher1 and Anna Matosova1
1Free University of Bozen-Bolzano, Italy
3Acoustics Research Institute, Vienna, Austria

Tue-P-2-1-5, Time: 14:30-16:30
UltraFit is a headset for Ultrasound Tongue Imaging (UTI) printed in Nylon; altogether, it weighs about 350 g. It was developed through an iterative process of rapid prototyping a proof of concept, asking for feedback from researchers and subjects of the experiments and instantly incorporating changes based on their feedback into the design. We evaluated the UltraFit headset by recording a speaker using an optical marker tracking system that provides sub-millimeter tracking accuracy. We show that the overall error range of the headset movement for this speaker lies within 3mm with most errors lying in a 1-2mm range. This makes the headset potentially suitable for speech science applications. Furthermore, we analyze the superior usability of the headset compared to other existing designs and describe the headsets development process.

Articulatory Consequences of Vocal Effort Elicitation Method
Elisabet Eir Cortes1, Marcin Wlodarczak1 and Juraj Šimko2
1Department of Linguistics, Stockholm University, Stockholm, Sweden
2Department of Digital Humanities, University of Helsinki, Helsinki, Finland

Tue-P-2-1-6, Time: 14:30-16:30
Articulatory features from two datasets, Slovak and Swedish, were compared to see whether different methods of eliciting loud speech (ambient noise vs. visually presented loudness target) result in different articulatory behavior. The features studied were temporal and kinematic characteristics of lip separation within the closing and opening gestures of bilabial consonants and of the tongue body movement from /i/ to /a/ through a bilabial consonant. The results indicate larger hyper-articulation in the speech elicited with visually presented target. While individual articulatory strategies are evident, the speaker groups agree on increasing the kinematic features consistently within each gesture in response to the increased vocal effort. Another concerted strategy is keeping the tongue response considerably smaller than that of the lips, presumably to preserve acoustic prerequisites necessary for the adequate vowel identity. While the method of visually presented loudness target elicits larger span of vocal effort, the two elicitation methods achieve comparable consistency per loudness conditions.

Age-related Effects on Sensorimotor Control of Speech Production
Anne Hermes, Jane Mertens and Doris Mücke
IIl – Phonetics, University of Cologne, Germany

Tue-P-2-1-7, Time: 14:30-16:30
The current study investigates the effect of aging on the speech motor control, more specifically the labial and lingual system. We provide an acoustic and articulatory analysis comparing younger (20-30 years old) and older speakers (70-80 years old) of German, all of them recorded with electromagnetic articulography. We analyzed target words in contrastive focus condition.

In the acoustic domain, target syllables were not prolonged in the productions of the older speakers. However, when looking at the articulatory domain, we found systematic modifications. Especially vocalic gestures, requiring movements of the lingual system, showed slower peak velocities for older subjects. Furthermore, we found age-related effects on the symmetry of articulatory gestures. Older subjects produce longer deceleration and shorter acceleration phases leading to a strong asymmetry of the movement components. Variability between and across speakers were considerably higher in the group of older speakers compared to younger ones.

Our results on age-related effects on speech motor control are comparable with those from general motor control, where e.g. prolonged deceleration phases are an indicator for a decrease in sensory feedback control.

An Ultrasound Study of Geminacy in Coronal Stops in Eastern Oromo
Maida Percival, Alexei Kochetov and Yoonjung Kang
University of Toronto

Tue-P-2-1-8, Time: 14:30-16:30
This study extends the use of ultrasound methodology to stops in Eastern Oromo (Cushitic, Ethiopia) to examine the link between gemination, laryngeal features and tongue shape. Ultrasound data were collected from 5 native speakers of Eastern Oromo. Tokens consisted of 12 repetitions per speaker of [tʰ, t, d, ɗ] and six of [t̠tʰ, t̠t, d̠d, ɗ̠ɗ] in the environment of a_a. Tongue images at the point of maximum constriction during the stop closure were traced following Kochetov et al. (2014) and their coordinates submitted to linear mixed effects models. Results indicated differences in tongue shape between singletons and geminates, especially for ejectives and implosives. Singleton ejectives displayed raised tongue bodies not found in geminate ejectives. Singleton implosives resembled voiceless stops, but geminate implosives were variably produced with tongue body raising.

I suggest that the results can be attributed to fortition in geminates. Tongue body raising in singleton ejectives may be an enhancement strategy to the ejective contrast that is not necessary in longer geminates. The singleton implosive resembling a voiceless aspirated stop is predicted by Lloret (1994) while the geminate tongue body raising may be retraction, cf. Payne (2006). The results support a link between tongue, larynx and gemination.

Processing Transition Regions of Glottal Stop Substituted /S/ for Intelligibility Enhancement of Cleft Palate Speech
Protima Nomo Sudro1, Sishir Kalita1 and S R Mahadeva Prasanna1,2
1Indian Institute of Technology Guwahati, Guwahati, India
2Indian Institute of Technology Dharwad, Dharwad, India

Notes
The speech intelligibility of cleft palate (CP) individuals is degraded primarily due to compensatory articulation errors and hyper nasality. The present work proposes a method to enhance the CP speech intelligibility, where fricatives are substituted by compensatory articulation errors. Apart from the distortion present in the sustained fricative region, the fricative-vowel and vowel-fricative regions are also deviated due to co-articulation effect. Since important perceptual cues are embedded in the transition regions, therefore, it is necessary to enhance the transition regions for more intelligibility. Motivated by the perceptual significance of the transition regions, 2D-DCT based joint spectro-temporal features are exploited for the modification. The 2D DCT coefficients of CP speech are modified by projecting them onto the singular vectors derived from the SVD analysis of normal speech. Further, for the evaluation of speech intelligibility, objective and subjective assessment is conducted. The results show significant improvement in the speech intelligibility of the modified speech.

Reconstructing Neutral Speech from Tracheoesophageal Speech
Abinay Reddy N, Achuth Rao MV, G. Nisha Meenakshi and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India

In this work, we propose a tracheoesophageal (TE) speech to neutral speech conversion system using data collected from a laryngectomee. In laryngectomies, in the absence of vocal folds, it is the vibration of the esophagus that gives rise to a low-frequency pitch during speech production. This pitch is manifested as impulse-like noise in the recorded speech. We propose a method to first ‘whisperize’ the TE speech prior to the linear predictive coding (LPC) based synthesis which uses pitch derived from the energy contour. In order to perform ‘whisperization’, we model the LPC residual signal as the sum of white noise and impulses introduced by the esophageal vibrations. We model these impulses and white noise using Bernoulli-Gaussian distribution and Gaussian distribution, respectively. The strength and location of the impulses are estimated using Gibbs sampling in order to remove the impulse-like noise from speech to obtain whispered speech. Subjective evaluation via listening test reveals that the listeners prefer the synthesized speech from the proposed method ~ 93% (absolute) times more than the best baseline scheme.

Automatic Evaluation of Soft Articulatory Contact for Stuttering Treatment
Keiko Ochi1, Koichi Mori1 and Naomi Sakai2
1Tokyo University of Technology, Hachioji, Japan
2National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan

We describe a new method for the automatic discrimination and evaluation of phonation beginning with a consonant with soft articulatory contact, which is used in the treatment of stuttering and normal phonation. Soft articulatory contact is trained to relax articulators and remove hard contacts that occur during stuttering. We use features related to the changes in acoustic characteristics and the voice quality under the hypothesis that the slowing down of articulatory movement of the initial consonant and the relaxing of phonatory muscles co-occur with soft articulatory contact. The results of an experimental evaluation showed that high accuracy was obtained when acoustic features were related to the peaks of the first (absolute) times more than the best baseline scheme.

The Trajectory of Voice Onset Time with Vocal Aging
Chen Xuanda1,2, Xiong Ziyu2 and Hu Jian1
1Department of Linguistics, Graduate School of Chinese Academy of Social Sciences, China
2Institute of Linguistics, Chinese Academy of Social Sciences, China

The speech intelligibility of cleft palate (CP) individuals is degraded predominantly due to compensatory articulation errors and hyper nasality. The present work proposes a method to enhance the CP speech intelligibility, where fricatives are substituted by compensatory articulation errors. Apart from the distortion present in the sustained fricative region, the fricative-vowel and vowel-fricative regions are also deviated due to co-articulation effect. Since important perceptual cues are embedded in the transition regions, therefore, it is necessary to enhance the transition regions for more intelligibility. Motivated by the perceptual significance of the transition regions, 2D-DCT based joint spectro-temporal features are exploited for the modification. The 2D DCT coefficients of CP speech are modified by projecting them onto the singular vectors derived from the SVD analysis of normal speech. Further, for the evaluation of speech intelligibility, objective and subjective assessment is conducted. The results show significant improvement in the speech intelligibility of the modified speech.
robustness with respect to distant-microphone capture versus systems attempting to address all aspects of the task including conversational language modeling. We discuss the rationale for the challenge and provide a detailed description of the data collection procedure, the task and the baseline systems for array synchronization, speech enhancement and conventional and end-to-end ASR.

Voices Obscured in Complex Environmental Settings (VOICES) Corpus
Colleen Richey¹ and Maria A. Barrios¹, Zeb Armstrong², Chris Bartels², Horacio Franco², Martin Graciarena², Aaron Lawson², Mahesh Kumar Nandwana², Allen Stauffer², Julien van Houê², Paul Gamble¹, Jeffrey Hetherly¹, Cory Stephenson¹ and Karl Ni³
¹Lab41, In-Q-Tel Laboratories, Menlo Park, CA 94025
²SRI International, Menlo Park, CA 94025

Tue-P-2-2-2, Time: 14:30-16:30
This paper introduces the Voices Obscured in Complex Environmental Settings (VOICES) corpus, a freely available dataset under Creative Commons BY 4.0. This dataset will promote speech and signal processing research of speech recorded by far-field microphones in noisy room conditions. Publicly available speech corpora are mostly composed of isolated speech at close-range microphony. A typical approach to better represent realistic scenarios, is to convolve clean speech with noise and simulated room response for model training. Despite these efforts, model performance degrades when tested against uncurated speech in natural conditions. For this corpus, audio was recorded in furnished rooms with background noise played in conjunction with foreground speech selected from the LibriSpeech corpus. Multiple sessions were recorded in each room to accommodate for all foreground speech-background noise combinations. Audio was recorded using twelve microphones placed throughout the room, resulting in 120 hours of audio per microphone. This work is a multi-organizational effort led by SRI International and Lab41 with the intent to push forward state-of-the-art distant microphone approaches in signal processing and speech recognition.

Building State-of-the-art Distant Speech Recognition Using the CHiME-4 Challenge with a Setup of Speech Enhancement Baseline
Szu-Jui Chen, Aswin Shanmugam Subramanian, Hainan Xu and Shinji Watanabe
Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD 21218, USA

Tue-P-2-2-3, Time: 14:30-16:30
This paper describes a new baseline system for automatic speech recognition (ASR) in the CHiME-4 challenge to promote the development of noisy ASR in speech processing communities by providing 1) state-of-the-art system with a simplified single system comparable to the complicated top systems in the challenge, 2) publicly available and reproducible recipe through the main repository in the Kaldi speech recognition toolkit. The proposed system adopts generalized eigenvalue beamforming with bidirectional long short-term memory (LSTM) mask estimation. We also propose to use a time delay neural network (TDNN) based on the lattice-free version of the maximum mutual information (LF-MMI) trained with augmented all six microphones plus the enhanced data after beamforming. Finally, we use a LSTM language model for lattice and n-best re-scoring. The final system achieved 2.74% WER for the real test set in the 6-channel track, which corresponds to the 2nd place in the challenge. In addition, the proposed baseline recipe includes four different speech enhancement measures, short-time objective intelligibility measure (STOI), extended STOI (eSTOI), perceptual evaluation of speech quality (PESQ) and speech distortion ratio (SDR) for the simulation test set. Thus, the recipe also provides an experimental platform for speech enhancement studies with these performance measures.

Unsupervised Adaptation with Interpretable Disentangled Representations for Distant Conversational Speech Recognition
Wei-Ning Hsu, Hao Tang and James Glass
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Tue-P-2-2-4, Time: 14:30-16:30
The current trend in automatic speech recognition is to leverage large amounts of labeled data to train supervised neural network models. Unfortunately, obtaining data for a wide range of domains to train robust models can be costly. However, it is relatively inexpensive to collect large amounts of unlabeled data from domains that we want the models to generalize to. In this paper, we propose a novel unsupervised adaptation method that learns to synthesize labeled data for the target domain from unlabeled in-domain and labeled out-of-domain data. We first learn without supervision an interpretable latent representation of speech that encodes linguistic and nuisance factors (e.g., speaker and channel) using different latent variables. To transform a labeled out-of-domain utterance without altering its transcript, we transform the latent nuisance variables while maintaining the linguistic variables. To demonstrate our approach, we focus on a channel mismatch setting, where the domain of interest is distant conversational speech and labels are only available for close-talking speech. Our proposed method is evaluated on the AMI dataset, outperforming all baselines and bridging the gap between unadapted and in-domain models by over 77% without using any parallel data.

Investigating Generative Adversarial Networks Based Speech Dereverberation for Robust Speech Recognition
Ke Wang¹,², Junbo Zhang¹, Sining Sun¹, Yujun Wang³, Fei Xiang¹ and Lei Xie¹
¹Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
²Xiaomi, Beijing, China

Tue-P-2-2-5, Time: 14:30-16:30
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks a work to examine their ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%~19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.

Monaural Multi-Talker Speech Recognition with Attention Mechanism and Gated Convolutional Networks
Xuankai Chang¹, Yanmin Qian¹ and Dong Yu²
¹Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
²Tencent AI Lab, Tencent, Bellevue, WA, USA

Tue-P-2-2-6, Time: 14:30-16:30
To improve the speech recognition accuracy under the multi-talker
scenario, we propose a novel model architecture that incorporates the attention mechanism and gated convolutional network (GCN) into our previously developed permutation invariant training based multi-talker speech recognition system (PIT-ASR). The new architecture has three components: an encoding transformer, an attention module and a frame-level senone predictor. The encoding transformer first transforms a mixed speech sequence into a sequence of embedding vectors. Then the attention mechanism extracts individual context vectors from this embedding sequence for different speaker sources. Finally the predictor generates the senone posteriors for all speaker sources independently with the knowledge from the context vectors. To get better embedding representations we explore gated convolutional networks in the encoding transformer. The experimental results on the artificially mixed two-talker WSJ0 corpus show that our proposed model can reduce the word error rate (WER) by more than 15% relatively compared to our previous PIT-ASR system.

Weighting Time-Frequency Representation of Speech Using Auditory Saliency for Automatic Speech Recognition
Cong-Thanh Do and Yannis Stylianou
Toshiba Cambridge Research Laboratory, Cambridge, United Kingdom

Tue-P-2-2-7, Time: 14:30-16:30
This paper proposes a new method for weighting two-dimensional (2D) time-frequency (T-F) representation of speech using auditory saliency for noise-robust automatic speech recognition (ASR). Auditory saliency is estimated via 2D auditory saliency maps which model the mechanism for allocating human auditory attention. These maps are used to weight T-F representation of speech, namely the 2D magnitude spectrum or spectrogram, prior to features extraction for ASR. Experiments on Aurora-4 corpus demonstrate the effectiveness of the proposed method for noise-robust ASR. In multi-stream ASR, relative word error rate (WER) reduction of up to 5.3% and 4.0% are observed when comparing the multi-stream system using the proposed method with the baseline single-stream system not using T-F representation weighting and that using conventional spectral masking noise-robust technique, respectively. Combining the multi-stream system using the proposed method and the single-stream system using the conventional spectral masking technique reduces further the WER.

Acoustic Modeling from Frequency Domain Representations of Speech
Pegah Ghahremani1, Hossein Hadian1,2, Hang Lv1, Daniel Povey1,2, and Sanjeev Khudanpur1,2
1Center of Language and Speech Processing, Johns Hopkins University, Baltimore, MD
2Human Language Technology Center Of Excellence, Johns Hopkins University, Baltimore, MD
3Department of Computer Engineering, Sharif University of Technology, Iran
4School of Computer Science, Northwestern Polytechnical University, Xi’an, China

Tue-P-2-2-8, Time: 14:30-16:30
In recent years, different studies have proposed new methods for DNN-based feature extraction and joint acoustic model training and feature learning from raw waveform for large vocabulary speech recognition. However, conventional pre-processed methods such as MFCC and PLP are still preferred in the state-of-the-art speech recognition systems as they are perceived to be more robust. Besides, the raw waveform methods - most of which are based on the time-domain signal - do not significantly outperform the conventional methods.

In this paper, we propose a frequency-domain feature-learning layer which can allow acoustic model training directly from the waveform. The main distinctions from previous works are a new normalization block and a short-range constraint on the filter weights.

The proposed setup achieves consistent performance improvements compared to the baseline MFCC and log-Mel features as well as other proposed time and frequency domain setups on different LVCSR tasks. Finally, based on the learned features in our feature-learning layer, we propose a new set of analytic filters using polynomial approximation, which outperforms log-Mel filters significantly while being equally fast.

Non-Uniform Spectral Smoothing for Robust Children’s Speech Recognition
Ishwar Chandra Yadav, Avinash Kumar, Syed Shahnaawazuddin and Gayadhar Pradhan
Department of Electronics and Communication Engineering, National Institute of Technology Patna, India

Tue-P-2-2-9, Time: 14:30-16:30
Insufficient spectral smoothing during front-end speech parametrization results in pitch-induced distortions in the short-time magnitude spectra. This, in turn, degrades the performance of an automatic speech recognition (ASR) system for high-pitched speakers. Motivated by this fact, a non-uniform spectral smoothing algorithm is proposed in this paper in order to mitigate the acoustic mismatch resulting from pitch differences. In the proposed technique, the speech utterance is first segmented into vowel and non-vowel regions. The short-time magnitude spectrum obtained by discrete Fourier transform is then processed through a single-pole low-pass filter with different pole values for vowel and non-vowel regions. Sufficiently smoothed spectra is obtained by keeping higher values for the pole in the case of vowels while lower values are chosen for non-vowel regions. The Mel-frequency cepstral coefficients computed using the derived smoothed spectra are observed to be less affected by pitch variations. In order to validate this claim, an ASR system is developed on speech from adult speakers and evaluated on a test set which consists of children’s speech to simulate large pitch differences. The experimental evaluations as well as signal domain analyses presented in this paper support the claim.

Bidirectional Long-Short Term Memory Network-based Estimation of Reliable Spectral Component Locations
Aaron Nicolson and Kulidip K. Palwal
Signal Processing Laboratory, Griffith University, Brisbane, Australia

Tue-P-2-2-10, Time: 14:30-16:30
An accurate Ideal Binary Mask (IBM) estimate is essential for Missing Feature Theory (MFT)-based speaker identification, as incorrectly labelled spectral components (where a component is either reliable or unreliable) will degrade the performance of an Automatic Speaker Identification (ASI) system adversely in the presence of noise. In this work a Bidirectional Recurrent Neural Network (BRNN) with Long-Short Term Memory (LSTM) cells is proposed for improved IBM estimation. The proposed system had an average IBM estimate accuracy improvement of 4.5% and an average MFT-based speaker identification accuracy improvement of 3.1% over all tested SNR dB levels, when compared to the previously proposed Multilayer Perceptron (MLP)-IBM estimator. When used for speech enhancement the effectiveness of the proposed BRNN-IBM estimator for MFT-based speaker identification and IBM-based speech enhancement.

Speech Emotion Recognition by Combining Amplitude and Phase Information Using Convolutional Neural Network
Lili Guo1, Longbiao Wang1, Jianwu Dang1,2, Linjuan Zhang1, Haotian Guan1 and Xiangang Li1
1Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, China
2Japan Advanced Institute of Science and Technology, Ishikawa,
Previous studies of speech emotion recognition utilize convolutional neural network (CNN) directly on amplitude spectrogram to extract features. CNN combines with bidirectional long short term memory (BLSTM) has become the state-of-the-art model. However, phase information has been ignored in this model. The importance of phase information in speech processing field is gathering attention. In this paper, we propose feature extraction of amplitude spectrogram and phase information using CNN for speech emotion recognition. The modified group delay cepstral coefficient (MGDCC) and relative phase are used as phase information. Firstly, we analyze the influence of phase information on speech emotion recognition. Then we design a CNN-based feature representation using amplitude and phase information. Finally, experiments were conducted on EmoDB to validate the effectiveness of phase information. Integrating amplitude spectrogram with phase information, the relative error recognition rates are reduced by over 33% in comparison with using only amplitude-based feature.

Bubble Cooperative Networks for Identifying Important Speech Cues
Viet Anh Trinh1, Brian McFee2,3 and Michael I Mandel1,4
1The Graduate Center, CUNY, New York, USA
2Center for Data Science, New York University, USA
3Music and Audio Research Laboratory, New York University, USA
4Brooklyn College, CUNY, New York, USA

Tue-P-2-12, Time: 14:30-16:30
Predicting the intelligibility of noisy recordings is difficult and most current algorithms treat all speech energy as equally important to intelligibility. Our previous work on human perception used a listening test paradigm and correlational analysis to show that some energy is more important to intelligibility than other energy. In this paper, we propose a system called the Bubble Cooperative Network (BCN), which aims to predict important areas of individual utterances directly from clean speech. Given such a prediction, noise is added to the utterance in unimportant regions and then presented to a recognizer. The BCN is trained with a loss that encourages it to identify important regions precisely and place the noise everywhere else. Empirical evaluation shows that the BCN can obscure 97.7% of the spectrogram with noise while maintaining recognition accuracy for a simple speech recognizer that compares a noisy test utterance with a clean reference utterance. The masks predicted by a single BCN on several utterances show patterns that are similar to analyses derived from human listening tests that analyze each utterance separately, while exhibiting better generalization and less context-dependence than previous approaches.

Tue-P-2-3: Applications in Education and Learning
Hall 4-6, Poster-3, 14:30-16:30, Tuesday, 4 September, 2018
Chair: Helmer Strik

Real-Time Scoring of an Oral Reading Assessment on Mobile Devices
Jian Cheng
Analytic Measures Inc., Palo Alto, California, U.S.A.

Tue-P-2-3-1, Time: 14:30-16:30
We discuss the real-time scoring logic for a self-administered oral reading assessment on mobile devices (Moby.Read) to measure the three components of children’s oral reading fluency skills: words correct per minute, expression and comprehension. Critical techniques that make the assessment real-time on-device are discussed in detail. We propose the idea of producing comprehension scores by measuring the semantic similarity between the prompt and the retelling response utilizing the recent advance of document embeddings in natural language processing. By combining features derived from word embedding with the normalized number of common types, we achieved a human-machine correlation coefficient of 0.90 at the participant level for comprehension scores, which was better than the human inter-rater correlation 0.88. We achieved a better human-machine correlation coefficient than that of the human inter-rater in expression scores too. Experimental results demonstrate that Moby.Read can provide highly accurate words correct per minute, expression and comprehension scores in real-time and validate the use of machine scoring methods to automatically measure oral reading fluency skills.

A Deep Learning Approach to Assessing Non-native Pronunciation of English Using Phone Distances
Konstantinos Kyriakopoulos, Kate Knill and Mark Gales
ALTA Institute / Engineering Department
Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK

Tue-P-2-3-2, Time: 14:30-16:30
The way a non-native speaker pronounces the phones of a language is an important predictor of their proficiency. In grading spontaneous speech, the pairwise distances between generative statistical models trained on each phone have been shown to be powerful features. This paper presents a deep learning alternative to model-based phone distances in the form of a tunable Siamese network feature extractor to extract distance metrics directly from the audio frame sequence. Features are extracted at the phone instance level and combined to phone-level representations using an attention mechanism. Pair-wise distances between phone features are then projected through a feed-forward layer to predict score. The extraction stage is initialised on either a binary phone instance-pair classification task, or to mimic the model-based features, then the whole system is fine-tuned end-to-end, optimising the learning of the distance metric to the score prediction task. This method is therefore more adaptable and more sensitive to phone instance level phenomena. Its performance is compared against a DNN trained on Gaussian phone model distance features.

Paired Phone-Posteriors Approach to ESL Pronunciation Quality Assessment
Yujia Xiao1,2, Frank Soong1 and Wenping Hu2
1South China University of Technology, Guangzhou, China
2Microsoft Research Asia, Beijing, China

Tue-P-2-3-3, Time: 14:30-16:30
This work proposes to incorporate paired phone-posteriors as input features into a neural network (NN) model for assessing ESL learner’s pronunciation quality. In this work, posteriors of forty phones, instead of several thousand sub-phonemic senones, are used to circumvent the sparsity issues in NN training. Phone posteriors are assembled with their corresponding senone posterior estimates via a speaker-independent, DNN-based acoustic model, trained with standard American English speech data (i.e., Wall Street Journal database). Phone posteriors of both reference (standard American English speaker) and test speaker are paired together as augmented input feature vectors to train an NN based, 2-class, i.e., native vs nonnative speaker, classifier. The Goodness of Pronunciation (GOP), a proven effective measure, is used as the baseline for comparison. The binary NN classifier trained with such features achieves a high classification accuracy of 89.6% on native and non-native speakers’ data. The classifier also shows a better equal error rate (EER) than the GOP-based baseline classifier in either phone or word level pronunciation, i.e., at phone level from 18.3% to 6.2% and at word level from 12.98% to 2.54%.

Investigating the Role of L1 in Automatic Pronunciation Evaluation of L2 Speech
Ming Tu1, Anna Grabek2, Julie Liss2 and Visar Berisha2
1Microsoft Research Asia, Beijing, China
2Microsoft Research, Redmond, Washington, USA

Notes
Automatic pronunciation evaluation plays an important role in pronunciation training and second language education. This field draws heavily on concepts from automatic speech recognition (ASR) to quantify how close the pronunciation of non-native speech is to native-like pronunciation. However, it is known that the formation of accent is related to pronunciation patterns of both the target language (L2) and the speaker’s first language (L1). In this paper, we propose to use two native speech acoustic models, one trained on L2 speech and the other trained on L1 speech. We develop two sets of measurements that can be extracted from two acoustic models given accented speech. A new utterance-level feature extraction scheme is used to convert these measurements into a fixed-dimension vector which is used as an input to a statistical model to predict the accentness of a speaker. On a data set consisting of speakers from 4 different L1 backgrounds, we show that the proposed system yields improved correlation with human evaluators compared to systems only using the L2 acoustic model.

Impact of ASR Performance on Free Speaking Language Assessment
Kate Knill1, Mark Gales1, Konstantinos Kyriakopoulos1, Andrey Malinin1, Anton Ragni1, Yu Wang1 and Andrew Caines2
1 ALTA Institute / Engineering Department, Cambridge University, UK
2 ALTA Institute / Computer Lab, Cambridge University, UK

In free speaking tests candidates respond in spontaneous speech to prompts. This form of test allows the spoken language proficiency of a non-native speaker of English to be assessed more fully than read aloud tests. As the candidate’s responses are unscripted, transcription by automatic speech recognition (ASR) is essential for automated assessment. ASR will never be 100% accurate so any assessment system must seek to minimise and mitigate ASR errors. This paper considers the impact of ASR errors on the performance of free speaking test auto-marking systems. Firstly rich linguistically related features, based on part-of-speech tags from statistical parse trees, are investigated for assessment. Then, the impact of ASR errors on how well the system can detect whether a learner’s answer is relevant to the question asked is evaluated. Finally, the impact that these errors may have on the ability of the system to provide detailed feedback to the learner is analysed. In particular, pronunciation and grammatical errors are considered as these are important in helping a learner to make progress. As feedback resulting from an ASR error would be highly confusing, an approach to mitigate this problem using confidence scores is also analysed.

Automatic Miscue Detection Using RNN Based Models with Data Augmentation
Yoon Seok Hong, Kyung Seo Ki and Gaheone Gweon
Graduate School of Convergence Science and Technology, Seoul National University, South Korea

This study proposes a method of using data augmentation to address the problem of data shortages in miscue detection tasks. Three main steps were taken. First, a phoneme classifier was developed to acquire force-aligned data, which would be used for miscue classification and data augmentation. In order to create the phoneme classifier, phonetic features of “Seoul Reading Speech” (SRS) corpus were extracted by using grapheme-to-phoneme (G2P) to train CNN-based models. Second, to obtain miscue labeled corpus, we performed data augmentation using the phoneme classifier output, which is artificially generated miscue corpus of SRS (modified-SRS). This miscue corpus was created by randomly deleting or modifying sound segments according to three miscue categories, extension (EXT), pause (PAU) and pre-correction (PRE). Third, the performance of the miscue classifier was tested after training three types of RNN based models (LSTM, BiLSTM, BiGRU) with the modified-SRS corpus. The results show that the BiGRU model performed best at 0.819 in F1-score on augmented data, while BiLSTM model performed best at 0.512 on real data.

A Study of Objective Measurement of Comprehensibility through Native Speakers’ Shadowing of Learners’ Utterances
Yusuke Inoue1, Suguru Kabashima1, Daisuke Saito1, Nobuaki Minematsu2, Kumi Kanamura2 and Yutaka Yamauchi2
1 The University of Tokyo
2 Nagoya University of Economics
3 Tokyo International University

While learners desire to acquire so comprehensible pronunciations as to make themselves understood smoothly, acquisition often becomes difficult because, outside of classrooms, it is not rare that learners can hardly find chances to talk in the target language. Even when they talk to native speakers, they may receive only lenient or superficial suggestions from native speakers. How can learners know native speakers’ honest perception on their utterances? In this paper, shadowing is introduced not to learners but to native listeners, who are asked to shadow learners’ utterances. Since shadowing is as simultaneous repetition as possible, it is expected that native listeners’ perceived comprehensibility can be measured objectively as smoothness of natives’ shadowings. Experiments show that 1) shadowers’ subjective assessment of learners’ speech and that of their shadowings are highly correlated and that 2) the former is more correlated with the GOP scores of natives’ shadowings than that of learners’ speech. These results indicate that it is valid to regard comprehensibility as shadowable pronunciation.

Factorized Deep Neural Network Adaptation for Automatic Scoring of L2 Speech in English Speaking Tests
Dean Luo1, Chunxiao Zhang1, Linzhong Xia2 and Lixin Wang2
1 School of Electronic Communication Technology, Shenzhen Institute of Information Technology, China,
2 Shenzhen Seaskyland Technologies, China

Speaker adaptation has been shown to be effective on speech recognition and evaluation of L2 speech. However, other factors, such as environments and foreign accents, can affect the speech signal in addition to speakers. Factorizing the speaker, environment and other acoustic factors is crucial in evaluating L2 speech to effectively reduce acoustic mismatch between train and test conditions. In this study, we investigate the effects of deep neural network factorized adaptation techniques on L2 speech assessment in real speaking tests. Through recognition and automatic scoring experiments on L2 speech, we demonstrate that factorized iMLLR and iVector based DNN adaptation can better utilize adaptation data to efficiently adapt to complex speaker and environment conditions. Combining the factored components of iVectors and iMLLR transforms can further improve robustness of DNN models in speech recognition and automatic scoring of L2 speech in dynamic environments.

On the Difficulties of Automatic Speech Recognition for Kindergarten-Aged Children
Gary Yeung and Abeer Alwan
Dept. of Electrical and Computer Engineering, University of California, Los Angeles, USA

Automatic speech recognition (ASR) systems for children have lagged behind in performance when compared to adult ASR. The exact problems and evaluation methods for child ASR have not yet been fully investigated. Recent work from the robotics community suggests that ASR for kindergarten speech is especially difficult, even though this age group may benefit most from voice-based educational and diagnostic tools. Our study focused on ASR performance for specific grade levels (K-10) using a word identification task. Grade-specific ASR systems were evaluated, with particular attention...
placed on the evaluation of kindergarten-aged children (5–6 years old). Experiments included investigation of grade-specific interactions with triphone models using feature space maximum likelihood linear regression (MLLR), vocal tract length normalization (VTLN) and subglottal resonance (SGR) normalization. Our results indicate that kindergarten ASR performs dramatically worse than even 1st grade ASR, likely due to large speech variability at that age. As such, ASR systems may require targeted evaluations on kindergarten speech rather than being evaluated under the guise of "child ASR." Additionally, results show that systems trained in matched conditions on kindergarten speech may be less suitable than mismatched-grade training with 1st grade speech. Finally, we analyzed the phonetic errors made by the kindergarten ASR.

Improved Acoustic Modelling for Automatic Literacy Assessment of Children

Mauro Nicolaë1, Michel Sanders1 and Thomas Hain1
1Speech and Hearing Research Group, The University of Sheffield, UK

Notes

Tue-P-2-3-1, Time: 14:30-16:30

Automatic literacy assessment of children is a complex task that normally requires carefully annotated data. This paper focuses on a system for the assessment of reading skills, aiming to detection of a range of fluency and pronunciation errors. Naturally, reading is a prompted task and thereby the acquisition of training data for acoustic modelling should be straightforward. However, given the prominence of errors in the training set and the importance of labelling them in the transcription, a lightly-supervised approach to acoustic modelling has better chances of success. A method based on weighted finite state transducers is proposed, to model specific prompt corrections, such as repetitions, substitutions and deletions, as observed in real recordings. Iterative cycles of lightly-supervised training are performed in which decoding improves the transcriptions and the derived models. Improvements are due to increasing accuracy in phone-to-sound alignment and in the training data selection. The effectiveness of the proposed methods for relabelling and acoustic modelling is assessed through experiments on the CHOREC corpus, in terms of sequence error rate and alignment accuracy. Improvements over the baseline of up to 60% and 23.3% respectively are observed.

Tue-SS-2-2: Special Session: Integrating Speech Science and Technology for Clinical Applications

Hall 4-6, Poster-4, 14:30-16:30, Tuesday, 4 September, 2018
Chairs: Christina Hagedorn, Shrikanth Narayanan and Uttam Sinha

Anomaly Detection Approach for Pronunciation Verification of Disordered Speech Using Speech Attribute Features

Mostafa Shahin1, Beena Ahmed1, Jim X. Ji1 and Kirrie Ballard1
1Dept. of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
2Faculty of Health Sciences, The University of Sydney, Sydney, Australia

Notes

Tue-SS-2-2-1, Time: 14:30-16:30

The automatic assessment of speech is a powerful tool in computer aided speech therapy for disorders such as Childhood Apraxia of Speech (CAS). However, the lack of sufficient annotated disordered speech data seriously impedes the accurate detection of pronunciation errors. To handle this deficiency, in this paper, we used the novel approach of tackling pronunciation verification as an anomaly detection problem. We achieved this by modeling only the correct pronunciation of each individual phoneme with a one-class Support Vector Machine (SVM) trained using a set of speech attributes features, namely the manner and place of articulation. These features were extracted from a bank of pre-trained Deep Neural Network (DNN) speech attributes classifiers. The one-class SVM model classifies each phoneme production as normal (correct) or an anomaly (incorrect). We evaluated the system using both native speech with artificial errors and disordered speech collected from children with apraxia of speech and compared it with the state-of-the-art Speech sound disorder (SSD) detection algorithm. The results show that our approach reduces the false-rejection rates by around 35% when applied to disordered speech.

Effectiveness of Voice Quality Features in Detecting Depression

Amber Afshan1, Jinxi Guo1, Soo Jin Park1, Vijay Ravi1, Jonathan Flint1 and Abeer Alwan1
1Dept. of Electrical Engineering, University of California Los Angeles, USA
2Dept. of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, USA

Notes

Tue-SS-2-2-2, Time: 14:30-16:30

Automatic assessment of depression from speech signals is affected by variabilities in acoustic content and speakers. In this study, we focused on addressing these variabilities. We used a database comprised of recordings of interviews from a large number of female speakers: 735 individuals suffering from depressive (dysthymia and major depression) and anxiety disorders (generalized anxiety disorder, panic disorder with or without agoraphobia) and 953 healthy individuals. Leveraging this unique and extensive database, we built an i-vector framework. In order to improve various aspects of speech signals, we used voice quality features in addition to conventional cepstral features. The features (F0, F1, F2, F3, H1−H2, H2−H4, H4−H2k, A1, A2, A3 and CPPI) were inspired by a psychoacoustic model of voice quality [1]. An i-vector-based system using Mel Frequency Cepstral Coefficients (MFCCs) and another using voice quality features was developed. Voice quality features performed as well as MFCCs. A score-level fusion was then used to combine these two systems, resulting in a 6% relative improvement in accuracy in comparison with the i-vector system based on MFCCs alone. The system was robust even when the duration of the utterances was shortened to 10 seconds.

Fusing Text-dependent Word-level i-Vector Models to Screen ‘at Risk’ Child Speech

Prasanna Kothalkar1, Johanna Rudolph1, Christine Dollaghan1, Jennifer McCloethlin1, Thomas Campbell1 and John H.L. Hansen1
1Center for Robust Speech Systems, University of Texas at Dallas
2Callier Center for Communication Disorders, University of Texas at Dallas

Notes

Tue-SS-2-2-3, Time: 14:30-16:30

Speech sound disorders (SSDs) are the most prevalent type of communication disorder among preschoolers. The earlier an SSD is identified, the earlier an intervention can be provided to potentially reduce the social/academic impact of the disorder. The challenge, lies in early identification of such disorders. In this study 29 carefully selected words were produced by 165 children from 3–6 years of age. The audio recordings, were collected by parents using a mobile application /platform. “Ground truth” child status as ‘typically developing’ vs ‘at risk’ was based on a percentage of consonants correct-revised growth curve model. State-of-the-art speech processing/speaker recognition models were employed along with our clinical group verification framework. Results showed that text-dependent i-Vector models were superior to both text dependent and text-independent Gaussian Mixture Models (GMMs) for correct classification of children. Fusing individual word, i-Vector models provides insight into word and consonant groupings that are more indicative of ‘at risk’ child speech.
Testing Paradigms for Assistive Hearing Devices in Diverse Acoustic Environments
Ram Charan Chandra Shekar, Hussain Ali and John H.L. Hansen
Coehlar Implant Laboratory – Center for Robust Speech Systems,
The University of Texas at Dallas, Richardson, TX, USA
Tue-SS-2-2-4, Time: 14:30-16:30

Many individuals worldwide are at risk of hearing loss due to unsafe acoustical exposure and chronic listening experience using personal audio devices. Assistive hearing devices(AHD), such as hearing-aids(HA's) and cochlear-implants(CI's) are a common choice for the restoration and rehabilitation of the auditory function. Audio sound processors in Cls and HA's operate within limits, prescribed by audiologists, not only for acceptable sound perception but also for safety reasons. Signal processing(SP) engineers follow best design practices to ensure reliable performance and incorporate necessary safety checks within the design of SP strategies to ensure safety limits are never exceeded irrespective of acoustic environments. This paper proposes a comprehensive testing and evaluation paradigm to investigate the behavior of audio devices that addresses the safety concerns in diverse acoustic conditions. This is achieved by characterizing the performance of devices with large amounts of acoustic inputs and monitoring the output behavior. The CC-MOBILE Research-Interface(RI) (used for CI/HA research) is used in this study as the testing paradigm. Factors such as pulse-width(PW), inter-phase gap(IPG) and a number of other parameters are estimated to evaluate the impact of AHDs on hearing comfort, subjective sound quality and characterize audio devices in terms of listening perception and biological safety.

Detection of Dementia from Responses to Atypical Questions Asked by Embodied Conversational Agents
Tsuyoki Ujio1, Hiroki Tanaka1, Hiyoshi Adachi2, Hiroaki Kazui3, Manabu Ikeda2, Takashi Kudo2 and Satoshi Nakamura1
1Graduate School of Information Science, Nara Institute of Science and Technology, Japan
2Health and Counseling Center, Osaka University, Japan
3Department of Neuropsychiatry, Kochi Medical School, Japan
Graduate School of Medicine, Osaka University, Japan
Tue-SS-2-2-5, Time: 14:30-16:30

Detection of dementia requires examinations, such as blood tests and functional magnetic resonance imaging (fMRI), that can be very stressful for the patient. Previous studies proposed screenings for easy detection of dementia that utilized acoustic and language information derived from conversations between patients and medical staff. Although these studies demonstrated effectiveness in automatically detecting dementia, the tasks used were created based on neuropsychological tests. The effect of habituation on this limited variety of tasks might have a negative impact on routine dementia screening. We propose a method to detect dementia using responses to more atypical questions asked by embodied conversational agents. Through consultations with neuropsychologists, we created a total of 13 questions. The embodied conversational agent obtained answers to these questions from 24 participants (12 dementia and 12 non-dementia). We recorded their responses and extracted speech and language features. We classified the two groups (dementia/non-dementia) by a machine learning algorithm (support vector machines and logistic regression) using the extracted features. The results showed a 0.95 detection performance in the area under the curve of the receiver operating characteristic (AUROC). This result demonstrates that our system using atypical questions can detect dementia.

Acoustic Features Associated with Sustained Vowel and Continuous Speech Productions by Chinese Children with Functional Articulation Disorders
Wang Zhang1, Xiangquan Guo1, Tianqi Wang2, Manwa Ng3, Feng Yang2, Lan Wang2 and Nan Yan3
1School of Computer and Communication, Lanzhou University Of Technology, Lanzhou, China
2CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
3Speech Science Laboratory, University of Hong Kong, Hong Kong, China
Tue-SS-2-2-6, Time: 14:30-16:30

Functional articulation disorder (FAD) is a speech disorder commonly found in preschoolers, negatively affecting their day-to-day communication and in the long run their psychological development. Current FAD research mainly focused on the perceptual aspects, but not other means such as acoustic and physiological analyses. The present study aimed to evaluate the different acoustic features associated with sustained vowels and continuous speech produced by children with FAD and their age-matched controls. Speech samples produced by 67 children with FAD and 30 typically developing children. Articulatory-acoustic vowel space features, including formant centralization ratio (FCR), F1 range ratio (F1RR), F2 range ratio (F2RR) and triangular vowel space area (TVSA), were calculated using the first two formant frequencies from vowels /a/, /i/, /u/. Voice onset time (VOT) values associated with the stop consonants were also obtained. Results indicated that children with FAD exhibited articulatory undershooting with reduced range of articulatory movements, as well as poorer control over the release of oral occlusion when producing aspirated or unaspirated stops, when compared with normal counterparts. The findings support the notion that these acoustic features can be used to differentiate misarticulated speech from healthy speech and could be used to objectively classify and evaluate FAD speech.

Estimation of Hypernasality Scores from Cleft Lip and Palate Speech
Vikram C M1, Ayush Tripathi2, Sishir Kalita3 and S R Mahadeva Prasanna1,3
1Indian Institute of Technology Guwahati, Guwahati, India
2Visvesvaraya National Institute of Technology, Nagpur, India
3Indian Institute of Technology Dharwad, Dharwad, India
Tue-SS-2-2-7, Time: 14:30-16:30

Hypernasality refers to the perception of excessive nasal resonances in vowels and voiced consonants. Existing speech processing based approaches concentrate only on the classification of speech into normal or hypernasal, which do not give the degree of hypernasality in terms of continuous values like nasometer. Motivated by the functionality of nasometer, in this work, a method is proposed for the evaluation of hypernasality. Speech signals representing two extremely opposite cases of nasality are used to develop the acoustic models, where oral sentences (rich in vowels, stops and fricatives) of normal speakers and nasal sentences (rich in nasals and nasalized vowels) of moderate-severe hypernasal speakers represent the groups with minimum and maximum attainable degrees of nasality, respectively. The acoustic features derived from glottal activity regions are used to model the maximum and minimum nasality classes using Gaussian mixture model and deep neural network approaches. The posterior probabilities obtained for nasal sentence class are referred to as hypernasality scores. The scores show a significant correlation (p<0.01) with respect to perceptual ratings of hypernasality, provided by expert speech-language pathologists. Further, hypernasality scores are used for the detection of hypernasality and the results are compared with the nasometer based approach.

Detecting Alzheimer’s Disease Using Gated Convolutional Neural Network from Audio Data
Tifani Warnita, Nakamasu Inoue and Koichi Shinoda
Tokyo Institute of Technology, Tokyo, Japan
Tue-SS-2-2-8, Time: 14:30-16:30

We propose an automatic detection method of Alzheimer’s diseases using a gated convolutional neural network (GCNN) from speech data. This GCNN
can be trained with a relatively small amount of data and can capture the temporal information in audio paralinguistic features. Since it does not utilize any linguistic features, it can be easily applied to any languages. We evaluated our method using Pitt Corpus. The proposed method achieved the accuracy of 73.6%, which is better than the conventional sequential minimal optimization (SMO) by 7.6 points.

Automatic Detection of Orofacial Impairment in Stroke

Andrea Bandini, Jordan Green, Brian Richburg and Yana Yunusova

1University Health Network: Toronto Rehabilitation Institute, Toronto, Canada
2MGH Institute of Health Professions, Boston, USA
3Brain Sciences, Sunnybrook Research Institute, Toronto, Canada
4Department of Speech-Language Pathology, University of Toronto, Canada

Tue-SS-2-2-9, Time: 14:30-16:30

Stroke is a devastating condition that affects the ability of people to communicate through speech, leading to social isolation and poor quality of life. The quantitative evaluation of speech and orofacial movements is essential for assessing the impairment and identifying treatment targets. However, to our knowledge, a tool for the automatic orofacial assessment, which considers multiple aspects of orofacial impairment (e.g., range of motion in addition to asymmetry), has not been developed for this clinical population. In this work, we tested a video-based approach for the automatic orofacial assessment in stroke survivors, combining low-cost depth sensor and face alignment algorithms for extracting facial features. Twelve patients post-stroke and 11 control subjects were evaluated during speech and non-speech tasks. By using a small feature-set representing range of motion and asymmetry of face movements, it was possible to discriminate patients post-stroke from control subjects with high accuracy (87%). Further insights on the choice of the task and face alignment algorithm are provided, demonstrating that a non-parametric approach such as SDM can provide better results. Through this work we demonstrated the feasibility of an objective tool to support clinicians in the assessment of speech and orofacial impairment post-stroke.

Detecting Depression with Audio/Text Sequence Modeling of Interviews

Tuka Al Hanai, Mohammad Ghassem and James Glass

1Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Tue-SS-2-2-10, Time: 14:30-16:30

Medical professionals diagnose depression by interpreting the responses of individuals to a variety of questions, probing lifestyle changes and ongoing thoughts. Like professionals, an effective automated agent must understand that responses to queries have varying prognostic value. In this study we demonstrated an automated depression-detection algorithm that models interviews between an individual and agent and learns from sequences of questions and answers without the need to perform explicit topic modeling of the content. We utilized data of 142 individuals undergoing depression screening and modeled the interactions with audio and text features in a Long-Short Term Memory (LSTM) neural network model to detect depression. Our results were comparable to methods that explicitly modeled the topics of the questions and answers which suggests that depression can be detected through sequential modeling of an interaction, with minimal information on the structure of the interview.

Notes

Tue-P-2-5: Speaker Characterization and Analysis

Hall 4-6, Poster-5, 14:30-16:30, Tuesday, 4 September, 2018
Chair: Chung-Hsien Wu

Discourse Marker Detection for Hesitation Events on Mandarin Conversation

Yu-Wun Wang, Hen-Hsen Huang, Kuan-Yu Chen and Hsin-Hsi Chen

1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
2Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
3MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

Tue-P-2-5-1, Time: 14:30-16:30

The occurrence of hesitation events in spontaneous conversations can be associated with the difficulties in memory recall. One indicator of hesitation in speech in Taiwanese Mandarin is the usage of discourse markers. This paper introduces an approach to the detection of discourse markers that denote hesitation events. We propose a sequential labeling model to detect discourse markers in conversations by taking information on both acoustic level and word level into account. Experimental results show the integration of word-level acoustic feature extraction network significantly enhances the detection performance. Our approach for further applications is also discussed.

Acoustic and Perceptual Characteristics of Mandarin Speech in Homosexual and Heterosexual Male Speakers

Puyang Geng, Wentao Gu and Hiroya Fujisaki

1School of Chinese Language and Culture, Nanjing Normal University, Nanjing, China
2The University of Tokyo, Tokyo, Japan

Tue-P-2-5-2, Time: 14:30-16:30

The present study investigated both acoustic and perceptual characteristics of Mandarin speech in homosexual and heterosexual male speakers. Acoustic analyses of monosyllabic words showed significant differences between the two groups in F0 features (including the mean, the max and the range), F1 and F2 of vowels, aspiration/frication duration of consonants and center of gravity as well as skewness for /s/. Especially, the patterns were found to be opposite between Mandarin and American English speakers, which might be due to social psychological differences between the two societies. The perceptual experiment showed that the perceived score of gayness differed significantly between the speeches of the two groups. Among those acoustic parameters showing significant differences, fricative duration may be the most salient cue for sexual orientation of Mandarin male speakers.

Automatic Question Detection from Acoustic and Phonetic Features Using Feature-wise Pre-training

Atsushi Ando, Reine Asakawa, Ryo Masumura, Hosana Kamiyama, Satoshi Kobashikawa and Yushi Aono

1NTT Media Intelligence Laboratories, NTT Corporation, Japan
2Toyohashi University of Technology, Japan

Tue-P-2-5-3, Time: 14:30-16:30

This paper presents a novel question detection method from natural speech using acoustic and phonetic features. The conventional methods based on Recurrent Neural Networks (RNNs) use only acoustic features.
However, lexical cues are essential to identify some questions such as declarative questions. To this end we propose a new RNN-based question detection model which utilizes both acoustic and lexical information. Phonetic features which are suitable to describe interrogative cues are used as lexical information. Furthermore, we also propose a new training framework named feature-wise pre-training (FP) to combine the acoustic and phonetic features effectively. FP attempts to acquire interrogative cue using individual features instead of the combination of the features, which makes the model training more stable. The estimation models of the interrogatives are then integrated and fine-tuning is applied to obtain the unified comprehensive model. Experiments show that the proposed method offers better performance than the conventional benchmarks.

Improving Response Time of Active Speaker Detection Using Visual Prosody Information Prior to Articulation

Fasih Haider1,2, Saturnino Luz2, Carl Vogel1 and Nick Campbell1

1IPHSI, University of Edinburgh, UK
2ADAPT Centre, Trinity College Dublin, Ireland

Tue-P-2-5-4, Time: 14:30-16:30

Natural multi-party interaction commonly involves turning one’s gaze towards the speaker who has the floor. Implementing virtual agents or robots who are able to engage in natural conversations with humans therefore requires enabling machines to exhibit this form of communicative behaviour. This task is called active speaker detection. In this paper, we propose a method for active speaker detection using visual prosody (lip and head movements) information before and after speech articulation to decrease the machine response time; and also demonstrate the discriminating power of visual prosody before and after speech articulation for active speaker detection. The results show that the visual prosody information one second before articulation is helpful in detecting the active speaker. Lip movements provide better results than head movements and fusion of both improves accuracy. We have also used visual prosody information of the first second of the speech utterance and found that it provides more accurate results than one second before articulation. We conclude that the fusion of lip movements from both regions (the first one second of speech and the one second before articulation) improves the accuracy of active speaker detection.

Audio-Visual Prediction of Head-Nod and Turn-Taking Events in Dyadic Interactions

Bekir Berker Türker, Engin Erzin, Yuvel Yemez and Metin Sezgin

Koc University, Turkey

Tue-P-2-5-5, Time: 14:30-16:30

Head-nods and turn-taking both significantly contribute conversational dynamics in dyadic interactions. Timely prediction and use of these events is quite valuable for dialog management systems in human-robot interaction. In this study, we present an audio-visual prediction framework for the head-nod and turn-taking events that can also be utilized in real-time systems. Prediction systems based on Support Vector Machines (SVM) and Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) are trained on human-human conversational data. Unimodal and multimodal classification performances of head-nod and turn-taking events are reported over the IEMOCAP dataset.

Analyzing Effect of Physical Expression on English Proficiency for Multimodal Computer-Assisted Language Learning

Haoran Wu, Yuya Chiba, Takashi Nose and Akinori Ito

Graduate School of Engineering, Tohoku University, Japan

Tue-P-2-5-6, Time: 14:30-16:30

English proficiency is important for communication in English. Computer-Assisted Language Learning (CALL) systems are introduced to provide a convenient and low-cost language learning environment. Most of the conventional speech-based CALL systems concentrate on developing verbal fluency of the learners. However, actual English communication involves not only verbal expressions but also facial expressions and gestures, which could affect the perceived proficiency. The objective of our research is to develop a CALL system that can evaluate fluency of physical expressions as well as the verbal fluency of English.

However, it is not clear how physical expressions affect the overall proficiency of English. Therefore, this study investigates the relationship between the proficiency of English and the fluency of the physical expression by analyzing the dialog data of the multimodal CALL system.

Analysis of the Effect of Speech-Laugh on Speaker Recognition System

Sri Harsha Dumpala, Ashish Panda and Sunil Kumar Kopparapu

TCS Research and Innovation Labs

Tue-P-2-5-7, Time: 14:30-16:30

A robust speaker recognition system should be able to recognize a speaker despite all the possible variations in speaker’s speech. A common variation of the neutral speech is speech-laugh, which occurs when a person is speaking and laughing, simultaneously. In this paper, we show that speech-laugh significantly degrades the performance of an i-vector based speaker recognition system. Further, we show that laughter and neutral speech contain complimentary speaker information, which can be combined to improve the performance of the speaker recognition system for speech-laugh scenarios. Using AMI meeting corpus database, we show that by including neutral speech and laughter in enrollment phase, the performance of the system in the speech-laugh scenarios can be relatively improved by 36% in EER.

Vocal Biomarkers for Cognitive Performance Estimation in a Working Memory Task

Jennifer Sloboda1, Adam Lammer1, James Williamson1, Christopher Small1, Daryush D. Mehta1,2, COL Ian Curry3, Kristin Heaton4, Jeffrey Palmer1 and Thomas Quatieri1

1MIT Lincoln Laboratory, Lexington, MA, USA
2Massachusetts General Hospital, Center for Laryngeal Surgery and Voice Rehabilitation
3US Army Aeromedical Research Laboratory
4US Army Research Institute of Environmental Medicine

Tue-P-2-5-8, Time: 14:30-16:30

The ability to non-invasively estimate cognitive fatigue and workload as contributing factors to cognitive performance has value for planning and decision making surrounding human participation in cognitively demanding situations and environments. Growing evidence supports the use of speech as an effective modality for assessing cognitive fatigue and workload, while also being operationally appropriate in a wide variety of environments. To assess ability to discriminate changes in cognitive fatigue and load from speech, features that measure speech onset time, speaking rate, voice quality and vocal tract coordination from the delta-mel-cepstrum are evaluated on two independent data sets that employ the same auditory working memory task. Feature effect sizes due to fatigue were generally larger than those due to load. Speech onset time, speaking rate and vocal tract coordination features show strong potential for speech-based fatigue estimation.

Lexical and Acoustic Deep Learning Model for Personality Recognition

Guozhen An1,2 and Rivka Levitan1,3

1Department of Computer Science, CUNY Graduate Center, USA
2Department of Mathematics and Computer Science, York College (CUNY), USA
3Department of Computer and Information Science, Brooklyn College (CUNY), USA

Tue-P-2-5-9, Time: 14:30-16:30

Deep learning has been very successful on labeling tasks such as image classification and neural network modeling, but there has not yet been much work on using deep learning for automatic personality recognition. In this study, we propose two deep learning structures for the task of personality recognition using acoustic-prosodic, psycholinguistic and lexical features and present empirical results of several experimental configurations, including...
However, and in spite of the recent progress in the area, we still lack basic understanding of the problems in hands. Although more and more tools are now available, in association with basically “unlimited” processing and data resources, we still fail in building principled ASR models and theories. Alternatively, we are still relying on “ignorance-based” models, often exposing limitations of our understanding, rather than enriching the field of ASR. Discussion of these limitations will underpin all of our overview.

Open Problems in Speech Recognition

Bhuvana Ramabhadran

Google, USA

Tue-Perspective-2, Time: 17:00-17:30

In this talk, I will focus on the evolution of ideas in speech recognition over the last couple of decades, with emphasis on the key breakthroughs over the last ten years, its impact across spoken language processing in several languages, recent trends and open challenges that remain to be addressed. One such breakthrough is the use of several neural network model variants, which has had an enormous impact on the performance of state-of-the-art large vocabulary speech recognition systems. They have also had impact on keyword search which is the task of localizing an orthographic query in a speech corpus, and is typically performed through analysis of automatic speech recognition (ASR). Using the recently concluded IARPA funded Babel program as an example of a well-benchmarked task that focussed on the rapid development of speech recognition capability for keyword search in a previously unstudied language, I will present the successes and challenges that persist with limited amounts of transcription. Interpreting and understanding the hidden representations of various models remains a challenge today. I will also discuss current research taking advantage of such interpretations to improve robustness to noisy environments, speaker/domain adaptation algorithms, and dialects/accents. I will conclude with relevant metrics to measure speech recognition performance today that include and ignore the bigger picture of end to end user experience.

Plenary Talk-2

Hall 3, 8:30-9:30, Wednesday, 5 September, 2018

Chair: Paavo Alku

Evolution of Neural Network Architectures for Speech Recognition

Hervé Bourlard

Idiap Research Institute and EPFL, Switzerland

Wed-Plenary-2, Time: 08:30-09:30

Over these last few years, the use of Artificial Neural Networks (ANNs), now often referred to as deep learning or Deep Neural Networks (DNNs), has significantly reshaped research and development in a variety of signal and information processing tasks. While further boosting the state-of-the-art in Automatic Speech Recognition (ASR), recent progresses in the field have also allowed for more flexible and faster developments in emerging markets and multilingual societies (e.g., under-resourced languages).

In this talk, we will provide a historical account of ANN architectures used for ASR since the mid-1980’s, and now used in most ASR and spoken language understanding applications. We will start by recalling/revisiting key links between ANNs and statistical inference, discriminant analysis, and linear/nonlinear algebra. Finally, we will briefly discuss more recent trends towards novel DNN-based ASR approaches, including complex hierarchical systems, sparse recovery modeling, and “end-to-end systems.”
Acoustic Modeling with Densely Connected Residual Network for Multichannel Speech Recognition

Jian Tang1, Yan Song2, Lirong Dai3 and Ian McLoughlin
1National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China, Hefei, Anhui, PR.China
2School of Computing, University of Kent, Medway, UK

Wed-0-1-1-4, Time: 11:00-11:20

Motivated by recent advances in computer vision research, this paper proposes a novel acoustic model called Densely Connected Residual Network (DenseRNet) for multichannel speech recognition. This combines the strength of both DenseNet and ResNet. It adopts the basic “building blocks” of ResNet with different convolutional layers, receptive field sizes and growth rates as basic components that are densely connected to form so called denseNet blocks. By concatenating the feature maps of all preceding layers as inputs, DenseNet can not only strengthen gradient back-propagation for the vanishing-gradient problem, but also exploit multi-resolution feature maps. Preliminary experimental results on CHiME 3 have shown that DenseRNet achieves a word error rate (WER) of 7.58% on beamforming-enhanced speech with six channel real test data by cross entropy criteria training while WER is 10.23% for the official baseline. Besides, additional experimental results are also presented to demonstrate that DenseRNet exhibits the robustness to beamforming-enhanced speech as well as near and far-field speech.

Gated Recurrent Unit Based Acoustic Modeling with Future Context

Jie Li1, Xiaorui Wang1, Yuanyuan Zhao2 and Yan Li1
1Kuai, Beijing, P.R. China
2Institute of Automation, Chinese Academy of Sciences, Beijing, P.R. China

Wed-0-1-1-5, Time: 11:20-11:40

The use of future contextual information is typically shown to be helpful for acoustic modeling. However, for the recurrent neural network (RNN), it’s not so easy to model the future temporal context effectively, meanwhile keep lower model latency. In this paper, we attempt to design a RNN acoustic model that being capable of utilizing the future context effectively and directly, with the model latency and computation cost as low as possible. The proposed model is based on the minimal gated recurrent unit (mGRU) with an input projection layer inserted in it. Two context modules, temporal encoding and temporal convolution, are specifically designed for this architecture to model the future context. Experimental results on the Switchboard task and an internal Mandarin ASR task show that, the proposed model performs much better than long short-term memory (LSTM) and mGRU models, whereas enables online decoding with a maximum latency of 170 ms. The model even outperforms every strong baseline, TDNN-LSTM, with smaller model latency and almost half less parameters.

Output-Gate Projected Gated Recurrent Unit for Speech Recognition

Gaofeng Cheng1,2, Daniel Povey1,5, Lu Huang1, Ji Xu1, Sanjeev Khudanpur4,6 and Yonghong Yan1,2,6
1Key Laboratory of Speech Acoustics and Content Understanding, IOA, CAS, China
2University of Chinese Academy of Sciences, China
3Tsinghua University, China
4Center of Language and Speech Processing, The Johns Hopkins University, Baltimore, MD, USA
5Human Language Technology Center Of Excellence, The Johns Hopkins University, Baltimore, MD, USA
6Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, CAS, China

Wed-0-1-1-6, Time: 11:40-12:00

In this paper, we describe the work on accelerating decoding speed while improving the decoding accuracy. Firstly, we propose an architecture which we call Projected Gated Recurrent Unit (PGRU) for automatic speech recognition (ASR) tasks and show that the PGRU could outperform the standard GRU consistently. Secondly, in order to improve the PGRU’s generalization, especially for large-scale ASR task, the output-gate PGRU (OPGRU) is proposed. Finally, time delay neural network (TDNN) normalization skills are found to be beneficial to the proposed projected-based GRU. The finally proposed unidirectional TDNN-OPGRU acoustic model achieves 3.3% / 4.5% relative reduction in word error rate (WER) compared with bidirectional projected LSTM (BLSTMP) on Eval2000 / RT03 test sets. Meanwhile, TDNN-OPGRU acoustic model speeds up the decoding speed by around 2.6 times compared with BLSTMP.

Performance Analysis of the 2017 NIST Language Recognition Evaluation

Seyed Omid Sadjadi1, Timothoe Kheyrykhah1, Craig Greenberg2, Elliot Singer1, Douglas Reynolds3, Lisa Mason2 and Jaime Hernandez-Cordero2
1NIST/ITL/AIMultiModal Information Group, MD, USA
2MIT Lincoln Laboratory, Lexington, MA, USA
3U.S. Department of Defense, MD, US

Wed-0-1-2-1, Time: 10:00-10:20

The 2017 NIST Language Recognition Evaluation (LRE) was held in the autumn of 2017. Similar to past LREs, the basic task in LRE17 was language detection, with an emphasis on discriminating closely related languages (14 in total) selected from 5 language clusters. LRE17 featured several new aspects including: audio data extracted from online videos; a development set for system training and development use; log-likelihood system output submissions; a normalized cross-entropy performance measure as an alternative metric; and, the release of a baseline system developed using the NIST Speaker and Language Recognition Evaluation (SLRE) toolkit for participant use. A total of 18 teams from 25 academic and industrial organizations participated in the evaluation and submitted 79 valid systems.

Notes
under fixed and open training conditions first introduced in LRE15. In this paper, we report an in-depth analysis of system performance broken down by multiple factors such as data source and gender, as well as a cross-year performance comparison of leading systems from LRE15 and LRE17 to measure progress over the 2-year period. In addition, we present a comparison of primary versus “single best” submissions to understand the effect of fusion on overall performance.

Using Deep Neural Networks for Identification of Slavic Languages from Acoustic Signal

Lukas Matejek, Petr Cervá, Jindrich Zdansky and Radek Safarik
Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic

Adding New Classes without Access to the Original Training Data with Applications to Language Identification

Hagai Taitelbaum, Ehud Ben-Reuven and Jacob Goldberger
Engineering Faculty, Bar-Ilan University, Israel

Feature Representation of Short Utterances Based on Knowledge Distillation for Spoken Language Identification

Peng Shen, Xugang Lu, Sheng Li and Hisashi Kawai
Institute of Information and Communications Technology, Japan

Sub-band Envelope Features Using Frequency Domain Linear Prediction for Short Duration Language Identification

Sarith Fernando1,2, Vidhyasaharan Sethu1 and Eliaathamby Ambikairajah1,2
1School of Electrical Engineering and Telecommunications, UNSW Sydney
2DATA61, CSIRO, Sydney, Australia

Effectiveness of Single-Channel BLSTM Enhancement for Language Identification

Peter Sibbern Frederiksen1, Jesús Villalba2, Shinji Watanaabe2, Zheng-Hua Tan2 and Najim Dehak2
1Department of Electronic Systems, Aalborg University, Denmark
2Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD

Notes
Articulation Rate as a Speaker Discriminant in British English
Erica Gold
Department of Linguistics and Modern Languages, University of Huddersfield, United Kingdom

Wed-O-1-3-1, Time: 10:00-10:20
Identifying speech parameters that have both a low level of intra-speaker variability and a high level of inter-speaker variability is key when discriminating between individuals in forensic speaker comparison cases. A substantial amount of research in the field of forensic phonetics has been devoted to identifying highly discriminant speaker parameters. To this end, the vast majority of the existing literature has focused solely on vowels and constants. However, the discriminant power of speaking tempo has yet to be examined, despite its broad use in practice and it having been recognized.

This paper examines, for the first time, the discriminant power of articulation rate (AR) in British English. Approximately 3000 local ARs were measured in this study for 100 Southern Standard British English male speakers. In order to assess the evidential value of AR, likelihood ratios were calculated. The results suggest that AR performs well for same speaker comparisons. However, for different speaker comparisons, the system is performing just worse than chance. Overall, it appears that AR may not be the best speaker discriminant, although it is important to still consider AR in forensic speaker comparisons as there may be some individuals for which AR is highly idiosyncratic.

Truncation and Compression in Southern German and Australian English
Jenny Yu1,2 and Katharina Zahner3
1The MARCS Institute, Western Sydney University, Australia
2ARC Centre of Excellence for the Dynamics of Language, Australia
3University of Konstanz, Germany

Wed-O-1-3-2, Time: 10:20-10:40
Nuclear pitch accents are realized differently when there is little sonorant material (as in monosyllabic compared to disyllabic words): Southern British English speakers compress rises and falls, while Northern German speakers truncate falls and compress rises [1] (Grabe 1998). This leads to different phonetic surface patterns for final falls. Within these languages, dialectal variation affects alignment and the frequency of occurrence of nuclear tunes. We test whether the differences in compression and truncation use are a stable cross-linguistic phenomenon (and occur in other varieties of English and German) or whether they are limited to the varieties tested in [1]. Here, we investigated productions of rises and falls in Australian English and Southern German in words with different proportions of sonorant material. Australian English speakers compressed rises and falls, while Southern German speakers only compressed rises but truncated falls, consistent with Grabe’s findings for Southern British English and Northern German. This indicates consistent use of strategies within a language, even though the varieties under investigation display other phonetic differences from previous varieties tested. We discuss implications of these findings for automatic labelling.

Prominence-based Evaluation of L2 Prosody
Heini Kalio, Antti Sumi, Päivi Võrkunen and Juraj Simko
University of Helsinki, Finland

Wed-O-1-3-3, Time: 10:40-11:00
Prosody in terms of word and sentence stress is one of the most difficult features for many second language (L2) speakers to learn and it can be hypothesized that assessing the learner’s prosodic abilities could provide a good measure for assessing the learners’ spoken language skills in general. Automatic assessment is, however, dependent on reliable automatic analyses of prosodic features for comparing the productions between native (L1) and L2 speech. Here we investigate, whether estimated prosodic prominence levels of syllables can be used to predict the prosodic competence of Finnish learners of Swedish. Syllable level prominence was estimated for 99 L2 and 25 native Swedish utterances using continuous wavelet transform analysis with combinations of F0, energy and duration features. The L2 utterances were assessed by four expert raters using the revised CEFR scale for prosodic features. Correlations of prominence estimates for L2 utterances with estimates for L1 utterances and linguistic stress patterns were used as a measure of prosodic proficiency of the L2 speakers. The results show that these estimates correlate significantly with the assessments of expert raters. Overall, the results provide strong support for the use of the wavelet-based prominence estimation techniques in automatic assessment of L2 proficiency.

Length Contrast and Covarying Features: Whistled Speech as a Case Study
Rachid Ridouane1, Giuseppina Turco2 and Julien Meyer3
1LPP, CNRS-Sorbonne Nouvelle, Paris
2LLF, CNRS-Université Paris-Diderot, Paris
3Univ. Grenoble Alpes, CNRS, GIPSA-lab, Grenoble 38000, France

Wed-O-1-3-4, Time: 11:00-11:20
The status of covarying features to sound contrasts is a long-standing issue in speech: are they deliberately controlled by the speakers, or are they contingent automatic effects required by the defining features? We address this question by drawing parallels between the way gemination is implemented in spoken language and the way it is rendered in whistled speech. Audio materials were collected with five Berber whistlers in Morocco. The spoken and whistled data were composed of pairs of words contrasting singletons to geminates in different word positions.

Compared to spoken forms, whistling, while adapting to the specific constraints imposed by the medium, transposes the basic strategies used in normal speech. As in normal speech, the primary and most salient acoustic attribute differentiating whistled singletons and geminates is closure duration. But duration is not used alone. Covarying secondary attributes are conveyed which may serve to enhance the primary correlate by contributing additional properties increasing the distance between the two lexical categories. These enhancing correlates may take on distinctive function in cases where the primary correlate is not implemented. This is, for instance, the case of higher frequency values in word-initial position where duration differences cannot be acoustically implemented using whistled speech.

Information Structure, Affect and Prenuclear Prominence in American English
Eleanor Chadroff and Jennifer Cole
Northwestern University, Department of Linguistics, Evanston, IL, USA

Wed-O-1-3-5, Time: 11:20-11:40
The influence of information structure (IS: givenness, accessibility, newness and focus) on pitch accent assignment and acoustic prominence measures of prenuclear words was investigated for American English speech elicited through read production of mini-stories. Results showed a consistent pattern of accenting the initial content word in the sentence, supporting an analysis of prenuclear accent as structural, or ‘rhythmic’. While no association was observed between IS and accent type (e.g., H−, L+, L−+H, L+−H), the acoustic-phonetic realization of prominence was modulated by information structure. In particular, words that carry contrastive focus generally showed more extreme f0 excursions relative to the average. In addition, there was a strong influence of speaking style or ‘affect’ on both pitch accent type and the acoustic-phonetic realization of prominence. Speakers were more likely to produce L+H* accents in a lively than a neutral speaking style. Differences in affect were also strongly reflected in f0 excursion, duration and amplitude within the target word. Overall, this study indicates both linguistic (information structure) and paralinguistic (affect) influences on the phonetic
Binaural Speech Intelligibility Estimation Using Deep Neural Networks
Kazuhiro Kondo1, Kazuya Taira1,2 and Yusuke Kobayashi2
1Yamagata University, Japan
2Yamamoto Electric Corp., Japan
3Muroran Institute of Technology, Japan

Wed-O-1-4-1, Time: 10:00-10:20

We attempted to estimate the speech intelligibility of binaural speech signal with additive noise. The assumption here was that both the target speech signal and the noise source are directional sources. In this case, when the speech and noise sources are located away from each other, the intelligibility generally improves since the human auditory system can potentially segregate these two sources. However since intelligibility tests are commonly conducted using monaurally recorded signals, the intelligibility is often underestimated compared to live human listeners since this segregation capability is neglected. We have previously proposed to use binaurally recorded signals to estimate the speech intelligibility and compared the estimation accuracy of several machine learning methods on this signal. We showed that random forests (RF) combined with the better ear model and Mel filter banks gives the highest accuracy compared to other methods, such as the support vector machines or logistic regression. In this paper, we attempt to introduce deep neural networks (DNN) to this task. Initial evaluation results show that the use of DNN can provide a modest improvement over RF.

Multi-resolution Gammachirp Envelope Distortion Index for Intelligibility Prediction of Noisy Speech
Katsuhiko Yamamoto1, Toshio Irino1, Narumi Dhashi1, Shoko Araki1,2, Keisuke Kinoshita2 and Tomohiro Nakatani3
1Graduate School of Systems Engineering, Wakayama University, Japan
2NTT Communication Science Laboratories, Japan

Wed-O-1-4-2, Time: 10:20-10:40

A multi-resolution version of the gammachirp envelope distortion index (mr-GEDI) is proposed for the intelligibility prediction of noisy speech processed using speech enhancement algorithms. The proposed model calculates the short-time signal-to-distortion ratio in the temporal envelope modulation extracted from the output of the gammachirp auditory filterbank. The predictions were compared with human subjective results for various signal-to-noise ratio conditions with pink and babble noise. The mr-GEDI predicts the intelligibility curves better than the hearing-aid speech perception index (HASPI).

Speech Intelligibility Enhancement Based on a Non-causal Wavenet-like Model
Muhammad Shifas PV, Vassilis Tsiaras and Yannis Stylianou
Speech Signal Processing Laboratory (SSPL), University Of Crete, Greece

Wed-O-1-4-3, Time: 10:40-11:00

Low speech intelligibility in noisy listening conditions makes more difficult our communication with others. Various strategies have been suggested to modify a speech signal before it is presented in a noisy listening environment with the goal to increase its intelligibility. A state-of-the-art approach, referred to as Spectral Shaping and Dynamic Range Compression (SSDRC), relies on modifying spectral and temporal structure of the clean speech and has been shown to considerably improve the intelligibility of speech in noisy listening conditions. In this paper, we present a non-causal Wavenet-like model for mapping clean speech samples to samples generated by SSDRC. A successful non-linear mapping function has the potential to be used a) in improving the intelligibility of noisy speech and b) in the Wavenet-based speech synthesizers as a model based intelligibility improvement layer. Objective and subjective results show that the Wavenet-based mapping function is able to reproduce the intelligibility gains of SSDRC, while by far it improves the quality of the modified signal compared to the quality obtained by SSDRC.

Quality-Net: An End-to-End Non-intrusive Speech Quality Assessment Model Based on BLSTM
Szu-wei Fu1,2, Yu Tsao1, Hsin-Te Hwang2 and Hsin-Min Wang2
1Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan
2Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Wed-O-1-4-4, Time: 11:00-11:20

Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a “golden” reference considerably restricts the practicality of such assessment tools in real-world scenarios since the clean reference usually cannot be accessed. On the other hand, human beings can readily evaluate the speech quality without any reference (e.g., mean opinion score (MOS) tests), implying the existence of an objective and non-intrusive (no clean reference needed) quality assessment mechanism. In this study, we propose a novel end-to-end, non-intrusive speech quality evaluation model, termed Quality-Net, based on bidirectional long short-term memory. The evaluation of utterance-level quality in Quality-Net is based on the frame-level assessment. Frame constraints and sensible initializations of forget gate biases are applied to learn meaningful frame-level quality assessment from the utterance-level quality label. Experimental results show that Quality-Net can yield high correlation to PESQ (0.9 for the noisy speech and 0.84 for the speech processed by speech enhancement). We believe that Quality-Net has potential to be used in a wide variety of applications of speech signal processing.
We introduce UltraSuite, a curated repository of ultrasound and acoustic data, collected from recordings of child speech therapy sessions. This release includes three data collections, one from typically developing children and two from children with speech sound disorders. In addition, it includes a set of annotations, some manual and some automatically produced and software tools to process, transform and visualise the data.

Detecting Signs of Dementia Using Word Vector Representations

Bahman Mirheidari, Daniel Blackburn, Traci Walker, Annalena Venneri, Markus Reuber and Heidi Christensen

1 Department of Computer Science, University of Sheffield
2 Sheffield Institute for Translational Neuroscience (STiTraN), University of Sheffield
3 Department of Human Communication Sciences, University of Sheffield
4 Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital
5 Centre for Assistive Technology and Connected Healthcare (CATCH), University of Sheffield, Sheffield, UK

Classification of Huntington Disease Using Acoustic and Lexical Features

Matthew Perez, Wenju Jin, Duc Le, Noelle Carlotto, Praveen Dayalu, Angela Roberts and Emily Mower Provost

1 Computer Science and Engineering, University of Michigan, Ann Arbor, MI
2 Physical Medicine & Rehabilitation, University of Michigan, Ann Arbor, MI
3 Michigan Medicine, University of Michigan, Ann Arbor, MI
4 Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL

UltraSuite: A Repository of Ultrasound and Acoustic Data from Child Speech Therapy Sessions

Aciel Eshky, Manuel Sam Ribeiro, Joanne Cieland, Korin Richmond, Zoe Roxburgh, James M Scobie and Alan Wrench

1 Centre for Speech Technology Research, University of Edinburgh, UK
2 Psychological Sciences and Health, University of Strathclyde, UK
3 Clinical Audiology, Speech and Language Research Centre, Queen Margaret University, UK
4 Articulate Instruments Ltd, UK

Detecting Packet-Loss Concealment Using Formant Features and Decision Tree Learning

Gabriel Mittag and Sebastian Möller

1 Quality and Usability Lab, Technische Universität Berlin, Berlin, Germany
2 Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Berlin, Germany

Notes
convolutional neural networks (CNNs) including time-domain CNN and frequency-domain CNN were used to classify the intelligible speech produced by patients with ALS and those by healthy individuals. Experimental results indicated both time- and frequency-CNN outperformed standard neural network. The best sample-level sensitivity and specificity were obtained by time-CNN (71.6% and 80.9%, respectively). When multiple samples were used to vote to estimate a person-level performance, the best result was obtained by frequency-CNN (76.9% sensitivity and 92.3% specificity). Results demonstrated the possibility of early detection of ALS from intelligible speech signals.

Language Features for Automated Evaluation of Cognitive Behavior Psychotherapy Sessions

Nikolaos Flemotomos1, Victor Martinez2, James Gibson1, David Atkins3, Torrey Creed4 and Shrikanth Narayanan1,2
1Department of Electrical Engineering
2Department of Computer Science, University of Southern California, Los Angeles, CA, USA
3Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
4Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA

Cognitive Behavior Therapy (CBT) is a psychotherapy treatment that uses cognitive change strategies to address mental health problems. Quality assessment of a CBT session is traditionally addressed by human raters who evaluate recorded sessions along specific behavioral codes, a cost prohibitive and time consuming method. In this work we examine how linguistic features can be effectively used to develop an automatic competency rating tool for CBT. We explore both standard, widely-used lexical features and domain-specific ones, adapting methods which have been successfully used in similar psychotherapy session coding tasks. Experiments are conducted on manual transcripts of CBT sessions and on automatically derived sessions, thus introducing an end-to-end approach. Our results suggest that a real-world system could be developed to automatically evaluate CBT sessions to assist training, supervision, or quality assurance of services.

Automatic Early Detection of Amyotrophic Lateral Sclerosis from Intelligible Speech Using Convolutional Neural Networks

Kwanghoon An1, Myoungjong Kim1, Kristin Teplinsky1,2, Jordan Green2, Thomas Campbell1, Yana Yunusova2, Daragh Heitzman2 and Jun Wang1,2
1Speech Disorders & Technology Lab, Department of Biomechanics
2Caliper Center for Communication Disorders, University of Texas at Dallas, United States

The PRIORI Emotion Dataset: Linking Mood to Emotion Detected In-the-Wild

Soheil Khorram1,2, Mimansa Jaiswal1, John Gideon1, Melvin McNiss1 and Emily Mower Provost1
1Department of Computer Science and Engineering, University of Michigan
2Department of Psychiatry, University of Michigan

Bipolar Disorder is a chronic psychiatric illness characterized by pathological mood swings associated with severe disruptions in emotion regulation. Clinical monitoring of mood is key to the care of these dynamic and incapacitating mood states. Frequent and detailed monitoring improves clinical sensitivity to detect mood state changes, but typically requires costly and limited resources. Speech characteristics change during both depressed and manic states, suggesting automatic methods applied to the speech signal can be effectively used to monitor mood state changes. However, speech is modulated by many factors, which renders mood state prediction challenging. We hypothesize that emotion can be used as an intermediary step to improve mood state prediction. This paper presents critical steps in developing this pipeline, including (1) a new in the wild emotion dataset, the PRIORI Emotion Dataset, collected from everyday smartphone conversational speech recordings, (2) activation/valence emotion recognition baselines on this dataset (PCC of 0.71 and 0.41, respectively) and (3) significant correlation between predicted emotion and mood state for individuals with bipolar disorder. This provides evidence and a working baseline for the use of emotion as a meta-feature for mood state monitoring.

A Study of Lexical and Prosodic Cues to Segmentation in a Hindi–English Code-switched Discourse

Preeti Rao1, Mugdha Pandya2, Kamini Sabu1, Kanhaiya Kumar1 and Nandini Bondale1
1Department of Electrical Engineering, Indian Institute of Technology Bombay, India
2Vellore Institute of Technology, India

Multilingual Communities

MR 1.01-1.02, 10:00-12:00; Wednesday, 5 September, 2018
Chairs: Kalika Bali, Alan W Black, Mona Diab, Julia Hirschberg, Sunayana Sitaram and Thamar Solorio

A Study of Lexical and Prosodic Cues to Segmentation in a Hindi–English Code-switched Discourse

Preeti Rao1, Mugdha Pandya2, Kamini Sabu1, Kanhaiya Kumar1 and Nandini Bondale1
1Department of Electrical Engineering, Indian Institute of Technology Bombay, India
2Vellore Institute of Technology, India

School of Technology and Comp. Science, Tata Institute of Fundamental Research, India

Bilingualism, almost universal in India, routinely appears in communication in many forms. Code-switching with English is common among city dwellers with the matrix language typically being the speaker’s native tongue. While a number of English words have made their way into the lexicon of Indian languages, also prevalent is insertional code-switching, i.e. switching at sentence or clause level. We consider an interesting and widely encountered variety of code-switched speech in the form of public discourses by a popular motivational speaker who uses English, probably for effect, in her Hindi language speeches. We effectively observe three categories of segments in the discourse: Hindi, Hindi with embedded English words and English. In this work, we present the characteristics of our data and investigate the discrimination potential of lexical and prosodic cues on manually segmented fragments. Lexical cues are obtained via Google Speech API for Indian English recognition. Prosodic cues computed from pitch, intensity and syllable duration estimates are found to demonstrate significant differences between Hindi and English segments, indicating more careful articulation of the embedded language.
Building a Unified Code-Switching ASR System for South African Languages
Emre Yilmaz1,2, Henk van den Heuvel1 and David van Leeuwen1
1CLS/CLST, Radboud University, Nijmegen, Netherlands
2Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore

Wed-SS-1-2-2, Time: 10:20-10:40

We present our first efforts towards building a single multilingual automatic speech recognition (ASR) system that can process code-switching (CS) speech in five languages spoken within the same population. This contrasts with related prior work which focuses on the recognition of CS speech in bilingual scenarios. Recently, we have compiled a small five-language corpus of South African soap opera speech which contains examples of CS between 5 languages occurring in various contexts such as using English as the matrix language and switching to other indigenous languages. The ASR system presented in this work is trained on corpora containing English-isiZulu, English-isiXhosa, English-Setswana and English-Sesotho CS speech. The interpolation of multiple language models trained on these language pairs enables the ASR system to hypothesize mixed word sequences from these 5 languages. We evaluate various state-of-the-art acoustic models trained on this 5-lingual training data and report ASR accuracy and language recognition performance on the development and test sets of the South African multilingual soap opera corpus.

Study of Semi-supervised Approaches to Improving English-Mandarin Code-Switching Speech Recognition
Pengcheng Guo1,2, Haihua Xu1, Lei Xie1 and Eng Siong Chng1,2
1School of Computer Science, Northwestern Polytechnical University, Xi'an, China
2School of Computer Science and Engineering, Nanyang Technological University, Singapore

Wed-SS-1-2-3, Time: 10:40-11:00

In this paper, we present our overall efforts to improve the performance of a code-switching speech recognition system using semi-supervised training methods from lexicon learning to acoustic modeling, on the South East Asian Mandarin-English (SEAME) data. We first investigate semi-supervised lexicon learning approach to adapt the canonical lexicon, which is meant to alleviate the heavily accentuated pronunciation issue within the code-switching conversation of the local area. As a result, the learned lexicon yields improved performance. Furthermore, we attempt to use semi-supervised training to deal with those transcriptions that are highly mismatched between human transcribers and ASR system. Specifically, we conduct semi-supervised training assuming those poorly transcribed data as unsupervised data. We found the semi-supervised acoustic modeling can lead to improved results. Finally, to make up for the limitation of the conventional n-gram language models due to data sparsity issue, we perform lattice rescoring using neural network language models and significant WER reduction is obtained.

Acoustic and Textual Data Augmentation for Improved ASR of Code-Switching Speech
Emre Yilmaz1,2, Henk van den Heuvel1 and David van Leeuwen1
1CLS/CLST, Radboud University, Nijmegen, Netherlands
2Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore

Wed-SS-1-2-4, Time: 11:00-12:00

In this paper, we describe several techniques for improving the acoustic and language model of an automatic speech recognition (ASR) system operating on code-switching (CSI) speech. We focus on the recognition of Frisian-Dutch radio broadcasts where one of the mixed languages, namely Frisian, is an under-resourced language. In previous work, we have proposed several automatic transcription strategies for CS speech to increase the amount of available training speech data. In this work, we explore how the acoustic modeling (AM) can benefit from monolingual speech data belonging to the high-resourced mixed language. For this purpose, we train state-of-the-art ASR systems, which were ineffective due to lack of training data, on a significantly increased amount of CS speech and monolingual Dutch speech. Moreover, we improve the language model (LM) by creating code-switching text, which is in practice almost non-existent, by (1) generating text using recurrent neural networks trained on the transcriptions of the training CS speech data, (2) adding the transcriptions of the automatically transcribed CS speech data and (3) translating Dutch text extracted from the transcriptions of a large Dutch speech corpora. We report significantly improved CS ASR performance due to the increase in the acoustic and textual training data.

The Role of Cognate Words, POS Tags and Entrainment in Code-Switching
Victor Soto, Nishmar Cestero and Julia Hirschberg
Columbia University, New York, USA

Wed-SS-1-2-5, Time: 11:00-12:00

The linguistic or contextual stimuli that elicit code-switching are largely unknown, despite the fact that these are of key importance to understanding mixed language and building tools that can handle it. In this paper, we test the following hypotheses proposed in linguistics literature: first, that cognate stimuli are directly correlated to code-switching; second, that syntactic information facilitates or inhibits code switching; and third that speakers entrain to one another in code-switching in conversation between bilinguals. In order to test these hypotheses, we built a lexical database of cognate pairs for English-Spanish. Using statistical significance tests on a corpus of conversational code-switched English Spanish, we found that all there is strong statistical evidence that cognates and switches occur simultaneously in the same utterance and that cognates facilitate switching when they precede a code-switch, b) there is strong statistical evidence of the relationship between part-of-speech tags and code-switching and c) speakers tend to show converging entrainment behavior with respect to their rate of code-switching in conversation.

Homophone Identification and Merging for Code-switched Speech Recognition
Brig Mohan Lal Srivastava and Sunayana Sitaram
Microsoft Research India

Wed-SS-1-2-6, Time: 11:00-12:00

Code-switching or mixing is the use of multiple languages in a single utterance or conversation. Borrowing occurs when a word from a foreign language becomes part of the vocabulary of a language. In multilingual societies, switching/mixing and borrowing are not always clearly distinguishable. Due to this, transcription of code-switched and borrowed words is often not standardized and leads to the presence of homophones in the training data. In this work, we automatically identify and disambiguate homophones in code-switched data to improve recognition of code-switched speech. We use a WX-based common pronunciation scheme for both languages being mixed and unify the homophones during training, which results in a lower word error rate for systems built using this data. We also extend this framework to propose a metric for code-switched speech recognition that takes into account homophones in both languages while calculating WER, which can help provide a more accurate picture of errors the ASR system makes on code-switched speech.

Code-switching in Indic Speech Synthesizers
Anju Leela Thomas, Anusha Prakash, Arun Baby and Hema Murthy
Indian Institute of Technology Madras, India

Wed-SS-1-2-7, Time: 11:00-12:00

Most Indians are inherently bilingual or multilingual owing to the diverse linguistic culture in India. As a result, code-switching is quite common in conversational speech. The objective of this work is to train good quality text-to-speech (TTS) synthesizers that can seamlessly handle code-switching. To achieve this, bilingual TTSes that are capable of handling phonotactic variations across languages are trained using combinations of monolingual data and a unified framework. In addition to segmenting Indic speech data using signal processing cues in tandem with hidden Markov model-deep
neural network (HMM-DNN), we propose to segment Indian English data using the same approach after NIST syllabification. Then, bilingual HTS-STRAIGHT based systems are trained by randomizing the order of data so that the systematic interactions between the two languages are captured better. Experiments are conducted by considering three language pairs: Hindi-English, Tamil-English and Hindi-Tamil. The code-switched systems are evaluated on monolingual, code-mixed and code-switched texts. Degradation mean opinion score (DMOS) for monolingual sentences shows marginal degradation over that of an equivalent monolingual TTS system, while the DMOS for bilingual sentences is significantly better than that of the corresponding monolingual TTS systems.

A Novel Approach for Effective Recognition of the Code-Switched Data on Monolingual Language Model

Sreeram Ganji and Rohit Sinha

Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, India

Wed-SS-1-2-8, Time: 11:00-12:00

Code-switching refers to the phenomena of mixing of words or phrases from foreign languages while communicating in a native language by the multilingual speakers. Code-switching is a global phenomenon and is widely accepted in multilingual communities. However, for training the language model (LM) for such tasks, a very limited code-switched textual resources are available as yet. In this work, we present an approach to reduce the perplexity (PPL) of Hindi-English code-switched data when tested over the LM trained on purely native Hindi data. For this purpose, we propose a novel textual feature which allows the LM to predict the code-switching instances. The proposed feature is referred to as code-switching factor (CS-factor). Also, we developed a tagger that facilitates the automatic tagging of the code-switching instances. This tagger is trained on a development data and assigns an equivalent class of foreign (English) words to each of the potential native (Hindi) words. For this study, the textual resource has been created by crawling the blogs from a couple of websites educating about the usage of the Internet. In the context of recognition of the code-switching data, the proposed technique is found to yield a substantial improvement in terms of PPL.

Hierarchical Accent Determination and Application in a Large Scale ASR System

Ramya Viswanathan, Periyasamy Paramasivam and Jithendra Vepa

Samsung R&D Institute, India - Bangalore

Wed-S&T-1-1-1, Time: 10:00-12:00

In deploying Automatic Speech Recognition Systems (ASR) on a global scale, several challenges arise for supporting a widely used language such as English. The primary one among them is to deal with a wide variety of accents. We propose a Hierarchical Accent Determination system that deals with accent variations across large geographical regions at macro level and then the variations at the sub-regions within a selected large geographical region at micro level along with taking context cues. Eight accents (GB, US, Australian, Canadian, Spanish, Korean, Indian & Chinese) are identified at macro level and accent-specific models corresponding to the identified accents are used. The accuracy of the accent identification system is around 80% with ASR as well as using context cues such as phone language and keyboard language. The deployment of the accent identification system has improved the overall accuracy of Speech Recognition system by 10% for accented speech. It is planned to expand the approach to identify accents with significant variations found at sub-regional level in India such as Hindi, Tamil, Telugu, Malayalam and Bengali.

Toward Scalable Dialog Technology for Conversational Language Learning: Case Study of the TOEFL® M00C

Vikram Ramanarayanan1, David Pautler2, Patrick Lange1, Eugene Tsuprun1, Rutuja Ubaie1, Keelan Evanini1 and David Suendermann-Oeft1

1Educational Testing Service R&D, 90 New Montgomery Street, Suite #1500, San Francisco, CA, USA
2Educational Testing Service R&D, 660 Rosedale Rd., Princeton, NJ, USA

Wed-S&T-1-1-2, Time: 10:00-12:00

We present a scalable, dialog-based conversational practice tool for English language learners that is operationally deployed on the TOEFL® M00C. The tool consists of three applications of varying duration that recognize the learner’s speech input and responds appropriately. Learners are also provided with basic feedback regarding task performance once complete. We envision this as the first milestone towards the proliferation of many such scalable dialog applications that can help language learners practice, assess and improve their spoken conversation skills.

Machine Learning Powered Data Platform for High-Quality Speech and NLP Workflows

João Freitas, Jorge Ribeiro, Daan Baldwijns, Sara Oliveira and Daniela Braga

DefinedCrowd Corporation

Wed-S&T-1-1-3, Time: 10:00-12:00

Machine learning (ML) models - like deep neural networks - require substantial amounts of training data. Also, the training dataset should be properly annotated to obtain satisfactory results. This paper describes a platform designed to create high-quality datasets. By using data workflows adapted for speech technologies and natural language processing systems, the user can collect and enrich speech and text data. Depending on the end goal, the data is passed through multiple processing steps based on human input and ML services. To guarantee data quality, the platform combines several mechanisms like language tests, real-time audits and user behavior into several ML models that act as quality gateways.

Fully Automatic Speaker Separation System, with Automatic Enrolling of Recurrent Speakers

Raphael Cohen, Orgad Keller, Jason Levy, Russell Levy, Michal Breakstone and Amil Ashkenazi

Chorus.ai

Wed-S&T-1-1-4, Time: 10:00-12:00

We present a system to enable speaker separation and identification, designed to operate without requiring any effort from the end-user. In the system, single channel conversations are transformed into i-vectors, clustered into speakers and matched to a database of known speakers. Enrollment is automatic and a voice print is constructed for the recording user, taking advantage of the meta-data identifying that user’s conversations. Further information is used when available from other information sources such as video and the ASR transcribed content to identify speakers.

We describe the system architecture, novel unsupervised enrollment algorithm and describe the difficulties encountered in solving this problem.

Online Speech Translation System for Tamil

Madhavaraj Ayyavu, Shiva Kumar H R and Ramakrishnan A G

MILE Lab, Electrical Engineering, Indian Institute of Science, Bangalore 560012, India
In this paper, we present an application, which recognizes spoken Tamil utterances and speaks out the recognized text in Tamil through our Tamil text-to-speech (TTS) system. Further, we translate the recognized Tamil text to English using google translate and play it through our English TTS. Our Tamil speech recognition system, which can recognize about 75,000 words, has been trained on a 150-hour transcribed speech corpus. We have trained a deep neural network for the acoustic model and employed tri-gram language models to build our recognition system. Our Thirukkural TTS system performs unit-selection based, concatenative speech synthesis, using 2.5 hours of Tamil spoken utterances transcribed at the phone-level. Our English TTS uses 2.7 hours of phone-transcribed utterances. This is a technology demonstration of a complete web application, which, when perfected, could be used to assist Tamil users in learning English, by speaking in Tamil into the system. The playback of the recognized text from Tamil TTS serves to demonstrate the effectiveness of the Tamil ASR to the majority of the conference registrants (who cannot read the recognized Tamil text).

Wed-P-1-1: Voice Conversion and Speech Synthesis

Hall 4-6, Poster-1, 10:00-12:00, Wednesday, 5 September, 2018

Chair: Paavo Alku

Unsupervised Vocal Tract Length Warped Posterior Features for Non-Parallel Voice Conversion

Nirmesh Shah, Maulik C. Madhavi and Hemant Patil

‘Speech Research Lab, DA-IICT, Gandhinagar-382007, India

‘Electrical and Computer Engineering Department, National University of Singapore, Singapore

Wed-P-1-1-1, Time: 10:00-12:00

In the non-parallel Voice Conversion (VC) with the iterative combination of Nearest Neighbor search step and Conversion step Alignment (INCA) algorithm, the occurrence of one-to-many and many-to-one pairs in the training data will deteriorate the performance of the stand-alone VC system. The work on handling these pairs during the training is less explored. In this paper, we establish the relationship via intermediate speaker-independent posteriorgram representation, instead of directly mapping the source spectrum to the target spectrum. To that effect, a Deep Neural Network (DNN) is used to map the source spectrum to posteriorgram representation and another DNN is used to map this posteriorgram representation to the target speaker’s spectrum. In this paper, we propose to use unsupervised Vocal Tract Length Normalization (VTLN)-based warped Gaussian posteriorgram features as the speaker-independent representations. We performed experiments on a small subset of publicly available Voice Conversion Challenge (VCC) 2016 database. We obtain the lower Mel Cepstral Distortion (MCD) values with the proposed approach compared to the baseline as well as the supervised phonetic posteriorgram feature-based speaker-independent representations. Furthermore, subjective evaluation gave relative improvement of 13.3% with the proposed approach in terms of Speaker Similarity (SS).

Voice Conversion with Conditional SampleRNN

Cong Zhou, Michael Horgan, Vivek Kumar, Cristina Vasco and Dan Darcy

Dolby Laboratories, San Francisco, CA, USA

Wed-P-1-1-2, Time: 10:00-12:00

Here we present a novel approach to conditioning the SampleRNN [1] generative model for voice conversion (VC). Conventional methods for VC modify the perceived speaker identity by converting between source and target acoustic features. Our approach focuses on preserving voice content and depends on the generative network to learn voice style. We first train a multi-speaker SampleRNN model conditioned on linguistic features, pitch contour and speaker identity using a multi-speaker speech corpus. Voice-converted speech is generated using linguistic features and pitch contour extracted from the source speaker and the target speaker identity. We demonstrate that our system is capable of many-to-many voice conversion without requiring parallel data, enabling broad applications. Subjective evaluation demonstrates that our approach outperforms conventional VC methods.

A Voice Conversion Framework with Tandem Feature Sparse Representation and Speaker-Adapted WaveNet Vocoder

Berrak Sisman, Mingyang Zhang and Haizhou Li

National University of Singapore, Singapore

Wed-P-1-1-3, Time: 10:00-12:00

A voice conversion system typically consists of two modules, the feature conversion module that is followed by a vocoder. The exemplar-based sparse representation marks a success in feature conversion when we only have a very limited amount of training data. While parametric vocoder is generally designed to simulate the mechanics of the human speech generation process under certain simplification assumptions, it doesn’t work consistently well for all target applications. In this paper, we study two effective ways to make use of the limited amount of training data for voice conversion. Firstly, we study a novel technique for sparse representation that augments the spectral features with phonetic information, and pitch contour. Secondly, we study the use of WaveNet vocoder that can be trained on multi-speaker and target speaker data to improve the vocoding quality. We evaluate that the proposed strategy with Tandem Feature and WaveNet vocoder and show that it provides performance improvement consistently over the traditional sparse representations framework in objective and subjective evaluations.

WaveNet Vocoder with Limited Training Data for Voice Conversion

Li-Juan Liu, Zhen-Hua Ling, Yuan Jiang, Ming Zhou and Li-Rong Dai

1FLYTEK Research, iFLYTEK Co., Ltd.

2National Engineering Laboratory of Speech and Language Information Processing, University of Science and Technology of China, Hefei, PR.China

Wed-P-1-1-4, Time: 10:00-12:00

This paper investigates the approaches of building WaveNet vocoders with limited training data for voice conversion (VC). Current VC systems using statistical acoustic models always suffer from the quality degradation of converted speech. One of the major causes is the use of hand-crafted vocoders for waveform generation. Recently, with the emergence of WaveNet for waveform modeling, speaker-dependent WaveNet vocoders have been proposed and they can reconstruct speech with better quality than conventional vocoders, such as STRAIGHT. Because training a WaveNet vocoder in the speaker-dependent way requires a relatively large training dataset, it remains a challenge to build a high-quality WaveNet vocoder for VC tasks when the training data of target speakers is limited. In this paper, we propose to build WaveNet vocoders by combining the initialization using a multi-speaker corpus and the adaptation using a small amount of target data and evaluate this proposed method on the Voice Conversion Challenge (VCC) 2018 dataset which contains approximately 5 minute recordings for each target speaker. Experimental results show that the WaveNet vocoders built using our proposed method outperform conventional STRAIGHT vocoder. Furthermore, our system achieves an average naturalness MOS of 4.13 in VCC 2018, which is the highest among all submitted systems.

Collapsed Speech Segment Detection and Suppression for WaveNet Vocoder

Yi-Chiao Wu, Kazuhiro Kobayashi, Tomoki Hayashi, Patrick Lumban Tobing and Tomoki Toda

1Graduate School of Informatics, Nagoya University, Japan
In this paper, we propose a technique to alleviate the quality degradation caused by collapsed speech segments sometimes generated by the WaveNet vocoder. The effectiveness of the WaveNet vocoder for generating natural speech from acoustic features has been proved in recent works. However, it sometimes generates very noisy speech with collapsed speech segments when only a limited amount of training data is available or significant acoustic mismatches exist between the training and testing data. Such a limitation on the corpus and limited ability of the model can easily occur in some speech generation applications, such as voice conversion and speech enhancement. To address this problem, we propose a technique to automatically detect collapsed speech segments. Moreover, to refine the detected segments, we also propose a waveform generation technique for WaveNet using a linear predictive coding constraint. Verification and subjective tests are conducted to investigate the effectiveness of the proposed techniques. The verification results indicate that the detection technique can detect most collapsed segments. The subjective evaluations of voice conversion demonstrate that the generation technique significantly improves the speech quality while maintaining the same speaker similarity.

High-quality Voice Conversion Using Spectrogram-Based WaveNet Vocoder
Kuan Chen, Bo Chen, Jiahao Lai and Kai Yu
Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, SpeechLab, Department of Computer Science and Engineering, Brain Science and Technology Research Center Shanghai Jiao Tong University, Shanghai, China

WaveNet generator is a key component in voice conversion. Recently, WaveNet waveform generator conditioned on the Mel-cepstrum (Mcep) has shown better quality over standard vocoder. In this paper, an enhanced WaveNet model based on spectrogram is proposed to further improve voice conversion performance. Here, Mel-frequency spectrogram is converted from source speaker to target speaker using an LSTM-RNN based frame-to-frame mapping. To evaluate the performance, the proposed approach is compared to an Mcep based LSTM-RNN voice conversion system. Both STRAIGHT vocoder and Mcep-based WaveNet vocoder are elected to produce the converted speech for Mcep conversion system. The fundamental frequency (F0) of the converted speech in different systems is analyzed. The naturalness, similarity and intelligibility are evaluated in subjective measures. Results show that the spectrogram based WaveNet waveform generator can achieve better voice conversion quality compared to traditional WaveNet approaches. The Mel-spectrogram based voice conversion can achieve significant improvement in speaker similarity and inherent F0 conversion.

Spanish Statistical Parametric Speech Synthesis Using a Neural Vocoder
Antonio Bonafonte, Santiago Pascual and Georgina Dorca
Universitat Politècnica de Catalunya, Barcelona, Spain

During the 2000s decade, unit-selection based text-to-speech was the dominant commercial technology. Meanwhile, the TTS research community has made a big effort to push statistical-parametric speech synthesis to get similar quality and more flexibility on the generated voice. During last years, deep learning advances applied to speech synthesis have filled the gap, specially when neural vocoders substitute traditional signal-processing based vocoders.

In this paper we substitute the waveform generation vocoder of MUSA, our Spanish TTS, with SampleRNN, a neural vocoder which was recently proposed as a deep autoregressive raw waveform generation model. MUSA uses recurrent neural networks to predict vocoder parameters (MFCC and logF0) from linguistic features. Then, the Ahocoder vocoder is used to recover the speech waveform out of the predicted parameters. In the first system SampleRNN is extended to generate speech conditioned on the Ahocoder generated parameters, where two configurations have been considered to train the system. First, the parameters derived from the signal using Ahocoder are used. Secondly, the system is trained with the parameters predicted by MUSA, where SampleRNN and MUSA are jointly optimized. The subjective evaluation shows that the second system outperforms both the original Ahocoder and SampleRNN as an independent neural vocoder.

Experiments with Training Corpora for Statistical Text-to-speech Systems
Monika Podsiadlo1 and Victor Ungureanu2
1Google Inc. 2Google Switzerland

Common text-to-speech (TTS) systems rely on training data for modeling human speech. The quality of this data can range from professional voice actors recording hand-curated sentences in high-quality studio conditions, to found voice data representing arbitrary domains. For years, the unit selection technology dominant in the field required many hours of data that was expensive and time-consuming to collect. With the advancement of statistical methods of waveform generation, there have been experiments with more noisy and often much larger datasets, testing the inherent flexibility of such systems. In this paper we examine the relationship between training data and speech synthesis quality. We then hypothesize that statistical text-to-speech benefits from high acoustic quality corpora with high level of prosodic variation, but that beyond the first few hours of training data we do not observe quality gains. We then describe how we engineered a training dataset containing optimized distribution of features and how these features were defined. Lastly, we present results from a series of evaluation tests. These confirm our hypothesis and show how a carefully engineered training corpus of a smaller size yields the same speech quality as much larger datasets, particularly for voices that use WaveNet.

Yu Gu and Yongguo Kang
Baidu Speech Department, Baidu Technology Park, Beijing, 100193, China

This paper introduces an improved generative model for statistical parametric speech synthesis (SPSS) based on WaveNet under a multi-task learning framework. Different from the original WaveNet model, the proposed Multi-task WaveNet employs the frame-level acoustic feature prediction as the secondary task and the external fundamental frequency prediction model for the original WaveNet can be removed. Therefore the improved WaveNet can generate high-quality speech waveforms only conditioned on linguistic features. Multi-task WaveNet can produce more natural and expressive speech by addressing the pitch prediction error accumulation issue and possesses more succinct inference procedures than the original WaveNet. Experimental results prove that the SPSS method proposed in this paper can achieve better performance than the state-of-the-art approach utilizing the original WaveNet in both objective and subjective preference tests.

Speaker-independent Raw Waveform Model for Glottal Excitation
Lauri Juvela1, Vassilis Tsiaras2, Bajibabu Boilepalli3, Manu Airaksinen1, Junichi Yamagishi1 and Paavo Alku1
1Aalto University, Finland 2University of Crete, Greece 3National Institute of Informatics, Japan

Recent speech technology research has seen a growing interest in using
WaveNets as statistical vocoders, i.e., generating speech waveforms from acoustic features. These models have been shown to improve the generated speech quality over classical vocoders in many tasks, such as text-to-speech synthesis and voice conversion. Furthermore, conditioning WaveNets with acoustic features allows sharing the waveform generator model across multiple speakers without additional speaker codes. However, multi-speaker WaveNet models require large amounts of training data and computation to cover the entire acoustic space. This paper proposes leveraging the source-filter model of speech production to more effectively train a speaker-independent waveform generator with limited resources. We present a multi-speaker "GlottNet" vocoder, which utilizes a WaveNet to generate glottal excitation waveforms, which are then used to excite the corresponding vocal tract filter to produce speech. Listening tests show that the proposed model performs favourably to a direct WaveNet vocoder trained with the same model architecture and data.

A New Glottal Neural Vocoder for Speech Synthesis
Yang Cui, Xi Wang, Lei He and Frank K. Soong
Microsoft AI & Research, Beijing, China
Wed-P-1-1-11, Time: 10:00-12:00
Direct modeling of waveform generation for speech synthesis, e.g. WaveNet, has made significant progress on improving the naturalness and clarity of TTS. Such deep neural network-based models can generate highly realistic speech but at high computational and memory costs. We propose here a novel neural glottal vocoder which tends to bridge the gap between the traditional parametric vocoder and end-to-end speech sample generation.

In the analysis, speech signals are decomposed into corresponding glottal source signals and vocal tract filters by the glottal inverse filtering. Glottal pulses are parameterized into energy, DCT coefficients (shape) and phase. The phase trajectory of successive glottal pulses is rendered with a trainable weighting matrix to keep a smooth pitch synchronous phase trajectory. We design a hybrid, i.e., both feed-forward and recurrent, neural network to reconstruct the glottal waveform including the optimized weighting matrix. Speech is then synthesized by filtering the generated glottal waveform with the vocal tract filter. The new neural glottal vocoder can generate high-quality speech with efficient computations. Subjective tests show that it gets an MOS score of 4.12 and 75% preference over the conventional glottal vocoder with a perceived quality comparable to WaveNet and natural recording in analysis-by-synthesis.

Exemplar-based Speech Waveform Generation
Oliver Watts, Cassia Valentini-Botinhao, Felipe Espic and Simon King
The Centre for Speech Technology Research, Edinburgh University, UK
Wed-P-1-1-12, Time: 10:00-12:00
This paper presents a simple but effective method for generating speech waveforms by selecting small units of stored speech to match a low-dimensional target representation. The method is designed as a drop-in replacement for the vocoder in a deep neural network-based text-to-speech system. Most previous work on hybrid unit selection waveform generation relies on phonetic annotation for determining unit boundaries, or for specifying target cost, or for candidate preselection. In contrast, our waveform generator requires no phonetic information, annotation, or alignment: Unit boundaries are determined by epochs and spectral analysis provides representations which are compared directly with target features at runtime. As in unit selection, we minimise a combination of target cost and join cost, but find that greedy left-to-right nearest-neighbour search gives similar results to dynamic programming. The method is fast and can generate the waveform incrementally. We use publicly available data and provide a permissively-licensed open source toolkit for reproducing our results.

Frequency Domain Variants of Velvet Noise and Their Application to Speech Processing and Synthesis
Hideki Kawahara1, Ken-Ichi Sakakibara2, Masanori Morise1, Hideki Banno1, Tomoki Todai1 and Tosho Iri1
1Wakayama University, Japan
2Health Science University of Hokkaido, Japan
3University of Yamanashi, Japan
4Meijo University, Japan
5Nagoya University, Japan
Wed-P-1-1-13, Time: 10:00-12:00
We propose a new excitation source signal for VOCODERs and an all-pass impulse response for post-processing of synthetic sounds and pre-processing of natural sounds for data-augmentation. The proposed signals are variants of velvet noise, which is a sparse discrete signal consisting of a few non-zero (1 or -1) elements and sounds smoother than Gaussian white noise. One of the proposed variants, FVN (Frequency domain Velvet Noise) applies the procedure to generate a velvet noise on the cyclic frequency domain of DFT (Discrete Fourier Transform). Then, by smoothing the generated signal to design the phase of an all-pass filter followed by inverse Fourier transform yields the proposed FVN. Temporally variable frequency weighted mixing of FVN generated by frozen and shuffled random number provides a unified excitation signal which can span from random noise to a repetitive pulse train. The other variant, which is an all-pass impulse response, significantly reduces " buzzy" impression of VOCODER output by filtering. Finally, we will discuss applications of the proposed signal for watermarking and psychoacoustic research.

Joint Learning of Interactive Spoken Content Retrieval and Trainable User Simulator
Pei-Hung Chung1,2, Kuan Tung1, Ching-Lun Tai2 and Hung-yi Lee1
1Graduate Institute of Communication Engineering, National Taiwan University
2Department of Electrical Engineering, National Taiwan University
Wed-P-1-2-1, Time: 10:00-12:00
User-machine interaction is crucial for information retrieval, especially for spoken content retrieval, because spoken content is difficult to browse and speech recognition has a high degree of uncertainty. In interactive retrieval, the machine takes different actions to interact with the user to obtain better retrieval results; here it is critical to select the most efficient action. In previous work, deep Q-learning techniques were proposed to train an interactive retrieval system but rely on a hand-crafted user simulator; here it is important to select the most efficient action. In previous work, deep Q-learning techniques were proposed to train an interactive retrieval system but rely on a hand-crafted user simulator; here it is important to select the most efficient action. In this paper, we further improve the interactive spoken content retrieval framework by proposing a learnable user simulator which is jointly trained with interactive retrieval system, making the hand-crafted user simulator unnecessary. The experimental results show that the learned simulated users not only achieve larger rewards than the hand-crafted ones but act more like real users.

Attention-based End-to-End Models for Small-Footprint Keyword Spotting
Changsheng Shang1,2, Junbo Zhang1, Yujun Wang1 and Lei Xie1
1Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2Xiaomi Inc., Beijing, China
Wed-P-1-2-2, Time: 10:00-12:00
In this paper, we propose an attention-based end-to-end neural approach for small-footprint keyword spotting (KWS), which aims to simplify the pipeline of building a production-quality KWS system. Our model consists of an encoder and an attention mechanism. The encoder transforms the input signal into a high level representation using RNNs. Then the attention
Predicted Mechanism for Aesthetic Elements in Karnatic Music: A Machine Learning Approach
Ragesh Rajan M1, Ashwin Vijayakumar2 and Deepu Vijayasenan1
1National Institute of Technology Karnataka, India
2Georgia Institute of Technology, Atlanta, USA

Wed-P-1-2-3, Time: 10:00-12:00

Gamakas, the embellishments and ornamentations used to enhance musical experience, are defining features of Karnatic Music (KM). The appropriateness of using gamakas is determined by aesthetics and is often developed by musicians with experience. Therefore, understanding and modeling gamakas is a significant bottleneck in applications like music synthesis, automatic accompaniment, etc. in the context of KM. To this end, we propose to learn both the presence and the type of gamaka in a data-driven manner using annotated symbolic music. In particular, we explore the efficacy of three classes of features – note-based, phonetic and structural – and train a Random Forest Classifier to predict the existence and the type of gamaka. The observed accuracy is ~70% for gamaka detection and ~60% for gamaka classification. Finally, we present an analysis of the features and find that frequency and duration of the neighbouring notes prove to be the most important features.

Topic and Keyword Identification for Low-resourced Speech Using Cross-Language Transfer Learning
Wenda Chen1,2, Mark Hasegawa-Johnson1 and Nancy F. Chen1
1Beckman Institute, University of Illinois at Urbana-Champaign, USA
2Institute for Infocomm Research, A*STAR, Singapore

Wed-P-1-2-4, Time: 10:00-12:00

This paper studies topic and keyword identification for languages in which we have no transcribed speech data. We adopt a transfer learning framework to transfer what is learned from rich-resourced languages (RRL) to low-resourced languages (LRL). Specifically, we propose that a convolutional neural network (CNN) trained as a topic classifier in an RRL learns features (hidden layer activations) that can be used for the same purpose in an LRL. The CNN observes acoustic features, RRL phones, or segment clusters generated by an unsupervised phone clustering system, its hidden layers are retained and its output layer re-trained from scratch on the LRL. Our results are compared with the state-of-the-art topic classification methods on cross-language ASR transcripts. We also discuss the successful detection of topic dependent keywords and the use of unsupervised learning based clusters in our approach for low-resourced language topic detection.

Automatic Speech Recognition and Keyword Identification from Speech for Almost-Zero-Resource Languages
Matthew Wiesner1,2, Chunxi Liu1,2, Lucas Ondel1, Craig Harman1, Virpal Manohar1,2, Jan Trmal1,2, Zhongqiang Huang1, Najim Dehak1 and Sanjeev Khudanpur1,2
1Center for Language and Speech Processing, The Johns Hopkins University, USA
2Human Language Technology Center of Excellence, The Johns Hopkins University, USA

Source: http://www.aclweb.org/anthology/W17-3515
results and that the gain achieved via summation of class probabilities is consistently better than that achieved via score fusion of power means. The experimental analysis confirms that summation, which enhances the discriminative capability of the superior class probability, can implement a smoothed probability distribution to yield more effective dark knowledge, while adequately suppressing undesirable effects.

Phonological Posterior Hashing for Query by Example Spoken Term Detection

Afsaneh Asaei, Dhananjay Ram and Hervé Bourlard

Idiap Research Institute, Martigny, Switzerland

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Wed-P-1-2-8, Time: 10:00-12:00

State of the art query by example spoken term detection (QbE-STD) systems in zero-resource conditions rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classification system. One key property of the posterior representations is that they admit a highly effective hashing strategy that enables indexing a large audio archive in divisions for reducing the search complexity. Moreover, posterior indexing leads to a compressed representation and enables pronunciation dewarping and partial detection with no need for DTW. We exploit these characteristics of the posterior space in the context of redundant hash addressing for query-by-example spoken term detection (QbE-STD). We evaluate the QbE-STD system on AMI corpus and demonstrate that tremendous speedup and superior accuracy is achieved compared to the state-of-the-art pattern matching solution based on DTW. The system has the potential to enable massively large scale spoken query detection.

Term Extraction via Neural Sequence Labeling a Comparative Evaluation of Strategies Using Recurrent Neural Networks

Maren Kucza, Jan Niehues, Thomas Zenkel, Alex Waibel and Sebastian Stieler

Karlsruhe Institute of Technology

Wed-P-1-2-9, Time: 10:00-12:00

Traditionally systems for term extraction use a two stage approach of first identifying candidate terms and the scoring them in a second process for identifying actual terms. Thus, research in this field has often mainly focused on refining and improving the scoring process of term candidates, which commonly are identified using linguistic and statistical features. Machine learning techniques and especially neural networks are currently only used in the second stage, that is to score candidates and classify them.

In contrast to that we have built a system that identifies terms via directly performing sequence-labeling with a BILOU scheme on word sequences. To do so we have worked with different kinds of recurrent neural networks and word embeddings.

In this paper we describe how one can built a state-of-the-art term extraction systems with this single-stage technique and compare different network architectures and also examine the influence of the type of input embedding used for the task. We further investigated which network types and topologies are best suited when applying our term extraction systems to other domains than that of the training data of the networks.

Semi-supervised Learning for Information Extraction from Dialogue

Anjuli Kannan, Kai Chen, Diana Jaunzeikare and Alvin Rajkomar

Google Brain, Google, Inc., USA

Wed-P-1-2-10, Time: 10:00-12:00

In this work we present a method for semi-supervised learning from transcripts of dialogue between humans. We consider the scenario in which a large amount of transcripts are available and we would like to extract some semantic information from them; however, only a small number of transcripts have been labeled with this information. We present a method for leveraging the unlabeled data to learn a better model than could be learned from the labeled data alone. First, a recurrent neural network (RNN) encoder-decoder is trained on the task of predicting nearby turns on the full dialogue corpus; next, the RNN encoder is reused as a feature representation for the supervised learning problem.

While previous work has explored the use of pre-training for non-dialogue corpora, our method is specifically geared toward the dialogue use case. We demonstrate an improvement on a clinical documentation task, particularly in the regime of small amounts of labeled data. We compare several types of encoders, both in the context of a classification task and in a human-evaluation of their learned representations. We show that our method significantly improves the classification task in the case where only a small amount of labeled data is available.

Slot Filling with Delexicalized Sentence Generation

Youhun Shin, Kang Min Yoo and Sang-goo Lee

Department of Computer Science and Engineering, Seoul National University, Seoul, Korea

Wed-P-1-2-11, Time: 10:00-12:00

We introduce a novel approach that jointly learns slot filling and delexicalized sentence generation. There have been recent attempts to tackle slot filling as a type of sequence labeling problem, with encoder-decoder attention framework. We further improve the framework by training the model to generate delexicalized sentences, in which words according to slot values are replaced with slot labels. Slot filling with delexicalization shows better results compared to models having a single learning objective of filling slots. The proposed method achieves state-of-the-art slot filling performance on ATIS dataset. We experiment different variants of our model and find that delexicalization encourages generalization by sharing weights among the words with same labels and helps the model to further leverage certain linguistic features.

Music Genre Recognition Using Deep Neural Networks and Transfer Learning

Deepanway Ghosal and Maheshkumar H. Kolekar

Indian Institute of Technology Patna, India

Wed-P-1-2-12, Time: 10:00-12:00

Music genre recognition is a very interesting area of research in the broad scope of music information retrieval and audio signal processing. In this work we propose a novel approach for music genre recognition using an ensemble of convolutional long short term memory based neural networks (CNN LSTM) and a transfer learning model. The neural network models are trained on a diverse set of spectral and rhythmic features whereas the transfer learning model was originally trained on the task of music tagging. We compare our system with a number of recently published works and show that our model outperforms them and achieves new state of the art results.

Efficient Voice Trigger Detection for Low Resource Hardware

Siddharth Sigta, Rob Haynes, Hywel Richards, Erik Marchi and John Bridle

Siri Speech, Apple

Wed-P-1-2-13, Time: 10:00-12:00

We describe the architecture of an always-on keyword spotting (KWS) system for battery-powered mobile devices used to initiate an interaction with the device. An always-available voice assistant needs a carefully designed voice keyword detector to satisfy the power and computational constraints of battery powered devices. We employ a multi-stage system that uses a low-power primary stage to decide when to run a more accurate (but more power-hungry) secondary detector. We describe a straightforward primary detector and explore variations that result in very useful reductions in computation (or increased accuracy for the same computation). By reducing the set of target labels from three to one per phone and reducing the rate at which the acoustic model is operated, the compute rate can be reduced by a factor of six while maintaining the same accuracy.
A Novel Normalization Method for Autocorrelation Function for Pitch Detection and for Speech Activity Detection

Qiguang Lin1,3 and Yiwen Shao1,3

1Baidu Technology, Co., Ltd, China
2ZIBOT, Inc., Santa Clara, California, USA

Wed-P-1-3-1, Time: 10:00-12:00

Autocorrelation functions (ACFs) have been used in various pitch detection algorithms (PDA) and voicing-feature based speech activity detection (SAD) techniques. Speech is assumed to be stationary over a short-term window and a Hanning window is typically applied in the calculation of ACF. As a result of windowing, the ACF tapers as the autocorrelation lags increase. Boersma demonstrated that the tapering effect could be compensated for by dividing the ACF of the windowed signal by the autocorrelation of the windowing function itself, referred to as wACF hereafter. We recently found that wACF could cause overcompensation and therefore, result in errors in pitch detection. In this paper, a novel normalization method, eACF, is proposed that can both mitigate the tapering effect and minimize the overcompensation. The new method is evaluated on synthetic speech and on the TIMIT database with various types of additive noise at different signal-to-noise (SNR) ratios. The results show that the new method leads to better performance both in terms of pitch detection and speech activity detection. In this paper, we also investigate the scenarios where applying the wACF method is advantageous and where it is not.

Estimation of the Vocal Tract Length of Vowel Sounds Based on the Frequency of the Significant Spectral Valley

TV Ananthapadmanabha1 and Ramakrishnan A G2

1Voice and Speech Systems, Malleswaram, Bangalore 560003, India
2Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India

Wed-P-1-3-2, Time: 10:00-12:00

Estimating the vocal tract length (VTL), given the acoustic signal of a vowel sound, is an important problem, which is useful in speaker normalization for vowel recognition, in the inversion problem and in acoustic-phonetic studies. The common approach of using the formant data to estimate VTL works for a neutral vowel approximating a uniform tube. However, for natural vowels, formant data shift considerably away from the resonant frequencies of a uniform tube. The proposed method is motivated from these observations: (a) the frequency of a spectral valley, F_v, depends inversely on VTL; (b) there is much smaller shift in F_v across vowels, from the corresponding valley frequency of a uniform tube; (c) F_v can be estimated from the spectral envelope itself. VTL has been estimated for the Peterson and Barney (33 male and 28 female speakers) and the TIMIT (326 male and 136 female speakers) databases. When the estimated F_v is used for normalization, the spread in the formant data due to gender differences is considerably reduced. The normalization procedure is vowel and speaker intrinsic. Additionally, we report applications such as Front/Back classification, gender recognition and phonetic feature mapping.

Deep Learning Techniques for Koala Activity Detection

Ivan Himawan1, Michael Towsey1, Bradley Law2 and Paul Roe1

1Queensland University of Technology, Brisbane, Australia
2Forest Science Unit, NSW Department of Industry-Lands, Australia

Wed-P-1-3-3, Time: 10:00-12:00

Automatically detecting koalas in the real-life environment from audio recordings will immensely help ecologists, conservation groups and government departments interested in their preservation and the protection of their habitat. Inspired by the success of deep learning approaches in various audio classification tasks, in this paper, the feasibility of recognizing koala’s calls using a convolutional recurrent neural network architecture (CNN-RNN) is studied. The benefit of this architecture is twofold: firstly, convolutional layers learn local time-frequency (spectral) patterns from the audio spectrogram and secondly, recurrent layers model longer temporal dependencies of the extracted features. In our datasets, the performance of CNN-RNN is evaluated and compared with standard convolutional neural networks (CNNs). The experimental results show that hybrid CNN-RNN architecture is beneficial for learning long-term patterns in spectrograms exhibited by koalas’ calls in unseened conditions. The proposed method is also applicable for detecting other animal calls such as bird sound where it achieves 87.46% area under curve score on the bird audio detection challenge evaluation data.

Glottal Closure Instant Detection from Speech Signal Using Voting Classifier and Recursive Feature Elimination

Jindrich Matoušek1 and Daniel Tihelka2

1Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Rep.
2New Technology for the Information Society (NTIS), Faculty of Applied Sciences, University of West Bohemia, Pilsen, Czech Rep.

Wed-P-1-3-4, Time: 10:00-12:00

In our previous work, we introduced a classification-based method for the automatic detection of glottal closure instants (GCIs) from the speech signal and we showed it was able to perform very well on several test datasets. In this paper, we investigate whether adding more features (voiced/unvoiced, harmonic/noise, spectral etc.) and/or using an ensemble of classifiers such as a voting classifier can further improve GCI detection performance. We show that using additional features leads to a better detection accuracy, best results were obtained when recursive feature elimination was applied on the whole feature set. In addition, a voting classifier is shown to outperform other classifiers and other existing GCI detection algorithms on publicly available databases.

Assessing Speaker Engagement in 2-Person Debates: Overlap Detection in United States Presidential Debates

Mia Youself1, Navid Shokouhi2 and John H.L. Hansen1

1Center for Robust Speech Systems (CRSS), The University of Texas at Dallas, Richardson, Texas, USA
2University of Melbourne

Wed-P-1-3-5, Time: 10:00-12:00

Co-channel speech contain significant amounts of overlap in which the intelligibility and quality of the desired speech can be degraded. Convolutive Non-negative Matrix Factorization (CNMF) has been shown to be a successful approach in detecting overlap by extracting specific acoustic basis dimensions for each speaker from an audio stream. While the results of CNMF have been successful, it requires isolated single speech recordings for each speaker to derive their corresponding bases functions/dimensions. In our previous work, Teager-Kaiser Energy Operator (TEO)-based Pyknogram has been introduced. In this study, Pyknogram and CNMF based solutions for overlap detection within audio streams have been examined using the GRID dataset. TEO-based Pyknogram is shown to achieve a relative 8-10% lower Equal Error Rate (EER) compared to CNMF features. In addition, a secondary evaluation was also performed based on naturalistic audio streams with overlap. Specifically, we collected a real-world audio database of US Presidential debates stemming from the last 12 years that are very challenging due to various forms of overlaps, changing Signal to Interference Ratio (SIR) and environmental noise among government departments interested in their preservation and the protection of their habitat. Inspired by the success of deep learning approaches in various audio classification tasks, in this paper, the feasibility of recognizing koala’s calls using a convolutional recurrent neural network architecture (CNN-RNN) is studied. The benefit of this architecture is twofold: firstly, convolutional layers learn local time-frequency (spectral) patterns from the audio spectrogram and secondly, recurrent layers model longer temporal dependencies of the extracted features. In our datasets, the performance of CNN-RNN is evaluated and compared with standard convolutional neural networks (CNNs). The experimental results show that hybrid CNN-RNN architecture is beneficial for learning long-term patterns in spectrograms exhibited by koalas’ calls in unseened conditions. The proposed method is also applicable for detecting other animal calls such as bird sound where it achieves 87.46% area under curve score on the bird audio detection challenge evaluation data.
Notes
subband center frequencies for a given frequency range has been essentially empirical in the literature. Moreover, correlation of subband signals may not produce distinct peaks for feature extraction. This paper proposes a novel frequency coverage metric to calculate the number of subbands. It also presents a new subband encoding model for correlation processing, inspired by psychoacoustic studies and statistical analysis. The proposed frequency coverage metric and the subband encoding model are applied to a pitch estimation method as an example of their possible implementations in the speech feature extraction. Compared with state-of-the-art methods, evaluation results demonstrate the benefits of the proposed methods.

Improved Epoch Extraction from Telephonic Speech Using Chebfun and Zero Frequency Filtering
Ganga Gowri B, Soman K.P and Govind D
Center for Computational Engineering and Networking (CEN),
Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidypapeatham, India
Wed-P-1-3-12, Time: 10:00-12:00
Epoch in speech, represent the instant where maximum excitation at the vocal tract is obtained. Existing epoch extraction algorithms are capable of accurately extracting epoch information from clean speech signals. However, epoch extraction of band limited signals such as telephonic speech is challenging due to the attenuation of the fundamental frequency components. The present work is focused on improving the performance of epoch extraction from telephonic speech signals by exploiting the properties of Chebyshev polynomial interpolation and by reinforcing the frequency components around the fundamental frequency through the Hilbert envelope (HE). The proposed algorithm brings a refinement of the existing Zero Frequency Filtering (ZFF) method by incorporating Chebyshev interpolation. The proposed refinements to the ZFF algorithm confirmed to provide improved epoch identification rate, identification accuracy, reduced miss rate and false alarm rate. The epoch identification rate of the proposed method is observed to be better than existing methods like Dynamic Programming Phase Slope Algorithm (DYPSA), Speech Event Detection using the Residual Excitation And a Mean-based Signal (SEDREAMS), Dynamic Plosion Index (DPI) and Single Pole Filtering (SPF) methods for telephonic speech quality.

An Empirical Analysis of the Correlation of Syntax and Prosody
Arne Köhn1, Timo Baumann2 and Oskar Dörfler2
1Natural Language Systems Group, Department of Informatics, Universität Hamburg, Germany
2Language Technology Institute, Carnegie Mellon University, Pittsburgh, USA
Wed-P-1-4-1, Time: 10:00-12:00
The relation of syntax and prosody (the syntax-prosody interface) has been an active area of research, mostly in linguistics and typically studied under controlled conditions. More recently, prosody has also been successfully used in the data-based training of syntax parsers. However, there is a gap between the controlled and detailed study of the individual effects between syntax and prosody and the large-scale application of prosody in syntactic parsing with only a shallow analysis of the respective influences. In this paper, we close the gap by investigating the significance of correlations of prosodic realization with specific syntactic functions using linear mixed effects models in a very large corpus of read-out German encyclopedic texts. Using this corpus, we are able to analyze prosodic structuring performed by a diverse set of speakers while they try to optimize factual content delivery. After normalization by speaker, we obtain significant effects, e.g. confirming that the subject function, as compared to the object function, has a positive effect on pitch and duration of a word, but a negative effect on loudness.

Analysing the Focus of a Hierarchical Attention Network: the Importance of Enjambments When Classifying Post-modern Poetry
Timo Baumann1, Hussein Hussein2 and Burkhard Meyer-Sickendiek2
1Language Technologies Institute, Carnegie Mellon University, Pittsburgh, USA
2Department of Literary Studies, Free University of Berlin, Germany
Wed-P-1-4-2, Time: 10:00-12:00
After overcoming the traditional metrics, modern and postmodern poetry developed a large variety of ‘free verse prosodies’ that falls along a spectrum from a more fluent to a more disfluent and choppy style. We present a method, grounded in philological analysis and theories on cognitive (dis)fluency, to analyze this ‘free verse spectrum’ into six classes of poetic styles as well as to differentiate three types of poems with enjambments. We use a model for automatic prosodic analysis of spoken free verse poetry which uses deep hierarchical attention networks to integrate the source text and audio and predict the assigned class. We then analyze and fine-tune the model with a particular focus on enjambments and in two ways: we drill down on classification performance by analyzing whether the model focuses on similar traits of poems as humans would, specifically, whether it internally builds a notion of enjambment. We find that our model is similarly good as humans in finding enjambments; however, when we employ the model for classifying enjambment-dominated poet poems, it does not pay particular attention to those lines. Adding enjambment labels to the training only marginally improves performance, indicating that all other lines are similarly informative for the model.

Language-Dependent Melody Embeddings
Danil Kocharov and Alla Menshikova
Saint Petersburg State University, Russia
Wed-P-1-4-3, Time: 10:00-12:00
The paper explores the perspectives of applying the distributional approach to prosodic typology of languages. The method discussed here is an adaptation of the distributional semantics approach, as suggested by Mikolov, to melodic features of speech. The paper contains a detailed description of the new method, as well as a comparison of five European languages (English, Czech, German, Russian and Finnish) in terms of melody embeddings. The total amount of speech data was over 500 hours. The experimental results show that melody embeddings are language dependent. The proposed melody embedding model has shown reasonable results in language comparison.

Stress Distribution of Given Information in Chinese Reading Texts
Yuan Jia1 and Xiaoxiao Ma1,2
1Institute of Linguistic, Chinese Academy of Social Science, Beijing, China
2Nankai University, Tianjin, China
Wed-P-1-4-4, Time: 10:00-12:00
Using an information structure annotation System, namely ReLex Scheme, the present study annotates the information structure of Chinese reading discourse and explores the relationship between information status and stress distribution. Our analysis results show that given information could bear stresses as well as new information. Specifically, the stress distribution of given information is significantly affected by the sub-category of information status on the referential level, i.e., r-given, while r-given-generic and r-given-displaced show different stress distributions. However, the sub-category of information status on the lexical level
exhibits no such effect. Besides, the given information of proper nouns and personal pronouns on the lexical level can attract stresses. The reason is that a proper noun often serves as the topic of a sentence and a personal pronoun usually processes a center shift. Furthermore, the inconsistency of information status on both referential and lexical levels causes the stress on the given information unit.

Acoustic-prosodic Entrainment in Structural Metadata Events

Vera Cabarrão1,2, Fernando Batista1,2, Helena Moniz2, Isabel Trancoso3,4 and Ana Isabel Mata2

1INESC-ID Lisboa, Laboratório de Sistemas de Língua Falada, Portugal
2FELUL - Faculdade de Letras da Universidade de Lisboa; CLUL - Centro de Linguística da, Universidade de Lisboa, Portugal
3Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
4Instituto Superior Técnico, Universidade de Lisboa, Portugal

Wed-P-1-4-5, Time: 10:00-12:00

This paper presents an acoustic-prosodic analysis of entrainment in a Portuguese map-task corpus. Our aim is to analyze how turn-by-turn entrainment varies with distinct structural metadata events: types of sentence-like units (SU) in consecutive turns (e.g. interrogatives followed by declaratives, or both declaratives) and with the presence of discourse markers, affirmative cue words and disfluencies in the beginning of turns. Entrainment at turn-exchanges may be observed in terms of pitch, energy, duration and voice quality. Regarding SU types, question-answer turns are the ones with stronger similarity and declarative-interactive pairs are the ones where less entrainment occurs, as expected. Moreover, in question-answer pairs, there is also stronger evidence of entrainment with Yes/No and Tag questions than with Wh-questions. In fact, these subtypes are coded in distinct prosodic ways (moreover, the first subtype has no associated lexical-syntactic cues in Portuguese, only prosodic). As for turn-initial structures, entrainment is stronger when the second turn begins with an affirmative cue word; less strong with ambiguous structures (such as ‘OK’), emphatic affirmative answers and negative answers; and scarce with disfluencies and discourse markers. The different degrees of local entrainment may be related with the informative structure of distinct structural metadata events.

Formant Measures of Vowels Adjacent to Alveolar and Retroflex Consonants in Arrernte: Stressed and Unstressed Position

Marija Tabain1, Richard Beare1,2 and Andrew Butcher3

1Department of Languages and Linguistics, La Trobe University, Melbourne, Australia
2Department of Medicine, Monash University, Melbourne, Australia
3Murdock Children’s Research Institute, Melbourne, Australia
4Flinders University, Adelaide, Australia

Wed-P-1-4-6, Time: 10:00-12:00

This study presents formant data for six speakers of Arrernte, a language of central Australia. The focus of the study is the (minimal) phonemic contrast between two sets of apical consonants: alveolar and retroflex. The apical contrast is studied for the stop, nasal and lateral manners of articulation.

:t/ʈ/; /n/ɳ/ and /l/ɭ/. The apical consonants are examined both in strong prosodic context (preceding a stressed vowel) and in weak prosodic context (preceding an unstressed vowel). Formant data are sampled 10 ms before the onset of the consonant and 10 ms after the offset of the consonant.

Results show no differences in F2 or F4 in the various conditions studied and results for F1 show differences between obstruents and sonorants.

F3 is lower at consonant onset than consonant offset for retroflex stops in the weak prosodic context and to a lesser extent for retroflex stops in the strong prosodic context; it is also lower for laterals in the weak prosodic context. Other effects on F3 suggest that the apical contrast is most clearly realized for the stop manner of articulation.

Automatic Assessment of L2 English Word Prosody Using Weighted Distances of F0 and Intensity Contours

Quy-Thao Truong, Tsuneo Kato and Seiichi Yamamoto

Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan

Wed-P-1-4-7, Time: 10:00-12:00

In the current paper, an automatic prosody assessment method for learners of English using a weighted comparison of fundamental frequency (F0) and intensity contours is proposed. Patterns of F0 and intensity of learners are compared to that of native using a proposed metric - a weighted distance - in which the error around the high values of prosodic features have more weight in the computation of the final distance. Gold-standard native references are built using the k-means clustering algorithm. Therefore, we also propose a data-driven criterion called weighted variance based on the weighted similarity within the whole set of native utterances to determine the optimal number of clusters k. In comparison with baseline contour comparison metrics which resulted in a subjective-objective score correlation of 0.278, our method combining the proposed metric and criterion led to a final subjective-objective score correlation of 0.304. In comparison, subjective scores correlated at 0.480.

Homogeneity vs Heterogeneity in Indian English: Investigating Influences of L1 on f0 Range

Olga Maxwell1, Elinor Payne1 and Rosey Billington2

1University of Melbourne, Australia
2University of Oxford, UK

Wed-P-1-4-8, Time: 10:00-12:00

We present an exploratory analysis of several long-term distributional measures of F0 range in the speech of university-educated speakers of Indian English from four L1 backgrounds (Telugu, Tamil, Hindi and Bengali). The aim of this study is to investigate the degree of homogeneity in Indian English prosody and any similarities between the speakers’ productions in English and their L1. Following recent studies, we examine three aspects of F0 range: pitch level (relative height of habitual F0), pitch span and pitch dynamism. Overall, across varieties, pitch level measures reveal individual speaker differences and only weak L1 effects on max F0 and median F0. Some speakers show higher F0 in their L1 productions compared to their English productions. More robust patterns were found for pitch span and dynamism: for all measures (maximum-minimum F0, pitch dynamism quotient and standard deviation), significant differences were found between L1 and English (p<0.001) for Bengali and Telugu L1 speakers. The relative weakness of L1 effects would suggest a degree of homogeneity in Indian English, at least for the prosodic parameters investigated. Evidence of a shift in pitch span when talking in English, regardless of L1, further suggests a convergent speech variety.

Emotional Prosody Perception in Mandarin-speaking Congenital Amusics

Yixin Zhang, Tianzhu Geng and Jingsong Zhang

Beijing Advanced Innovation Center for Language Resources, Beijing Language and Culture University, Beijing 100083, China

Wed-P-1-4-9, Time: 10:00-12:00

Congenital amusia, which is a neurogenetic disorder affecting musical pitch processing, was found recently to affect not only human speech perception, but also emotional perception. Since previous studies only examined participants with non-tonal languages, they cannot easily generalize the finding to people with tonal language background, due to the fact that those people utilize pitch cues much more heavily in daily communication compared with others. To make clear the doubt, this paper investigates emotional prosody perception of Mandarin speakers with congenital amusia. We tried to recruit 19 amusics and matched control group of similar number of normal speakers and carried out emotional perception experiments in which speech and non-speech stimuli with six kinds of emotions were used, including happy, sad, fear, angry, surprise and neutral. Results showed that the amusics performed significantly worse than matched controls. This indicated that tone-language expertise cannot compensate for pitch deficits in amusia.
for emotional perception. Further analyses demonstrated that there was a positive correlation between emotion prosody performance and pitch perceptual ability. These findings further support previous hypothesis that music and language share cognitive and neural resources and provide a new perspective on the proposition of the relation between music and language.

Cultural Differences in Pattern Matching: Multisensory Recognition of Socio-affective Prosody

Takaaki Shochi1,2, Jean-Luc Rouas1, Marine Guerry3 and Donna Erickson3

1Univ. Bordeaux, CNRS, LaBRI, UMR 5800, 33405 Talence, France
2CLLE-ERRSaB CNRS UMR 5263, Bordeaux, France
3Kanazawa Medical University, Japan

Wed-P-1-4-10, Time: 10:00-12:00

This study focuses on the cross-cultural differences in perception of audio visual prosodic recordings of Japanese social affect. The study compares cultural differences of perceptual patterns of 21 Japanese subjects with 20 French subjects who have no knowledge of Japanese language or Japanese social affects. The test material is a semantically affectively neutral utterance expressed in 9 various social affects by 2 Japanese speakers (one male, one female) who were chosen as best performers in our previous recognition experiment. The task was to create a specific audio-visual affect by choosing one video stimulus among 9 choices and one audio stimuli, again among 9 choices. The participants could preview each audio and video stimuli individually and also the combination of chosen stimuli. The results reveal that native subjects can correctly combine auditory and visually expressed social affects, showing some confusion inside semantic categories. Different matching patterns are observed for non-native subjects especially for a type of cultural-specific politeness.

Perspective Talk-3

Hall 3, 12:00-12:30, Wednesday, 5 September, 2018

Chair: Chandra Sekhar Seelamantula

Speech Processing in the Human Brain Meets Deep Learning

Nima Mesgarani

Electrical Engineering Department, Columbia University in the City of New York

Wed-Perspective-3, Time: 12:00-12:30

Speech processing technologies have seen tremendous progress since the advent of deep learning, where the most challenging problems no longer seem out of reach. In parallel, deep learning has advanced the state-of-the-art in processing the neural signals to speech in the human brain. This talk reports progress in three important areas of research: I) Decoding (reconstructing) speech from the human auditory cortex to establish a direct interface with the brain. Such an interface not only can restore communication for paralyzed patients, but also has the potential to transform human-computer interaction technologies. II) Auditory Attention Decoding, which aims to create a mind-controlled hearing aid that can track the brain-waves of a listener to identify and amplify the voice of the attended speaker in a crowd. Such a device could help hearing-impaired listeners communicate more effortlessly with others in noisy environments, and III) More accurate models of the transformations that the brain applies to speech at different stages of the human auditory pathway. This is achieved by training deep neural networks to learn the mapping from sound to the neural responses. Using a novel method to study the exact function learned by these neural networks has led to new insights on how the human brain processes speech. On the other hand, these new insights motivate distinct computational properties that can be incorporated into the neural network models to better capture the properties of speech processing in the human auditory cortex.
ESPnet: End-to-End Speech Processing Toolkit
Shinji Watanabe1, Takaaki Hori2, Shigeki Karita1, Tomoki Hayashi3, Jiro Nishitoba3, Yuya Unno3, Nelson Enrique Yalta Soplin4, Jahn Heymann5, Matthias Wiesener5, Nanxin Chen5, Adithya Renduchintala1 and Tsuubs Ochiai1
1Johns Hopkins University
2Mitsubishi Electric Research Laboratories
3NTT Communication Science Laboratories
4Nagoya University
5Retrieved, Inc.
6Preferred Networks, Inc.
7Waseda University
8Paderborn University
9Doshisha University
Wed-O-2-1-1, Time: 14:30-14:50
This paper introduces a new open source platform for end-to-end speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR) and adopts widely-used dynamic neural network toolkits, Chainer and PyTorch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPNet from other open source ASR toolkits and experimental results with major ASR benchmarks.

A GPU-based WFST Decoder with Exact Lattice Generation
Zhehuai Chen1,2, Justin Luitjens2, Hainan Xu2, Yiming Wang3, Daniel Povey2 and Sanjeev Khudanpur2
1SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University
2NVIDIA, USA
3Center for Language and Speech Processing, Johns Hopkins University
Wed-O-2-1-2, Time: 14:50-15:10
We describe initial work on an extension of the Kaldi toolkit that supports weighted finite-state transducer (WFST) decoding on Graphics Processing Units (GPUs). We implement token recombination as an atomic GPU operation in order to fully parallelize the Viterbi beam search and propose a dynamic load balancing strategy for more efficient token passing scheduling among GPU threads. We also redesign the exact lattice generation and lattice pruning algorithms for better utilization of the GPUs. Experiments on the Switchboard corpus show that the proposed method achieves identical 1-best results and lattice quality in recognition and confidence measure tasks, while running 3 to 15 times faster than the single process Kaldi decoder. The above results are reported on different GPU architectures. Additionally we obtain a 46-fold speedup with sequence parallelism and multi-process service (MPS) in GPU.

Automatic Speech Recognition System Development in the “Wild”
Anton Ragni and Mark Gales
Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, UK
Wed-O-2-1-3, Time: 15:10-15:30
The standard framework for developing an automatic speech recognition (ASR) system is to generate training and development data for building the system and evaluation data for the final performance analysis. All the data is assumed to come from the domain of interest. Though this framework is matched to some tasks, it is more challenging for systems that are required to operate over broad domains, or where the ability to collect the required data is limited. This paper discusses ASR work performed under the IARPA MATERIAL program, which is aimed at cross-language information retrieval and examines this challenging scenario. In terms of available data, only limited narrow-band conversational telephone speech data was provided.

However, the system is required to operate over a range of domains, including broadcast data. As no data is available for the broadcast domain, this paper proposes an approach for system development based on scraping “related” data from the web and using ASR system confidence scores as the primary metric for developing the acoustic and language model components. As an initial evaluation of the approach, the Swahili development language is used, with the final system performance assessed on the IARPA MATERIAL Analysis Pack 1 data.

Semantic Lattice Processing in Contextual Automatic Speech Recognition for Google Assistant
Leonid Velikovich, Ian Williams, Justin Scheiner, Petar Aleksic, Pedro Moreno and Michael Riley
Google, Inc.
Wed-O-2-1-4, Time: 15:30-15:50
Recent interest in intelligent assistants has increased demand for Automatic Speech Recognition (ASR) systems that can utilize contextual information to adapt to the user’s preferences or the current device state. For example, a user might be more likely to refer to their favorite songs when giving a “music playing” command, or they may refer to their favorite actor when giving a “movie playing” command. Similarly, when a device is in a “music playing” state, a user is more likely to give volume control commands.

In this paper, we explore using semantic information inside the ASR word lattice by employing Named Entity Recognition (NER) to identify and boost contextually relevant paths in order to improve speech recognition accuracy. We use a broad semantic classes comprising millions of entities, such as songs and musical artists, to tag relevant semantic entities in the lattice. We show that our method reduces Word Error Rate (WER) by 12.0% relative on a Google Assistant “media playing” commands test set, while not affecting WER on a test set containing commands unrelated to media.

Contextual Speech Recognition in End-to-End Neural Network Systems Using Beam Search
Ian Williams, Anjuli Kannan, Petar Aleksic, David Rybach and Tara Sainath
Google, Inc.
Wed-O-2-1-5, Time: 15:50-16:10
Recent work has shown that end-to-end (E2E) speech recognition architectures such as Listen Attend and Spell (LAS) can achieve state-of-the-art quality results in LVCSR tasks. One benefit of this architecture is that it does not require a separately trained pronunciation model, language model and acoustic model. However, this property also introduces a drawback: it is not possible to adjust language model contributions separately from the system as a whole. As a result, inclusion of dynamic, contextual information (such as nearby restaurants or upcoming events) into recognition requires a different approach from what has been applied in conventional systems.

We introduce a technique to adapt the inference process to take advantage of contextual signals by adjusting the output likelihoods of the neural network at each step in the beam search. We apply the proposed method to a LAS E2E model and show its effectiveness in experiments on a voice search task with both artificial and real contextual information. Given optimal context, our system reduces WER from 9.2% to 3.8%. The results show that this technique is effective at incorporating context into the prediction of an E2E system.

Forward-Backward Attention Decoder
Masato Mimura, Shinsuke Sakai and Tatsuya Kawahara
Kyoto University, School of Informatics, Sakyo-ku, Kyoto 606-8501, Japan

Notes
Deep neural network based speaker embeddings become increasingly popular in the text-independent speaker recognition task. In contrast to a generatively trained i-vector extractor, a DNN speaker embedding extractor is usually trained discriminatively in the closed set classification scenario using softmax. The problem we addressed in the paper is choosing a dnn based speaker embedding backend solution for speaker verification scoring. There are several options to perform speaker verification in the dnn embedding space. One of them is using a simple heuristic speaker similarity metric for the scoring (e.g. cosine metric). Similarly in the i-vector based systems, the standard Linear Discriminant Analysis (LDA) followed by the Probabilistic Linear Discriminant Analyses (PLDA) can be used for segregating speaker information. As an alternative, the discriminative metric learning approach can be considered. This work demonstrates that performance of deep speaker embeddings based systems can be improved by using Cosine Similarity Metric Learning (CSML) with the triplet loss training scheme. Results obtained on Speakers in the Wild and NIST SRE 2016 evaluation sets demonstrate superiority and robustness of CSML based systems.

Speaker Embedding Extraction with Phonetic Information

Yi Liu¹, Liang He¹, Jia Liu and Michael T. Johnson²
¹Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
²Department of Electrical and Computer Engineering, University of Kentucky, 453 F. Paul Anderson Tower, Lexington, KY 40506-0046, USA

Speaker embeddings achieve promising results on many speaker verification tasks. Phonetic information, as an important component of speech, is rarely considered in the extraction of speaker embeddings. In this paper, we introduce phonetic information to the speaker embedding extraction based on the x-vector architecture. Two methods using phonetic vectors and multi-task learning are proposed. On the Fisher dataset, our best system outperforms the original x-vector approach by 20% in EER and by 15%, 15% in minDCF08 and minDCF10, respectively. Experiments conducted on NIST SRE10 further demonstrate the effectiveness of the proposed methods.

Attention Statistics Pooling for Deep Speaker Embedding

Koji Okabe¹, Takafumi Koshinaka¹ and Koichi Shinoda²
¹Data Science Research Laboratories, NEC Corporation, Japan
²Department of Computer Science, Tokyo Institute of Technology, Japan

Wed-O-2-2-4, Time: 15:30-15:50

This paper proposes attentive statistics pooling for deep speaker embedding in text-independent speaker verification. In conventional speaker embedding, frame-level features are averaged over all the frames of a single utterance to form an utterance-level feature. Our method utilizes an attention mechanism to give different weights to different frames and generates not only weighted means but also weighted standard deviations. In this way, it can capture long-term variations in speaker characteristics more effectively. An evaluation on the NIST SRE 2012 and the VoxCeleb data sets shows that it reduces equal error rates (EERs) from the conventional method by 7.5% and 8.1%, respectively.

Robust and Discriminative Speaker Embedding via Intra-Class Distance Variance Regularization

Nam Le¹² and Jean-Marc Odobez¹²
¹Idiap Research Institute, Martigny, Switzerland
²École Polytechnique Fédérale de Lausanne, Switzerland

Wed-O-2-2-5, Time: 15:50-16:10

Learning a good speaker embedding is critical for many speech processing tasks, including recognition, verification and diarization. To this end, we propose a complementary optimizing goal called intra-class loss to improve deep speaker embeddings learned with triplet loss. This loss improves the Top-1 accuracy to 89.5%, a 9% absolute improvement over VoxCeleb’s approach, whereas training in conjunction with Center Loss achieved a Top-1 accuracy of 84.6%, a 4% absolute improvement over various ethnicities, for benchmarking our approach. Our best CNN model of thousands of real world utterances of over 1200 celebrities belonging to various ethnicities, for benchmarking our approach. Our best CNN model achieved a Top-1 accuracy of 84.6%, a 4% absolute improvement over VoxCeleb’s approach, whereas training in conjunction with Center Loss improved the Top-1 accuracy to 89.5%, a 9% absolute improvement over VoxCeleb’s approach.

Notes
function is formulated as a soft constraint on the averaged pair-wise distance between samples from the same class. Its goal is to prevent the scattering of these samples within the embedding space to increase the intra-class compactness. When intra-class loss is jointly optimized with triplet loss, we can observe 2 major improvements: the deep embedding network can achieve a more robust and discriminative representation and the training process is more stable with a faster convergence rate. We conduct experiments on 2 large public benchmarking datasets for speaker verification, VoxCeleb and VoxForge. The results show that intra-class loss helps accelerating the convergence of deep network training and significantly improves the overall performance of the resulted embeddings.

Deep Discriminative Embeddings for Duration Robust Speaker Verification
Na Li, Deyi Tao, Dan Su, Zhifeng Li and Dong Yu
Tencent AI lab

Wed-0-2-2-6, Time: 16:10-16:30
The embedding-based deep convolutional neural networks (CNNs) have demonstrated effective for text-independent speaker verification systems with short utterances. However, the duration robustness of the existing deep CNNs based algorithms has not been investigated when dealing with utterances of arbitrary duration. To improve robustness of embedding-based deep CNNs for longer duration utterances, we propose a novel algorithm to learn more discriminative utterance-level embeddings based on the Inception-ResNet speaker classifier. Specifically, the discriminability of embeddings is enhanced by reducing intra-speaker variation with center loss and simultaneously increasing inter-speaker discrepancy with softmax loss. To further improve system performance when long utterances are available, at test stage long utterances are segmented into shorter ones, where utterance-level speaker embeddings are extracted by an average pooling layer. Experimental results show that when cosine distance is employed as the measure of similarity for a trial, the proposed method outperforms vector/PLDA framework for short utterances and is effective for long utterances.

Wed-0-2-3-2, Time: 14:50-15:10
When studying speech-on-speech perception, even when participants are explicitly instructed to focus selectively on a single voice, they can spuriously find themselves listening to the wrong voice. These paradoxes generally do not allow to infer, reliably, whether each of the speakers was listened to at different times during presentation. The present study sought to develop a psychophysical test paradigm and a set of speech stimuli to that purpose. In this paradigm, after listening to two simultaneous stories, the participant had to identify, among a set of words, those that were present in the target story. Target and masker stories were presented dichotically or diotically. F0 and vocal-tract length were manipulated in order to parametrically vary the distance between the target and masker voices. Consistent with the hypothesis that correct-identification performance for target words depends on selective attention, performance decreases with the distance between the target and masker voices. These results indicate that the paradigm and stimuli described here can be used to infer which voice a participant is listening to in concurrent-speech listening experiments.

Impact of Different Speech Types on Listening Effort
Olympia Simantiraki1, Martin Cooke1 and Simon King1
1Language and Speech Laboratory, Universidad del País Vasco, Vitoria, Spain
2Center for Speech Technology Research, University of Edinburgh, Edinburgh, UK

Wed-0-2-3-3, Time: 14:30-14:50
Listeners are exposed to different types of speech in everyday life, from natural speech to speech that has undergone modifications or has been generated synthetically. While many studies have focused on measuring the intelligibility of these distinct speech types, their impact on listening effort is not known. The current study combined an objective measure of intelligibility, a physiological measure of listening effort (pupil size) and listeners’ subjective judgements, to examine the impact of four speech types: plain (natural) speech, speech produced in noise (Lombard speech), speech being the most demanding and enhanced speech the least. Pupil scores showed an inverse ranking across speech types, with synthetic speech shaped noise. Naturally and artificially modified speech were less effortful than plain speech at the more adverse noise levels. These outcomes indicate a clear impact of speech type on the cognitive demands required for comprehension.

Who Are You Listening to? Towards a Dynamic Measure of Auditory Attention to Speech-on-speech
Moïra-Phoebe Huet1,2, Christophe Micheyl1,2, Etienne Gaudrain1,2 and Etienne Parizet1
1Université de Lyon, CNRS UMR5292, Inserm U1028, Lyon Neuroscience Research Center, Lyon, France
2Université de Lyon, Institut National des Sciences Appliquées de Lyon, Laboratoire Vibrations Acoustique, F-69621 Villeurbanne, France
3Starkey, Créteil, France
4University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology, Groningen, Netherlands

Wed-0-2-3-3, Time: 15:10-15:30
The speech of a familiar talker is better recognized in noise than an unfamiliar one, suggesting that listeners access talker-specific models to not allow to infer, reliably, whether each of the speakers was listened to at different times during presentation. When studying speech-on-speech perception, even when participants are explicitly instructed to focus selectively on a single voice, they can spuriously find themselves listening to the wrong voice. These paradoxes generally do not allow to infer, reliably, whether each of the speakers was listened to at different times during presentation. The present study sought to develop a psychophysical test paradigm and a set of speech stimuli to that purpose. In this paradigm, after listening to two simultaneous stories, the participant had to identify, among a set of words, those that were present in the target story. Target and masker stories were presented dichotically or diotically. F0 and vocal-tract length were manipulated in order to parametrically vary the distance between the target and masker voices. Consistent with the hypothesis that correct-identification performance for target words depends on selective attention, performance decreases with the distance between the target and masker voices. These results indicate that the paradigm and stimuli described here can be used to infer which voice a participant is listening to in concurrent-speech listening experiments.

Investigating the Role of Familiar Face and Voice Cues in Speech Processing in Noise
Jeessun Kim1, Sonya Karisma1, Vincent Aubanel2,3 and Chris Davis1
1The MARCS Institute, Western Sydney University, Australia
2Gipsa-Lab, Grenoble-Alpes University, France

Wed-0-2-3-3, Time: 15:10-15:30
The speech of a familiar talker is better recognized in noise than an unfamiliar one, suggesting that listeners access talker-specific models to not allow to infer, reliably, whether each of the speakers was listened to at different times during presentation. When studying speech-on-speech perception, even when participants are explicitly instructed to focus selectively on a single voice, they can spuriously find themselves listening to the wrong voice. These paradoxes generally do not allow to infer, reliably, whether each of the speakers was listened to at different times during presentation. The present study sought to develop a psychophysical test paradigm and a set of speech stimuli to that purpose. In this paradigm, after listening to two simultaneous stories, the participant had to identify, among a set of words, those that were present in the target story. Target and masker stories were presented dichotically or diotically. F0 and vocal-tract length were manipulated in order to parametrically vary the distance between the target and masker voices. Consistent with the hypothesis that correct-identification performance for target words depends on selective attention, performance decreases with the distance between the target and masker voices. These results indicate that the paradigm and stimuli described here can be used to infer which voice a participant is listening to in concurrent-speech listening experiments.

The Conversation Continues: the Effect of Lyrics and Music Complexity of Background Music on Spoken-Word Recognition
Odette Scharenborg1,2,3 and Martha Larson1,2,4
1Centre for Language Studies, Radboud University Nijmegen, Netherlands
2Donders Institute for Brain, Cognition, & Behavior, Radboud University Nijmegen, Netherlands

Notes
Notes on speech perception. In this paper we investigated phoneme resistance trait of dyslexia, we wanted to further characterize the impact of noise on phonological processing deficit, which has been posited as a core feature of dyslexia. Error rates, phoneme resistance and phoneme confusions were compared between a dyslexic group and a group of matched controls.

Error rate was higher in the dyslexic group. However, no qualitative differences in the profile of errors were found. The coronals /f, s/ were the most resistant phoneme in both groups and the labials /l, m, v/ were the most vulnerable. Although dyslexics showed a more scattered pattern of confusions, the matrices were correlated. Our results confirm a phonological deficit in dyslexia whereas they do not support the hypothesis of qualitative differences in phonological representation between the two groups.

Loud and Shouted Speech Perception at Variable Distances in a Forest
Julien Meyer, Fanny Meunier, Laure Dentel, Noelia Do Carmo Blanco and Frédéric Sèbe
Univ. Grenoble Alpes, CNRS, GIPSA-lab, Grenoble 38000, France
Université Côte d’Azur, CNRS, BCL, France
The World Whistles Research Association, Paris, France
Equipe de Neuro-Ethologie Sensorielle, Neuro-PSI, CNRS UMR 9197, Univ. Lyon/Saint Etienne

To increase the range of modal speech in natural ambient noise, individuals increase their vocal effort and may pass into the ‘shouted speech’ register. To date, most studies concerning the influence of distance on spoken communication in outdoor natural environments have focused on the ‘productive side’ of the human ability to tacitly adjust vocal output to compensate for acoustic losses due to sound propagation. Our study takes a slightly different path as it is based on an adaptive speech production/perception experiment. The setting was an outdoor natural soundscape (a plane forest in altitude). The stimuli were produced live during the interaction: each speaker adapted speech to transmit French disyllabic words in isolation to an interlocutor/listener who was situated at variable distances in the course of the experiment (30m, 60m, 90m).

Speech recognition was explored by evaluating the ability of 16 normal-hearing French listeners to recognize these words and their constituent vowels and consonants. Results showed that in such conditions, speech adaptation was rather efficient as word recognition remained around 95% at 30m, 85% at 60m and 75% at 90m. We also observed striking differences in patterns of answers along several lines: different distances, speech registers, vowels and consonants.

Phoneme Resistance and Phoneme Confusion in Noise: Impact of Dyslexia
Noelia Do Carmo Blanco, Julien Meyer, Michel Hoen and Fanny Meunier
Université Côte d’Azur, CNRS, BCL, France
Université Grenoble Alpes, CNRS, GIPSA-lab, Grenoble, France
Onico Medical, Vallauris, France

Understanding speech in noisy environments is a challenge for almost everyone and particularly so for people with dyslexia. To better understand the phonological processing deficit, which has been posited as a core trait of dyslexia, we wanted to further characterize the impact of noise on speech perception. In this paper we investigated phoneme resistance to noise for dyslexic and control adults and explored the pattern of errors produced by noise interference. Our aim was to examine differences between phoneme confusion matrices of the two populations.

Disyllabic nouns were embedded in noise and participants had to perform an auditory word identification task. Error rates, phoneme resistance and phoneme confusions were compared between a dyslexic and a group of matched controls.

Conditional End-to-End Audio Transforms
Albert Haque, Michelle Guo and Prateek Verma
Department of Computer Science, Stanford University, USA
Center for Computer Research in Music and Acoustics, Stanford University, USA

We present an end-to-end method for transforming audio from one style to another. For the case of speech, by conditioning on speaker identities, we can train a single model to transform words spoken by multiple people into multiple target voices. For the case of music, we can specify musical instruments and achieve the same result. Architecturally, our method is a fully-differentiable sequence-to-sequence model based on convolutional and hierarchical recurrent neural networks. It is designed to capture long-term acoustic dependencies, requires minimal post-processing and produces realistic audio transforms. Ablation studies confirm that our model can separate acoustic properties from musical and language content at different receptive fields. Empirically, our method achieves competitive performance on community-standard datasets.

Detection of Glottal Closure Instants in Degraded Speech Using Single Frequency Filtering Analysis
Gunnam Aneeja, Sudarsana Reddy Kadiri and Bayya Yagnanarayana
International Institute of Information Technology, Hyderabad, India

Impulse-like characteristics of excitation occur at the glottal closure instant (GCI) due to sharp closure of the vibrating vocal folds in each glottal cycle. The GCIs are detected from the excitation component of the speech signal and the excitation component is derived using inverse filtering or its variants. In this paper we propose a method for GCI detection based on single frequency filtering (SFF) of the speech signal. The SFF output has high signal-to-noise ratio (SNR) property in speech regions. The variance (across frequency) contour computed from the SFF output show rapid changes around the GCIs and these rapid changes can be observed even when the speech signal is degraded. Thus the GCI locations can be extracted even from degraded speech using the SFF analysis. The robustness of the method is demonstrated for several cases of degradation of speech signal.

Tone Recognition Using Lifters and CTC
Loren Lugosch and Vikrant Singh Tomar
Fluent.ai Inc., Montréal, Québec, Canada
In this paper, we present a new method for recognizing tones in continuous speech for tonal languages. The method works by converting the speech signal to a cepstrum, extracting a sequence of cepstral features using a convolutional neural network and predicting the underlying sequence of tones using a connectionist temporal classification (CTC) network. The performance of the proposed method is evaluated on a freely available Mandarin Chinese speech corpus, AISHELL-1 and is shown to outperform the existing techniques in the literature in terms of tone error rate (TER).

Epocb Extraction from Pathological Children Speech Using Single Pole Filtering Approach
Vikram C M¹ and S R Mahadeva Prasanna¹²
¹Indian Institute of Technology Guwahati, Guwahati, India
²Indian Institute of Technology Dharwad, Dharwad, India

Wed-O-2-4-4, Time: 15:30-15:50
This paper focuses on the problem of estimating fundamental frequency from the speech of pathological children. In this work, impulse-like characteristics of epochs derived from single pole filter based time-frequency representation are exploited to propose an epoch extraction algorithm for the pathological children speech. The sharp transitions present in the single pole filtered envelope at the epochs are enhanced using multi-scale product computation. Further, the combined evidence derived from the multi-scale product of the filtered envelopes at different frequencies is used to locate the epochs. The proposed algorithm is evaluated over the Saarbruecken Voice Database containing pathological children speech and simultaneously recorded electrogastrographic signals. The proposed method showed better identification accuracy for pathological children speech when compared to state-of-the-art techniques.

Automated Classification of Vowel-Gesture Parameters Using External Broadband Excitation
Balamurali B T and Jer-Ming Chen
Audio Research Group, Singapore University of Technology & Design, Singapore

Wed-O-2-5-5, Time: 15:50-16:10
External broadband signal excitation applied at the speaker (or singer)’s mouth has previously been successfully used to estimate acoustic resonances of the vocal tract during speaking and singing. In this study, we used a modified, low cost, light-weight, pocket-sized and simplified version of this measurement technique, with reduced sampling time and improved low frequency detection, so that such vocal tract measurements may be easily deployed ‘in the field’ and facilitate a more ‘ecological/natural’ tracking of phonatory gestures. This system was investigated with 6 volunteer speakers phonating 17 English vowels and the relative impedance spectrum (‘gamma’) was measured. Although the y(”) signal measured here for each phonatory gesture is somewhat noisier than the original technique, it is still believed to carry some important cues associated with vocal tract configuration that produce these vowels. Features were identified both in the amplitude and phase of y(“) and three ensemble classifiers namely random forest, gradient boosting and adaboost were trained using them. The predictions output from these classifiers were combined using soft voting to predict a class label (front-central-back; open-close). This yielded an accuracy exceeding 80% in classifying the six nominal regions of the vowel plane.

Estimation of Fundamental Frequency from Singing Voice Using Harmonics of Impulse-like Excitation Source
Sudarsana Reddy Kadirii and Bayya Yegnanarayana
Speech Processing Laboratory, International Institute of Information Technology, Hyderabad, India

Wed-O-2-4-6, Time: 16:10-16:30
This paper focuses on the problem of estimating fundamental frequency from singing voice. Estimation of fundamental frequency is a well studied topic in the speech research community. From the recent studies on fundamental frequency estimation from singing voice, there exists a significant gap in accuracy for singing voice. This is mainly because of the wider and rapid variations in pitch in singing voice compared to that in speech. To overcome this, in this paper we propose a method to derive the fundamental frequency from singing voice by exploiting the harmonics of impulse-like excitation in sequence of glottal cycles. The proposed method is compared with the eight state-of-art methods such as YIN, SWIPE, YAAPT, RAPT, SRH, SFF_CEP, PEFAC and SHRP on the LYRICS singing database. From the experimental results, it is observed that the accuracy of fundamental frequency by the proposed method is better than many state-of-art methods in various singing categories and laryngeal mechanisms.

Investigating the Effect of Audio Duration on Dementia Detection Using Acoustic Features
Jochen Weiner¹, Miguel Angrick¹, Srinivasan Umeshi¹ and Tanja Schulz²
¹Cognitive Systems Lab, University of Bremen, Germany
²Department of Electrical Engineering, Indian Institute of Technology (IIT) Madras, India

Wed-O-2-5-1, Time: 14:30-14:50
This paper presents recent progress toward our goal to enable area-wide pre-screening methods for the early detection of dementia based on automatically processing conversational speech of a representative group of more than 200 subjects. We focus on conversational speech since it is the natural form of communication that can be recorded unobtrusively, without adding stress to subjects and without the need of controlled clinical settings. We describe our unsupervised process chain consisting of voice activity detection and speaker diarization followed by extraction of features and detection of early signs of dementia. The unsupervised system achieves up to 0.645 unweighted average recall (UAR) and compares favorably to a system that was carefully designed on manually annotated data. To further lower the burden for subjects, we investigate UAR over speech duration and find that about 12 minutes of interview are sufficient to achieve the best UAR.

An Interlocutor-Modulated Attentional LSTM for Differentiating between Subgroups of Autism Spectrum Disorder
Yun-Shao Lin¹,², Susan Shur-Fen Gau³ and Chi-Chun Lee¹³
¹Department of Electrical Engineering, National Tsing Hua University, Taiwan
²Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taiwan
³MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

Wed-O-2-5-2, Time: 14:50-15:10
Recalling and discussing personal emotional experiences is one of the key procedures in assessing complex affect processing of individuals with Autism Spectrum Disorder (ASD). This procedure is a standard subpart of a diagnostic interview to assess ASD - the Autism Diagnostic Observation Schedule (ADOS). Previous work has demonstrated that the behavior features computed from this procedure inADOS possess discriminative information between the three distinct ASD subgroups: Autistic Disorder (AD), High Functioning Autism (HFA) and Asperger Syndrome (AS). In this work, we propose an interlocutor-modulated attentional long short term memory network (IM-aLSTM) that models the ASD individual’s acoustic features with a novel interlocutor-modulated attention mechanism. Our IM-
aLSTM achieves ASD subgroup categorization accuracy of 66.5%, which is a 14% absolute improvement over baseline method on the same database. Our analyses further indicate that the attention weights are concentrated more on temporal segments where the ASD individual is being asked to recall and discuss his/her own negative emotional experiences.

Recognition of Echolalic Autistic Child Vocalisations Utilising Convolutional Recurrent Neural Networks

Shahin Amiriparian¹, Alice Baird¹, Sahib Julka¹, Alyssa Alcorn⁴, Sandra Otti¹, Suncica Petrović¹, Eloise Ainger¹, Nicholas Cummins¹ and Bjorn Schuller¹,²

¹ZDB Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
²Centre for Research in Autism and Education, UCL Institute of Education, U K
³Serbian Society of Autism, Belgrade, Serbia
⁴GLAM – Group on Language, Audio & Music, Imperial College London, U K

Wed-0-2-5-3, Time: 15:10-15:30

Autism spectrum conditions (ASC) are a set of neuro-developmental conditions partly characterised by difficulties with communication. Individuals with ASC can show a variety of atypical speech behaviours, including echolalia or the ‘echoing’ of another’s speech. We herein introduce a new dataset of 15 Serbian ASC children in a human-robot interaction scenario, annotated for the presence of echolalia amongst other ASC vocal behaviours. From this, we propose a four-class classification problem and investigate the suitability of applying a 2D convolutional neural network augmented with a recurrent neural network with bidirectional long short-term memory cells to solve the proposed task of echolalia recognition. In this approach, log Mel-spectrograms are first generated from the audio recordings and then fed as input into the convolutional layers to extract high-level spectral features. The subsequent recurrent layers are applied to learn the long-term temporal context from the obtained features. Finally, we use a feed forward neural network with softmax activation to classify the dataset. To evaluate the performance of our deep learning approach, we use leave-one-subject-out cross-validation. Key results presented indicate the suitability of our approach by achieving a classification accuracy of 83.5% unweighted average recall.

Modeling Interpersonal Influence of Verbal Behavior in Couples Therapy Dyadic Interactions

Sandeep Nallan Chakravarthula¹, Brian Baucom² and Panayiotis Georgiou¹

¹Dept. of Electrical Engineering, University of Southern California
²Dept. of Psychology, University of Utah

Wed-0-2-5-4, Time: 15:30-15:50

Dyadic interactions among humans are marked by speakers continuously influence and reacting to each other in terms of responses and behaviors, among others. Understanding how interpersonal dynamics affect behavior is important for successful treatment in psychotherapy domains. Traditional schemes that automatically identify behavior for this purpose have often looked at only the target speaker. In this work, we propose a text-based Markov model of how a target speaker’s behavior is influenced by their own past behavior as well as their perception of their partner’s behavior, based on lexical features. Apart from incorporating additional potentially useful information, our model can also control the degree to which the partner affects the target speaker. We evaluate our proposed model on the task of classifying Negative behavior in Couples Therapy and show that it is more accurate than the single-speaker model. Furthermore, we investigate the degree to which the optimal influence relates to how well a couple does on the long-term, via relating to relationship outcomes.

Computational Modeling of Conversational Humor in Psychotherapy

Anil Ramakrishna¹, Timothy Greer¹, David Atkins² and Shrikanth Narayanan¹

¹Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, USA
²Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA

Wed-0-2-5-5, Time: 15:50-16:10

Humor is an important social construct that serves several roles in human communication. Though subjective, it is culturally ubiquitous and is often used to diffuse tension, specially in intense conversations such as those in psychotherapy sessions. Automatic recognition of humor has been of considerable interest in the natural language processing community thanks to its relevance in conversational agents. In this work, we present a model for humor recognition in Motivational Interviewing based psychotherapy sessions. We use a Long Short Term Memory (LSTM) based recurrent neural network sequence model trained on dyadic conversations from psychotherapy sessions and our model outperforms a standard baseline with linguistic humor features.

Multimodal i-vectors to Detect and Evaluate Parkinson’s Disease

Nicanor Garcia¹, Juan Camilo Vásquez Correa¹,², Juan Rafael Orozco-Arroyave¹,² and Elmar Noth²

¹Faculty of Engineering, Universidad de Antioquia UdEa, Medellín, Colombia
²Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Wed-0-2-5-6, Time: 16:10-16:30

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by a variety of motor symptoms. PD patients show several motor deficits, including speech deficits, impaired handwriting and gait disturbances. In this work we propose a methodology to fuse i-vectors extracted from three different bio-signals: speech, handwriting and gait. These i-vectors are used to classify Parkinson’s Disease patients and healthy controls and to evaluate the neurological state of the patients. Speech i-vectors are extracted from MFCCs; handwriting i-vectors are extracted from kinematic features and gait i-vectors are extracted from modified MFCCs computed from inertial sensor signals. Two fusion strategies are tested: concatenating the i-vectors of a subject to form a super-i-vector with information from the three bio-signals and score pooling. The proposed fusion methods leads to better classification results respect to the separate analysis with each bio-signal, reaching an accuracy of up to 85%.

Overview of the 2018 Spoken CALL Shared Task

Claudia Bauër¹, Andrew Caines², Cathy Chua¹, Johanna Gerlach¹, Mengjie Qian¹, Manny Rayner¹, Martin Russell⁴, Helmer Strik⁴ and Xizi Wei⁶

¹FTI/TIM, University of Geneva, Switzerland
²Automated Language Teaching & Assessment Institute, University of Cambridge
³Independent researcher
⁴Department of Electronic, Electrical and Systems Engineering, University of Birmingham
⁵Centre for Language Studies (CLS), Radboud University Nijmegen
⁶Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, USA

Wed-SS-2-1, Time: 14:30-14:50

MR 1.01-1.02, 14:30-16:30; Wednesday, 5 September, 2018
Chairs: Johanna Gerlach, Manny Rayner, Martin Russell and Helmer Strik
We present an overview of the second edition of the Spoken CALL Shared Task. Groups competed on a prompt-response task using English-language data collected, through an online CALL game, from Swiss German teens in their second and third years of learning English. Each item consists of a written German prompt and an audio file containing a spoken response. The task is to accept linguistically correct responses and reject linguistically incorrect ones, with "linguistically correct" defined by a gold standard derived from human annotations. Scoring was performed using a metric defined as the ratio of the relative rejection rates on incorrect and correct responses. The second edition received eighteen entries and showed very substantial improvement on the first edition; all entries were better than the best entry from the first edition and the best score was about four times higher. We present the task, the resources, the results, a discussion of the metrics used and an analysis of what makes items challenging. In particular, we present quantitative evidence suggesting that incorrect responses are much more difficult to process than correct responses and that the most significant factor in making a response challenging is its distance from the closest training example.

The CSU-K Rule-Based System for the 2nd Edition Spoken CALL Shared Task

Dominik Jülg1, Maria Kunstek1, Cem Philipp Freimoser1, Kay Berkling1 and Mengjie Qian2

1 Cooperative State University, Karlsruhe (CSU-K), Germany
2 Department of Electronic, Electrical & Systems Engineering, The University of Birmingham, UK

This paper presents the set-up and results of the rule-based Cooperative State University Karlsruhe (CSU-K) system for the 2nd edition of the shared spoken CALL ESL task. The data was collected from Swiss teenage students using a speech-enabled online tool for English conversation practice. The tool should eventually be able to judge student input with respect to syntactic and semantic correctness. The tasks consisted of training data of a German text prompt with the associated audio file containing an English language response by the students.

In the second edition of the task, 4,698 utterances were provided in addition to the 2017 task. The contribution of this paper is a further look at how rule-based systems can be employed for these sorts of tasks. Meaning and grammar are treated separately in order to classify the language as correct. A number of experts were constructed to deal separately with different POS such as nouns, adjectives, verb usage and pronouns or determiners. Distance measurements derived from Doc2Vec where then employed between utterance and prompt responses. A D-value of 10.08 is reported on the final 2nd Edition evaluation test files.

Liulishuo’s System for the Spoken CALL Shared Task 2018

Huy Nguyen, Lei Chen, Ramon Prieto, Chuan Wang and Yang Liu
Liulishuo www.liulishuo.com/en

The Spoken CALL (Computer-Assisted Language Learning) 2018 shared task requires systems to automatically accept or reject each single-sentence spoken response depending on whether the response is correct given a prompt. Spoken responses are first recognized into texts and then classified as ‘accept’ or ‘reject’ based on their language and meaning. This paper describes our system for the shared task. We focused on improving speech recognition performance, developing a rich set of features to capture the linguistic and semantic meaning of the responses and optimizing classification results for various factors (training set, n-best hypotheses of speech recognition, decision threshold, model ensemble). Our system achieves the best performance among the participating teams.

An Optimization Based Approach for Solving Spoken CALL Shared Task

Mohammad Ateeq, Abualsoud Hanani and Aziz Qaroush
Birzeit University, Palestine

This paper describes our developed systems for the 2018 SLATE CALL Shared Task on grammatical and linguistic assessment of English spoken by German-speaking Swiss teenagers. The English spoken response is converted to text using baseline English DNN-HMM ASR trained on the shared task training data and another two commercial ASRs (Google and Microsoft Bing). The produced transcription is assessed in terms of language and meaning errors. In this work, we focused on the text-processing component. We created a English text prompt checker part of speech analysis and extracting incorrect bigrams from grammatically incorrect responses. Errors related to the meaning are detected using novel approaches which measure the similarity between the given response and stored set of reference responses.

The outputs of several systems have been fused together into one overall system, where the fusion weights and parameters are tuned using genetic algorithm. The best result on the 2018 shared task test dataset is D-score of 14.41, which was achieved by the fused system and the optimized set of incorrect bi-grams.

The University of Birmingham 2018 Spoken CALL Shared Task Systems

Mengjie Qian, Xizi Wei, Peter Jančović and Martin Russell
Department of Electronic, Electrical & Systems Engineering, The University of Birmingham, UK

This paper describes the systems developed by the University of Birmingham for the 2018 CALL Shared Task (ST) challenge. The task is to perform automatic assessment of grammatical and linguistic aspects of English spoken by German-speaking Swiss teenagers. Our developed systems consist of two components, automatic speech recognition (ASR) and text processing (TP). We explore several ways of building a DNN-HMM ASR system using out-of-domain AMI speech corpus plus a limited amount of ST data. In development experiments on the initial ST data, our final ASR system achieved the word-error-rate (WER) of 12.00%, compared to 14.89% for the official ST baseline DNN-HMM system. The WER of 9.28% was achieved on the test set data. For TP component, we first post-process the ASR output to deal with hesitations and then pass this to a template-based grammar, which we expanded from the provided baseline. We also developed a TP system based on machine learning methods, which enables to better accommodate variability of spoken language. We also fused outputs from several systems using a linear logistic regression. Our best system submitted to the challenge achieved F-measure of 0.914, D of 10.764 and D, (full) score of 5.691 on the final test set.

Improvements to an Automated Content Scoring System for Spoken CALL Responses: the ETS Submission to the Second Spoken CALL Shared Task

Keelan Evani1, Matthew Mulholland2, Rutuja Ubale1, Yao Qian1, Robert Pugh1, Vikram Ramanarayanan2 and Aoife Cahill2
1 Educational Testing Service R&D, 660 Rosedale Rd., Princeton, NJ, USA
2 Educational Testing Service R&D, 90 New Montgomery Street, Suite 1500, San Francisco, CA, USA

This paper describes the details of the ETS submission to the 2018 Spoken CALL Shared Task. We employed a system using word and character n-gram features in a random forest machine learning framework based on the system that achieved the second-highest score in the text processing track of the 2017 Spoken CALL Shared Task. This system was augmented with additional features based on comparing the learner’s responses to language models trained on text written by both native English speakers and L1-German English learners. In addition, we developed a set of sequence-to-label models using bidirectional LSTM-RNNs with an attention layer. The RNN model predictions were combined with the other feature sets using feature-level and score-level fusion approaches resulting in a best-performing system that achieved a D score of 7.397 on the test set (ranking 5th out of 12 submissions to the text processing track of the Shared Task). Subsequent experiments resulted in higher D scores when the model parameters were optimized for D score instead of F-score and the paper presents an error
Development of speech technologies in Indian languages has witnessed steep improvement recently. In this work, we present our efforts in building various speech technology applications for Manipuri language. For the language at hand, we initially perform Language Identification (LID) task. This is followed by speech-to-text (STT) and Keyword Search (KWS). In addition, we build a Speaker Diarization (SD) framework as well. The speech modules are integrated together to extract information from the speech signal. Currently, the platform is built for Manipuri and English language and can be extended to other languages as well. A visual User Interface (UI) is available for demonstration purpose where given a set of speech files the services from all the mentioned speech modules can be used.

SPIRE-SST: An Automatic Web-based Self-learning Tool for Syllable Stress Tutoring (SST) to the Second Language Learners
Chiranjeevi Yarra¹, Anand P A², Kausthubha N K¹ and Prasanta Kumar Ghosh¹
¹Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India
²National Institute of Technology Karnataka (NITK), Surathkal-575025, India

We demonstrate a speaker characteristics assessment solution to extract a speaker’s information like gender, age, emotion, language and accent from telephone quality speech. The solution has been designed using machine learning algorithms ranging from Gaussian mixture models to deep neural networks and utilizes webservice technology for real-time bidirectional interface to provide live updates in a scalable manner. The service is utilized on our demonstration web-page where user can upload or record audio file and obtain the speaker’s characteristics. Such speaker characteristics information can be used as metadata in many real life applications designed for an emotionally sensitive human to machine interaction and human to human interaction.

Determining Speaker Location from Speech in a Practical Environment
BHVS Narayanamurthy¹, JV Satyanarayana¹ and Bayya Yegnanarayana²
¹Research Center Iumar, Hyderabad
²INSA Senior Scientist, IIT-Hyderabad

The objective of the study is to show that a speaker’s location in a practical environment can be obtained from the time delays of the speech received at spatially distributed microphones. The time delay at a pair of microphones is estimated reliably using a recently proposed single frequency filtering (SFF) analysis of speech even when the speech collected in a live room is degraded due to echoes, reverberation and audio signals from other sources. The reliability is due to evidence of time delay from multiple frequency components obtained in the SFF analysis. The effectiveness of the proposed method for determining the speaker location can be demonstrated using a pair of microphones for picking up the speech signals and then processing the signals using SFF analysis.

An Automatic Speech Transcription System for Manipuri Language
Tanvina Patel, Krishna D N, Noor Fathima, Nisar Shah, Mahima C, Deepak Kumar and Anuroop Iyengar
Cogknit Semantics, Bangalore, India

Development of speech technologies in Indian languages has witnessed a
Multi-Modal Data Augmentation for End-to-End ASR
Adithya Renduchintala, Shuoyang Ding, Matthew Wiesner and Shinji Watanabe
Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD 21218, USA

Wed-P-2-1-1, Time: 14:30-16:30
We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using symbolic input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enable seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER) and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.

Multi-task Learning with Augmentation Strategy for Acoustic-to-Word Attention-based Encoder-decoder Speech Recognition
Takatumi Morita1, Sei Ueno1,2, Yusuke Shinohara1, Marc Delcroix2, Yoshikazu Yamaguchi1 and Yushi Aono2
1NTT Media Intelligence Laboratories, NTT Corporation, Japan
2Graduate School of Informatics, Kyoto University, Japan
3NTT Communication Science Laboratories, NTT Corporation, Japan

Wed-P-2-1-2, Time: 14:30-16:30
In this paper, we propose a novel training strategy for attention-based encoder-decoder acoustic-to-word end-to-end systems. Accuracy of end-to-end systems has greatly improved thanks to careful tuning of model structure and the introduction of novel training strategies to stabilize training. For example, multi-task learning using a shared-encoder is often used to escape from bad local optima. However, multi-task learning usually relies on a linear interpolation of the losses for each sub-task and consequently, the shared-encoder is not optimized for each task. To solve the above problem, we propose a multi-task learning with augmentation strategy. We augment the training data by creating multiple copies of the original training data to suit different output targets associated with each sub-task. We use each target loss sequentially to update the parameters of the word-features. This strategy enables better learning of the shared-encoder as the task is trained with a dedicated loss. The parameters of the word-decoder are jointly updated via the shared-encoder when optimizing the sub-task. We use each target loss sequentially to update the parameters of the word-features. This strategy enables better learning of the shared-encoder as the task is trained with a dedicated loss. The parameters of the word-decoder are jointly updated via the shared-encoder when optimizing the word prediction task loss. We evaluate our proposal on various speech data sets and show that our models achieve lower word error rates than both single-task and conventional multi-task approaches.

Training Augmentation with Adversarial Examples for Robust Speech Recognition
Sining Sun1, Ching-Feng Yeh1, Mari Ostendorf1, Mei-Yuh Hwang2 and Lei Xie3
1School of Computer Science, Northwestern Polytechnical University, Xi’an, China
2Mobvoi AI Lab, Seattle, USA
3Department of Electrical Engineering, University of Washington, Seattle, USA

Data Augmentation Improves Recognition of Foreign Accented Speech
Takashi Fukuda1, Raul Fernandez1, Andrew Rosenberg2, Samuel Thomas1, Bhuvana Ramabhadran3, Alexander Sorrin1 and Gakuto Kurata1
1IBM Research AI
2Google

Wed-P-2-1-4, Time: 14:30-16:30
Speech recognition of foreign accented (non-native or L2) speech remains a challenge to the state-of-the-art. The most common approach to address this scenario involves the collection and transcription of accented speech and incorporating this into the training data. However, the amount of accented data is dwarfed by the amount of material from native (L1) speakers, limiting the impact of the additional material. In this work, we address this problem via data augmentation. We create modified copies of two accents, Latin American and Asian accented English speech with voice transformation (modifying glottal source and vocal tract parameters), noise addition and speed modification. We investigate both supervised (where transcription of the accented data is available) and unsupervised approaches to using the accented data and associated augmentations. We find that all augmentations provide improvements, with the largest gains coming from speed modification, then voice transformation and noise addition providing the least improvement. The improvements from training accent specific models with the augmented data are substantial. Improvements from supervised and unsupervised adaptation (or training with soft labels) with the augmented data are relatively minor. Overall, we find speed modification to be a remarkably reliable data augmentation technique for improving recognition of foreign accented speech. Our strategies with associated augmentations provide Word Error Rate (WER) reductions of up to 30% relative over a baseline trained with only the accented data.

Speaker Adaptive Training and Mixup Regularization for Neural Network Acoustic Models in Automatic Speech Recognition
Natalia Tomashenko1,2, Yuri Khokhlov3 and Yannick Estève1
1LIUM, University of Le Mans, France
2ITMO University, Saint-Petersburg, Russia
3STC-Innovations Ltd, Saint-Petersburg, Russia

Wed-P-2-1-5, Time: 14:30-16:30
This work investigates speaker adaptation and regularization techniques for deep neural network acoustic models (AMs) in automatic speech recognition (ASR) systems. In previous works, GMM-derived (GMMD) features have been shown to be an efficient technique for neural network AM adaptation. In this paper, we propose and investigate a novel way to improve speaker adaptive training (SAT) for neural network AMs using GMMD features. The idea is based on using inaccurate transcriptions from ASR for adaptation during neural network training, while keeping the exact transcriptions for targets of neural networks. In addition, we apply a mixup technique, recently proposed for classification tasks, to acoustic models for ASR and investigate the impact of this technique on speaker adapted acoustic models. Experimental results on the TED-LIUM corpus show that the proposed approaches provide an additional gain in speech recognition performance in comparison with the speaker adapted AMs.
Neural Language Codes for Multilingual Acoustic Models
Markus Müller1, Sebastian Stüker1 and Alex Waibel1,2
1Karlsruhe Institute of Technology, Karlsruhe, Germany
2Carnegie Mellon University, Pittsburgh PA, USA

Wed-P-2-1-6, Time: 14:30-16:30
Multilingual Speech Recognition is one of the most costly AI problems, because each language (7,000+) and even different accents require their own acoustic models to obtain best recognition performance. Even though they all use the same phoneme symbols, each language and accent imposes its own coloring or "twang". Many adaptive approaches have been proposed, but they require further training, additional data and generally are inferior to monolingually trained models. In this paper, we propose a different approach that uses a large multilingual model that is modulated by the codes generated by an ancillary network that learns to code useful differences between the "twangs" or human language.

We use Meta-Pi networks to have one network (the language code net) gate the activity of neurons in another (the acoustic model nets). Our results show that during recognition multilingual Meta-Pi networks quickly adapt to the proper language coloring without retraining or new data and perform better than monolingually trained networks. The model was evaluated by training acoustic modeling nets and modulating language code nets jointly and optimize them for best recognition performance.

Encoder Transfer for Attention-based Acoustic-to-word Speech Recognition
Sei Ueno1,2, Takafumi Moriya1, Masato Mimura1, Shinsuke Sakai1, Yusuke Shimohara1, Yoshihiko Yamaguchi1, Yushi Aono1 and Tatsuya Kawahara2
1NTT Media Intelligence Laboratories, NTT Corporation, Japan
2Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan

Wed-P-2-1-7, Time: 14:30-16:30
Acoustic-to-word speech recognition based on attention-based encoder-decoder models achieves better accuracies with much lower latency than the conventional speech recognition systems. However, acoustic-to-word models require a very large amount of training data and it is difficult to prepare one for a new domain such as elderly speech. To address the problem, we propose domain adaptation based on transfer learning with layer freezing. Layer freezing first pre-trains a network with the source domain data and then a part of parameters is re-trained for the target domain while the rest is fixed. In the attention-based acoustic-to-word model, the encoder part is frozen to maintain the generality and only the decoder part is re-trained to adapt to the target domain. This substantially allows for adaptation of the latent linguistic capability of the decoder to the target domain. Using a large-scale Japanese spontaneous speech corpus as source, the proposed method is applied to three target domains: a call center task and two voice search tasks by adults and by elderly. The models trained with the proposed method achieved better accuracy than the baseline models, which are trained from scratch or entirely re-trained with the target domain.

Improving Cross-Lingual Knowledge Transferability Using Multilingual TDNN-BLSTM with Language-Dependent Pre-Final Layer
Siuyan Feng and Tan Lee
Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

Wed-P-2-1-10, Time: 14:30-16:30
Multilingual acoustic modeling for improved automatic speech recognition (ASR) has been extensively researched. It's widely acknowledged that the shared-hidden-layer multilingual deep neural network (SHL-MDNN) acoustic model (AM) could outperform the conventional monolingual AM due to its effectiveness in cross-lingual knowledge transfer. In this work, two research aspects are investigated, with the goal of improving multilingual acoustic modeling. Firstly, in the SHL-MDNN architecture, the shared hidden layer configuration is replaced by a combined TDNN-BLSTM structure. Secondly, the improvement of cross-lingual knowledge transferability is achieved through adding the proposed language-dependent pre-final layer under each network output. The pre-final layer, rarely adopted in past works, is expected to increase nonlinear modeling capability between universal transformed features generated by shared hidden layers and language-specific outputs. Experiments are carried out with CUSENT, WSJ and RASC-863 corpora, covering Cantonese, English and Mandarin. A Cantonese ASR task is chosen for evaluation. Experimental results show that SHL-MTDDNN-BLSTM achieves the best performance. The proposed additional language-dependent pre-final layer brings moderate but consistent performance improvement in new language settings, thus demonstrates its effectiveness in improving cross-lingual knowledge transferability.
Auxiliary Feature Based Adaptation of End-to-End ASR Systems
Marc Delcroix1, Shinji Watanabe2, Atsunori Ogawa2, Shigeki Karita2 and Tomohiko Nakatani1
1NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
2Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA

Wed-P-2-1-11, Time: 14:30-16:30
Acoustic model adaptation has been widely used to adapt models to speakers or environments. For example, appending auxiliary features representing speakers such as i-vectors to the input of a deep neural network (DNN) is an effective way to realize unsupervised adaptation of DNN-hybrid automatic speech recognition (ASR) systems. Recently, end-to-end (E2E) models have been proposed as an alternative to conventional DNN-hybrid ASR systems. E2E models map a speech signal to a sequence of characters or words using a single neural network, which greatly simplifies the ASR pipeline. However, adaptation of E2E models has received little attention yet. In this paper, we investigate auxiliary feature based adaptation for encoder-decoder E2E models. We employ a recently proposed sequence summary network to compute auxiliary features instead of i-vectors, as it can be easily integrated into E2E models and keep the ASR pipeline simple. Indeed, the sequence summary network allows the auxiliary feature extraction module to be a part of the computational graph of the E2E model. We demonstrate that the proposed adaptation scheme consistently improves recognition performance of three publicly available recognition tasks.

Leveraging Native Language Information for Improved Accented Speech Recognition
Shahram Ghorbani and John H.L. Hansen
Center for Robust Speech Systems (CRSS), University of Texas at Dallas, Richardson, TX 75080

Wed-P-2-1-12, Time: 14:30-16:30
Recognition of accented speech is a long-standing challenge for ASR systems, given the increasing worldwide population of bi-lingual speakers with English as their second language. If we consider foreign-accented speech as an interpolation of the native language (1) and English ASR systems, using a model that can simultaneously recognize both languages would perform better at the acoustic level for accented speech. In this study, we explore how an end-to-end recurrent neural network (RNN) trained system with English and native languages (Spanish and Indian languages) could leverage the data of native languages to perform better for accented English speech. To this end, we examine using pre-training with native languages, as well as multitask learning in which the main task is trained with native English data and the secondary task is trained with Spanish or Indian Languages. We show that the multitask setting performs better than the former approach. We suggest a new setting for multitask learning in which the secondary task is trained with both English and the native language, using the same output set. This proposed scenario yields better performance than the first setting which produces +11.95% and +17.55% character error rate (CER) gain over the baseline, for Hispanic and Indian accents, respectively.

Improved Accented Speech Recognition Using Accent Embeddings and Multi-task Learning
Abhinav Jain, Minali Upreti and Preethi Jyothi
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India

Wed-P-2-1-13, Time: 14:30-16:30
One of the major remaining challenges in modern automatic speech recognition (ASR) systems for English is to be able to handle speech from users with a diverse set of accents. ASR systems that are trained on speech from multiple English accents still underperform when confronted with a new speech accent. In this work, we explore how to use accent embeddings and multi-task learning to improve speech recognition for accented speech. We propose a multi-task architecture that jointly learns an accent classifier and a multi-accents acoustic model. We also consider augmenting the speech input with accent information in the form of embeddings extracted by a separate network. These techniques together give significant relative performance improvements of 15% and 10% over a multi-accents baseline system on test sets containing seen and unseen accents, respectively.

Fast Language Adaptation Using Phonological Information
Sibo Tong1,2, Philip N. Garner1 and Hervé Bourlard1,2
1Idiap Research Institute, Martigny, Switzerland
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Wed-P-2-1-14, Time: 14:30-16:30
Phoneme-based multilingual connectionist temporal classification (CTC) model is easily extensible to a new language by concatenating parameters of the new phonemes to the output layer. In the present paper, we improve cross-lingual adaptation in the context of phoneme-based CTC models by using phonological information. A universal (IPA) phoneme classifier is first trained on phonological features generated from a phonological attribute detector. When adapting the multilingual CTC to a new, never seen, language, phonological attributes of the unseen phonemes are derived based on phonology and fed into the phoneme classifier. Posterior understanding is used to initialize the parameters of the unseen phonemes when extending the multilingual CTC output layer to the target language. Adaptation experiments show that the proposed initialization approaches further improve the cross-lingual adaptation on CTC models and yield significant improvements over Deep Neural Network / Hidden Markov Model (DNN/HMM)-based adaptation using limited data.

Naturalness Improvement Algorithm for Reconstructed Glossectomy Patient’s Speech Using Spectral Differential Modification in Voice Conversion
Hirotki Murakami1, Sunao Hara1, Masanobu Abe1, Masaaki Sato1,2 and Shogo Minagi1
1Graduate School of Natural Science and Technology, Okayama University, Japan
2Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Japan

Wed-P-2-2-1, Time: 14:30-16:30
In this paper, we propose an algorithm to improve the naturalness of the reconstructed glossectomy patient’s speech that is generated by voice conversion to enhance the intelligibility of speech uttered by patients with a wide glossectomy. While existing VC algorithms make it possible to improve intelligibility and naturalness, the result is still unsatisfying. To solve the continuing problems, we propose to directly modify the speech waveforms using a spectrum differential. The motivation is that glossectomy patients mainly have problems in their vocal tract, not in their vocal cords. The proposed algorithm requires no source parameter extractions for speech synthesis, so there are no errors in source parameter extractions and we are able to make the best use of the original source characteristics. In terms of spectrum conversion, we evaluate with both GMM and DNN. Subjective evaluations show that our algorithm can synthesize more natural speech than the vocoder-based method. Judging from observations of the spectrogram, power in high-frequency bands of fricatives and stops is reconstructed to be similar to that of natural speech.
Audio-visual Voice Conversion Using Deep Canonical Correlation Analysis for Deep Bottleneck Features
Satoshi Tamura1, Kento Horio1, Hajime Endo1, Satoru Hayamizu1 and Tomoki Toda2
1Gifu University, Japan
2Nagoya University, Japan
Wed-P-2-2-2, Time: 14:30-16:30
This paper proposes Audio-Visual Voice Conversion (AVVC) methods using Deep BottleNeck Features (DBNF) and Deep Canonical Correlation Analysis (DCCA). DBNF has been adopted in several speech applications to obtain better feature representations. DCCA can generate much correlated features in two views and enhance features in one modality based on another view. In addition, DCCA can make projections from different views ideally to the same vector space. Firstly, in this work, we enhance our conventional AVVC scheme by employing the DBNF technique in the visual modality. Secondly, we apply the DCCA technology to DBNFs for new effective visual features. Thirdly, we build a cross-modal voice conversion model available for both audio and visual DCCA features. In order to clarify effectiveness of these frameworks, we carried out subjective and objective evaluations and compared them with conventional methods. Experimental results show that our DBNF- and DCCA-based AVVC can successfully improve the quality of converted speech waveforms.

An Investigation of Convolution Attention Based Models for Multilingual Speech Synthesis of Indian Languages
Pallavi Baljekar, SaiKrishna Rallabandi and Alan W Black
Carnegie Mellon University
Wed-P-2-2-3, Time: 14:30-16:30
In this paper we investigate multi-speaker, multi-lingual speech synthesis for 4 Indic languages (Hindi, Marathi, Gujarathi, Bengali) as well as English in a fully convolutional attention based model. We show how factored embeddings can allow cross lingual transfer and investigate methods to adapt the model in a low resource scenario for the case of Marathi and Gujarati. We also show results on how effectively the model scales to a new language and how much data is required to train the system on a new language.

The Effect of Real-Time Constraints on Automatic Speech Animation
Danny Websdale, Sarah Taylor and Ben Milner
University of East Anglia
Wed-P-2-2-4, Time: 14:30-16:30
Machine learning has previously been applied successfully to speech-driven facial animation. To account for carry-over and anticipatory coarticulation a common approach is to predict the facial pose using a symmetric window of acoustic speech that includes both past and future context. Using future context limits this approach for animating the faces of characters in real-time and networked applications, such as online gaming. An acceptable latency for conversational speech is 200ms and typically network transmission times will consume a significant part of this. Consequently, we consider asymmetric windows by investigating the extent to which decreasing the future context affects the quality of predicted animation using both deep neural networks (DNNs) and bi-directional LSTM recurrent neural networks (BLSTMs). Specifically we investigate future contexts from 170ms (fully-symmetric) to 0ms (fully-asymmetric). We find that a BLSTM trained using 70ms of future context is able to predict facial motion of equivalent quality as a DNN trained with 170ms, while introducing increased processing time of only 5ms. Subjective tests using the BLSTM show that reducing the future context from 170ms to 50ms does not significantly decrease perceived realism. Below 50ms, the perceived realism begins to deteriorate, generating a trade-off between realism and latency.

Joint Learning of Facial Expression and Head Pose from Speech
David Greenwood, Iain Matthews and Stephen Laycock
School of Computing Science, University of East Anglia, United Kingdom
Wed-P-2-2-5, Time: 14:30-16:30
Natural movement plays a significant role in realistic speech animation and numerous studies have demonstrated the contribution visual cues make to the degree human observers find an animation acceptable. Natural, expressive, emotive and prosodic speech exhibits motion patterns that are difficult to predict with considerable variation in visual modalities. Recently, there have been some impressive demonstrations of face animation derived in some way from the speech signal. Each of these methods have taken unique approaches, but none have included rigid head pose in their predicted output.

We observe a high degree of correspondence with facial activity and rigid head pose during speech and exploit this observation to jointly learn full face animation and head pose rotation and translation for multimodal phonetic transcription. We then apply our results on error detection of grapheme-to-phoneme conversion hypotheses in order to find where the phonemic transcriptions may be erroneous. On a French TTS dataset, we show that we can detect up to 90.5% of errors of a state-of-the-art grapheme-to-phoneme conversion system, which don't deal with speaker variability. In this work, we explore ways to obtain signal-dependent phonemic transcriptions. We investigate forced-alignment with enriched pronunciation lexicon and blueprints for phonetic transcription. We then apply our results on error detection of grapheme-to-phoneme conversion hypotheses in order to find where the phonemic transcriptions may be erroneous. On a French TTS dataset, we show that we can detect up to 90.5% of errors of a state-of-the-art grapheme-to-phoneme conversion system, which don't deal with speaker variability. This can help a human annotator to correct most of grapheme-to-phoneme conversion errors without checking a lot of data. In other words, our method can significantly reduce the cost of high quality TTS data creation.

Acoustic-dependent Phonemic Transcription for Text-to-speech Synthesis
Kévin Vythelingum1,2, Yannick Estève1 and Olivier Rosec1
1Voxxygen, Pleumeur-Bodou, France
2LIUM, Le Mans University, France
Wed-P-2-2-6, Time: 14:30-16:30
Text-to-speech synthesis (TTS) purpose is to produce a speech signal from an input text. This implies the annotation of speech recordings with word and phonemic transcriptions. The overall quality of TTS highly depends on the accuracy of phonemic transcriptions. However, they are generally automatically produced by grapheme-to-phoneme conversion systems, which don’t deal with speaker variability. In this work, we explore ways to obtain signal-dependent phonemic transcriptions. We investigate forced-alignment with enriched pronunciation lexicon and blueprints for phonetic transcription. We then apply our results on error detection of grapheme-to-phoneme conversion hypotheses in order to find where the phonemic transcriptions may be erroneous. On a French TTS dataset, we show that we can detect up to 90.5% of errors of a state-of-the-art grapheme-to-phoneme conversion system, which don’t deal with speaker variability. This can help a human annotator to correct most of grapheme-to-phoneme conversion errors without checking a lot of data. In other words, our method can significantly reduce the cost of high quality TTS data creation.

Multimodal Speech Synthesis Architecture for Unsupervised Speaker Adaptation
Hieu-Thi Luong1 and Junichi Yamagishi1,2
1National Institute of Informatics, Tokyo, Japan
2University of Edinburgh, Edinburgh, UK
Wed-P-2-2-7, Time: 14:30-16:30
This paper proposes a new architecture for speaker adaptation of multi-speaker neural-network speech synthesis systems in which an unseen speaker’s voice can be synthesized using a relatively small amount of speech data without transcriptions for adaptation. This is sometimes called “unsupervised speaker adaptation”. More specifically, we concatenate the layers to the audio inputs when performing unsupervised speaker adaptation while we concatenate them to the text inputs when synthesizing speech from a text. Two new training schemes for this new architecture are also proposed in this paper. These training schemes are not limited to speech synthesis; other applications are suggested. Experimental results show that the proposed model not only enables adaptation to unseen speakers using untranscribed speech but it also improves the performance of multi-speaker modeling and speaker adaptation using transcribed audio files.
Articulatory-to-speech Conversion Using Bi-directional Long Short-term Memory
Fumiaki Taguchi1 and Tokihiko Kaburagi2
1Graduate School of Design, 2Faculty of Design, Kyushu University Shiobaru 4–9–1, Minami-ku, Fukuoka-shi, Fukuoka,815–8540 Japan.

Wed-P-2-2-8, Time: 14:30-16:30
Methods for synthesizing speech sounds from the motion of articulatory organs can be used to produce substitute speech for people who have undergone laryngectomy. To achieve this goal, feature parameters representing the spectral envelope of speech, directly related to the acoustic characteristics of the vocal tract, has been estimated from articulatory movements. Within this framework, speech can be synthesized by driving the filter obtained from a spectral envelope with noise signals. In the current study, we examined an alternative method that generates speech sounds directly from the motion pattern of articulatory organs based on the implicit relationships between articulatory movements and the source signal of speech. These implicit relationships were estimated by considering that articulatory movements are involved in phonological representations of speech that are also related to sound source information such as the temporal pattern of pitch and voiced/unvoiced flag. We develop this method for syntheses using deep neural networks (DNNs) to improve the performance of HMM-predicted speech.

Implementation of Respiration in Articulatory Synthesis Using a Pressure-Volume Lung Model
Keisuke Tanihara, Shogo Yonekura and Yasuo Kuniyoshi
Graduate School of Information Science and Technology, The University of Tokyo, Japan

Wed-P-2-2-9, Time: 14:30-16:30
In previous studies of the 1D vocal tract model of articulatory synthesis, subglottal pressure is typically regarded as constant, ignoring its dynamics. However, human vocalization is initially generated by glottal airflow via subglottal pressure change. This change is caused by the expansion and contraction of the lungs.

In the current study, we propose a new pressure-volume model that relates pressure changes to volume changes of the human lung. Using this model, the behavior of the human lung can be integrated with articulatory synthesis. This model introduces positive and negative subglottal pressure corresponding to expiration and inspiration respectively. In addition, breathing could be implemented in the proposed model. This implementation would expand the possibilities for articulatory synthesis.

Learning and Modeling Unit Embeddings for Improving HMM-based Unit Selection Speech Synthesis
Xiao Zhou, Zhen-Hua Ling, Zhi-Ping Zhou and Li-Rong Dai
National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, PR. China

Wed-P-2-2-10, Time: 14:30-16:30
This paper presents a method of learning and modeling unit embeddings using deep neural networks (DNNs) to improve the performance of HMM-based unit selection speech synthesis. First, a DNN with an embedding layer is built to learn a fixed-length embedding vector for each phone-sized candidate unit in the corpus from scratch. Then, another two DNNs are constructed to map linguistic features toward the extracted unit vector of each phone. One of them employs the unit vectors of preceding phones as model input. At synthesis time, the L2 distances between the unit vectors predicted by these two DNNs and the ones derived from candidate units are integrated into the target cost and the concatenation cost of HMM-based unit selection speech synthesis respectively. Experimental results demonstrate that the unit vectors estimated using only acoustic features display phone-dependent clustering properties. Furthermore, integrating unit vector distances into cost functions, especially the concatenation cost, improves the naturalness of HMM-based unit selection speech synthesis in our experiments.

Deep Metric Learning for the Target Cost in Unit-Selection Speech Synthesizer
Ruibo Fu1, Jianhua Tao1,2, Yibin Zheng1 and Zhengqi Wen1
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

Wed-P-2-2-11, Time: 14:30-16:30
This paper describes a unified Deep Metric Learning (DML) framework to predict the target cost directly by supervised learning method. The conventional methods to calculate the target cost include two separate steps: feature extraction and standard distance measurement. The proposed DML framework is pre-trained to learn the metric between pairs of candidate units and target units. The relabeling procedure is added to correct the initial designed labels of the target cost. Secondly, the acoustic features of the target units are removed, which fits the runtime of the unit-selection synthesizer. The asymmetrical DML is fine-tuned to learn the metric between candidate units and target units. Compared with the conventional methods, the proposed unified DML framework can avoid the accumulation of errors in separate steps and improve the accuracy in labeling and predicting the target cost. The evaluation results demonstrate that the naturalness of synthetic speech has been improved by adopting DML framework to predict target cost.

DNN-based Speech Synthesis for Small Data Sets Considering Bidirectional Speech-Text Conversion
Kentarou Sone and Toru Nakashika
Graduate School of Informatics and Engineering, The University of Electro-Communications, Japan

Wed-P-2-2-12, Time: 14:30-16:30
In statistical parametric speech synthesis, approaches based on deep neural networks (DNNs) have improved qualities of the synthesized speech. General framework apps to measure the large amount of training data to synthesize natural speech. However, it is not practical to record speech for many hours from a single speaker. To address this problem, this paper presents a novel pre-training method of DNN-based speech synthesis systems for small data sets. In this method, a Gaussian-Categorical deep relational model (GCDRM), which represents a joint probability of two visible variables, is utilized to describe the joint distribution of acoustic features and linguistic features. During the maximum-likelihood-based training, the model attempts to obtain parameters of a deep architecture considering the bidirectional conversion between 1) generated acoustic features given linguistic features and 2) re-generated linguistic features given acoustic features generated from itself. Owing to considering whether the generated acoustic features are recognizable, our method can obtain reasonable parameters from small data sets. Experimental results show that pre-trained DNN-based systems using our proposed method outperformed randomly-initialized DNN-based systems. This method also outperformed DNN-based systems in a speaker-dependent speech recognition task.

A Weighted Superposition of Functional Contours Model for Modelling Contextual Prominence of Elementary Prosodic Contours
Branislav Gerazov1,2, Gérard Bailly1 and Yi Xu1
1FEIEIT, University of Ss. Cyril and Methodius in Skopje, Macedonia 2Univ. Grenoble-Alpes, CNRS, Grenoble-INP, GIPSA-lab, 38000
The way speech prosody encodes linguistic, paralinguistic and non-linguistic information via multiparametric representations of the speech signals is still an open issue. The Superposition of Functional Contours (SFC) model proposes to decompose prosody into elementary multiparametric functional contours through the iterative training of neural network contour generators using analysis-by-synthesis. Each generator is responsible for computing multiparametric contours that encode one given linguistic, paralinguistic and non-linguistic information on a variable scope of rhythmic units. The contributions of all generators' outputs are then overlapped and added to produce the prosody of the utterance. We propose an extension of the contour generators that allows them to model the prominence of the elementary contours based on contextual information. WSFC jointly learns the patterns of the elementary multiparametric functional contours and their weights dependent on the contours’ contexts. The experimental results show that the proposed weighted SFC (WSFC) model can successfully capture contour prominence and thus improve SFC modelling performance. The WSFC is also shown to be effective at modelling the impact of attitudes on the prominence of functional contours cueing syntactic relations in French and that of emphasis on the prominence of tone contours in Chinese.

LSTBM: A Novel Sequence Representation of Speech Spectra Using Restricted Boltzmann Machine with Long Short-Term Memory

Toru Nakashika

The University of Electro-Communications

Wed-P-2-2-14, Time: 14:30-16:30

In this paper, we propose a novel probabilistic model, namely long short-term Boltzmann memory (LSTBM), to represent sequential data like speech spectra. The LSTBM is an extension of a restricted Boltzmann machine (RBM) that has generative long short-term memory (LSTM) units. The original RBM automatically learns relationships between visible and hidden units and is widely used as a feature extractor, a generator, a classifier, a pre-training method of deep neural networks, etc. However, the RBM is not sufficient to represent sequential data because it assumes that each frame from sequential data is completely independent of the others. Unlike conventional RBMs, the LSTBM has connections over time via LSTM units and represents time dependencies in sequential data. Our speech coding experiments demonstrated that the proposed LSTBM outperformed the other conventional methods: an RBM and a temporal RBM.

Automatically Measuring L2 Speech Fluency without the Need of ASR: A Proof-of-concept Study with Japanese Learners of French

Lionel Fontan, Maxime Le Coz, and Sylvain Detey

1Archean LABS, Archean Technologies, Montauban, France
2Waseda University – SILS, Tokyo, Japan

Wed-P-2-3-3, Time: 14:30-16:30

This research work investigates the possibility of using automatic acoustic measures to assess speech fluency in the context of second language (L2) acquisition.

To this end, three experts rated speech recordings of Japanese learners of French who were instructed to read aloud a 21-sentence-long text. A Forward-Backward Divergence Segmentation (FBDS) algorithm was used to segment speech recordings (sentences) into acoustically homogeneous units at a subphonemic scale. The FBDS processing results were used — along with more classic measures such as raw percentage of speech and length/standard deviation of silent pauses — to estimate speech rate and regularity of speech rate, while a formant tracking algorithm was used to estimate speech fluidity (i.e., quality of coarticulation). A step-by-step multiple linear regression was finally computed to predict the experts' mean fluency ratings.

Results show that FBDS-derived measures, raw percentage of speech and standard deviation of the first formant curve derivative can be combined together to calculate accurate estimates of speakers’ fluency scores ($R = .92, P < .001$). As only low-level signal features were used in the study, the method could also be relevant for the assessment of speakers of other target languages, as well as for the assessment of disordered speech.
Analysis of L2 Learners’ Progress of Distinguishing Mandarin Tone 2 and Tone 3
Yue Sun1, Win Thuzar Kyaw1, Jinsong Zhang1 and Yoshinori Sagisaka1
1Graduate School of Fundamental Science and Engineering, Waseda University, Japan
2College of Information Science, Beijing Language and Culture University, China
Wed-P-2-3-4, Time: 14:30-16:30
Many studies have shown the effectiveness of perceptual training to improve L2 learners’ ability to distinguish Mandarin tones. In this paper, we quantified learners perceptual characteristics on discriminating the most difficult tone pair, Tone 2 and 3 in Mandarin before and after training. L2 learners’ categorical perception is measured by fitting a sigmoid curve to the identification responses with average F0 height being the acoustic dimension. The boundary location of the two tones in L2 learners’ perception space is significantly improved to a higher F0 height after training. Regression analysis indicated that F0 and δt of the initial falling of the concave F0 shape are the key acoustic features for native speakers in discrimination. L2 learners rely on not only the initial fall but also the δFO of the final rise to discriminate the tones. A detailed analysis using cognitive measurements reports an increasing attention on the initial fall of the F0 contour for L2 learners after perceptual training. These results confirmed that directing the attention to key acoustic features is essential for L2 learners to improve their categorical perception of novel speech contrasts.

Unsupervised Discovery of Non-native Phonetic Patterns in L2 English Speech for Mispronunciation Detection and Diagnosis
Xu Li1, Shaoguang Mao1, Xixin Wu1, Kun Li1, Xunying Liu1 and Helen Meng1,2
1Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong
2Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University
3SpeechX Limited, Shenzhen
Wed-P-2-3-5, Time: 14:30-16:30
Second language (L2) speech is often annotated with the native phoneme categories. However, we often observe that an L2 speech segment generally deviates from a canonical phoneme and sometimes it is very difficult for linguists to annotate with any canonical phoneme label. We refer to these segments as non-native phonetic patterns. Existing approaches to mispronunciation detection and diagnosis (MDD) focus mainly on canonical mispronunciations, i.e. one canonical phoneme is substituted for another, aside from those deleted or inserted. To better represent L2 speech, this work explores non-native phonetic patterns (NN-PPs) of each native phoneme. We apply an optimized k-means algorithm to cluster state-based phonemic posterior-grams, which are generated with a deep neural network. Then, to discover the NN-PPs related to each native phoneme, we perform forced alignment to divide L2 speech into segments grouped by native phonemes. We use the cluster sequences within segments derived from clustering results to represent different phonetic patterns of each native phoneme. Finally, we apply Cluster Sequence Analysis to discover each phoneme’s potential NN-PPs. We verified experimentally that NN-PPs can extend the native phoneme categories to better describe L2 speech, which can enrich the existing approaches to MDD for better performance.

Wuxi Speakers’ Production and Perception of Coda Nasals in Mandarin
Lei Wang, Jie Cui and Ying Chen
School of Foreign Studies, Nanjing University of Science and Technology, China
Wed-P-2-3-6, Time: 14:30-16:30
Wuxi natives speak a dialect of Wu, which has only one coda nasal /n/ but allows allophones depending on the pre-nasal vowel (Qian, 1992), whereas in Mandarin, there are two coda nasals—alveolar /n/ and velar /ŋ/. Two perception experiments were conducted to investigate Wuxi speakers’ perception and production of coda nasals in their second language (L2) Mandarin. First, two groups of Wuxi native speakers, age around 20 and 50, produced monosyllabic words with nasal coda in Mandarin and their production was used as the stimuli for native Mandarin speakers to identify. Second, the same Wuxi speakers participated in an identification task to judge the place of articulation of the nasal coda in monosyllabic words in standard Mandarin. The results of the first experiment indicate that young Wuxi speakers’ Mandarin production was identified with higher accuracy by native Mandarin speakers than older Wuxi speakers, suggesting the young speakers produced more nativelike Mandarin than the older speakers. The results of the second experiment reveal that young Wuxi speakers identified coda nasals in Mandarin more accurately than older Wuxi speakers did, suggesting Wuxi speakers’ production of Mandarin coda nasals is associated with their perception.

The Diphthongs of Formal Nigerian English: A Preliminary Acoustic Analysis
Natalia Dyrenko1 and Robert Fuchs2
1Étudiants Seminar, Westfälische Wilhelms-Universität Münster, Germany
2Institut für Anglistik und Amerikanistik, Universität Hamburg, Germany
Wed-P-2-3-7, Time: 14:30-16:30
Postcolonial varieties of English, used in countries such as Nigeria, India and Singapore, are subject to both local (“endonormative”) and external (“exonormative”) forces, the latter often in the form of British/American English. This gives rise to a stylistic continuum, where informal speech is more endonormatively oriented than formal/educated speech, which, nevertheless, is clearly distinguishable from British/American English. The formal end of the continuum is often regarded as the incipient local standard. Nigerian English is the most widely spoken African variety of English, but empirical/quantitative descriptions are rare. In this pilot study, we present an acoustic analysis of eight phonological diphthongs produced in formal contexts by nine educated speakers of NgE with L1 Yoruba and drawn from the ICE Nigeria corpus.

Results show that the NgE speakers produced more monophthongal realisations of English phonological diphthongs than speakers of British English do, as measured by trajectory length in F1-F2 space. Phonetically, most of these vowels can be considered monophthongs.

The results can be explained through two factors at work during the foundation phase of NgE: (1) historical L1 influence and (2) the native English input present in the country, which involved more monophthongal realisations of some phonological diphthongs than in present-day BrE.

Characterizing Rhythm Differences between Strong and Weak Accented L2 Speech
Chris Davis and Jeeseun Kim
The MARCS Institute, Western Sydney University, Australia
Wed-P-2-3-8, Time: 14:30-16:30
This study examined the rhythmic characteristics of accented L2 speech by using two relatively novel measures of prosodic rhythm. The S-AMPH measure, an index of the degree of synchrony between the stress and syllable amplitude modulation rates; and the Allan Factor measure, that determines the nested clustering of temporal events (in this case peaks in the amplitude envelope) over different timescales. An extreme-group design was used to select strong versus weak foreign accent recordings from a group of Korean and French L2 English talkers saying the same 69-word English passage. For the Korean talkers, both the S-AMPH and the Allan Factor measures differed as a function of the strength of foreign accent. This was not the case for the French talkers, where neither measure differed as a function of the strength of the foreign accent. The difference in outcome between the Korean and French talkers suggests that the measures may not be indexing a general property of L2 accent (e.g., production fluency).
but rather that they may be picking up a property specific to the strongly accented Korean talkers. We consider several options.

Analysis of Phone Errors Attributable to Phonological Effects Associated With Language Acquisition Through Bottleneck Feature Visualisations

Eva Fringi and Martin Russell
Department of Electronic Electrical and Systems Engineering, University of Birmingham B15 2TT, UK

Wed-P-2-3-9, Time: 14:30-16:30

Previous work aimed to investigate the extent to which errors attributable to phonological effects associated with language acquisition (PEALA) contribute to the output of children’s ASR. Opposite to what was intuitively expected, the proportion of errors predictable from PEALA was positively correlated with recognition accuracy, therefore increased across ages. In order to interpret this finding, the present paper employs a DNN-HMM automatic speech recognition model. It has been trained on the CSLU children’s speech corpus, to produce bottleneck feature (BNF) visualisations of phones and examine how these relate with respect to PEALA. The focus is drawn particularly on ASR errors caused by phone substitutions, which are compared against phone substitution pairs indicated by PEALA. The ASR results confirm the previously observed interaction between errors predictable from PEALA and rising accuracy, but also suggest that these errors only account for a small percentage of the total phone substitution error. The BNF visualisations for the most part outline the age progression smoothly and demonstrate clear clusters of neighbouring phones consistently. The distance between PEALA related phones can be partitioned in four sets, two that increase with age (at a higher or lower rate), one that roughly remains constant and one that decreases with age.

Category Similarity in Multilingual Pronunciation Training

Jacques Koreman
Norwegian University of Science and Technology, Trondheim, Norway

Wed-P-2-3-10, Time: 14:30-16:30

Learners with different native languages (L1) meet different challenges when they learn a foreign language (L2). The Speech Learning Model and the Automatic Speech Recognition Model (ASR) are used to independently assess the importance of L1 to the children’s L2 pronunciation. Among other things, they have shown that the learnability of L2 sounds depends on their similarity to sounds in the L1. L2 sounds are more likely to lead to the formation of new phonetic categories if they differ strongly from L1 categories than if they are similar. The ASR results confirm the previously observed interaction between errors predictable from PEALA and rising accuracy, but also suggest that these errors only account for a small percentage of the total phone substitution error. The BNF visualisations for the most part outline the age progression smoothly and demonstrate clear clusters of neighbouring phones consistently. The distance between PEALA related phones can be partitioned in four sets, two that increase with age (at a higher or lower rate), one that roughly remains constant and one that decreases with age.

The multilingual pronunciation training platform CALST offers exercises for all new L2 sounds. Two implementations of category (dis)similarity are proposed to identify new sounds, one at the level of functional similarity maintaining all L2 phonemic contrasts, the other based on a more fine-grained, multilingual similarity measure, where L2 sounds are considered new if they can contrast phonemically with the most similar L1 sound in any one language. This level of granularity reflects phonetically salient differences between sounds which, when perceived and produced adequately, suffice for high intelligibility and comprehensibility in L2.

Talker Diarization in the Wild: the Case of Child-centered Daylong Audio-recordings

Alejandrina Cristia1, Shobhana Ganesh1, Marisa Casillas2 and Sriram Ganapathy2
1LSCP, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, Paris, 75005, France.
2Electrical Engineering, Indian Institute of Science, Bangalore, 560012, India.

Wed-P-2-3-11, Time: 14:30-16:30

Speaker diarization (answering “who spoke when”) is a widely researched subject within speech technology. Numerous experiments have been run on datasets built from broadcast news, meeting data and call centers - the task sometimes appears close to being solved. Much less work has begun to tackle the hardest diarization task of all: spontaneous conversations in real-world settings. Such diarization would be particularly useful for studies of language acquisition, where researchers investigate the speech children produce and hear in their daily lives. In this paper, we study audio gathered with a recorder worn by small children as they went about their normal days. As a result, each child was exposed to different acoustic environments with a multitude of background noises and a varying number of adults and peers. The inconsistency of speech and noise within and across samples poses a challenging task for speaker diarization systems, which we tackled via retraining and data augmentation techniques. We further studied sources of structured variation across raw audio files, including the impact of speaker type distribution, proportion of speech from children and child age on diarization performance. We discuss the extent to which these findings might generalize to other samples of speech in the wild.

Automated Classification of Children’s Linguistic versus Non-Linguistic Vocalisations

Zixing Zhang1, Alejandrina Cristia1, Anne Warlaumont1 and Björn Schuller1, 2
1GLAM – Group on Language, Audio & Music, Imperial College London, UK
2LSCP, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, France

Wed-P-2-3-12, Time: 14:30-16:30

A key outstanding task for speech technology involves dealing with non-standard speakers, notably young children. Distinguishing children’s linguistic from non-linguistic vocalisations is crucial for a number of applied and fundamental research goals and yet there are few systems available for such a classification. This paper investigates two large-scale frame-level acoustic feature sets (eGeMAPS and ComParE16) followed by a dynamic model (GRU-RNN) and two kinds of derived static feature sets on the segment level (functional-based and Bag of Audio Words) combined with a static model (SVSM) and automatically learnt representations directly from original raw voice signals by using an end-to-end system, which are compared against a simple phonetically-inspired baseline. These are applied to a large database of children’s vocalisations (total N = 6,798) drawn from daylong recordings gathered in Namibia, Bolivia and Vanuatu. All of the systems outperform the baseline, with the highest performance in the test set for GRU-RNN using ComParE16 features. We identify promising paths of further research, including the application of a finer-grained classification of children’s vocalisations onto these data and the exploration of other feature systems.

Pitch Characteristics of L2 English Speech by Chinese Speakers: A Large-scale Study

Jiahong Yuan, Qiusi Dong, Fei Wu, Huan Luan, Xiaofei Yang, Hui Lin and Yang Liu
Lilushuo Inc.

Wed-P-2-3-13, Time: 14:30-16:30

AI-powered English learning apps are used by hundreds of millions of people across the globe on a daily basis. This presents a great opportunity for the study of L2 speech. On one hand, the amount of data accessible for research is very large and rapidly growing; on the other hand, new theories and understanding of L2 speech can be continually tested and revised through real-life and real-time applications. This paper presents a study of pitch characteristics of L2 English speech using a large-scale dataset from a language learning app. Our dataset...
contains 180,000 spoken utterances which amount to 240 hours of speech. The results show that compared to L1, L2 English has narrower pitch range and slower rate of pitch change, but more small “ripples” on the pitch contour. The percentage of F0 rise time is higher in L2 and the maximum F0 in an utterance is realized later (with respect to the onset of the word on which the maximum F0 resides). These results suggest that the influence of L1 on L2 prosody is more complex than previously demonstrated and they shed light on L2 prosody assessment and learning.

Wed-P-2-4-1: Time: 14:30-16:30
In this work, we present a simple and elegant approach to language modeling for bilingual code-switched text. Since code-switching is a blend of two or more different languages, a standard bilingual language model can be improved upon by using structures of the monolingual language models. We propose a novel technique called dual language models, which involves building two complementary monolingual language models and combining them using a probabilistic model for switching between the two. We evaluate the efficacy of our approach using a conversational Mandarin-English speech corpus. We prove the robustness of our model by showing significant improvements in perplexity measures over the standard bilingual language model without the use of any external information. Similar consistent improvements are also reflected in automatic speech recognition error rates.

Multilingual Neural Network Acoustic Modelling for ASR of Under-Resourced English-isiZulu Code-Switched Speech
Astik Biswas1, Febe de Wet1, Ewald van der Westhuizen1, Emre Yilmaz2,3 and Thomas Niesler1
1Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa
2CLS/CLST, Radboud University, Nijmegen, Netherlands
3Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore
Wed-P-2-4-2: Time: 14:30-16:30
Although isiZulu speakers code-switch with English as a matter of course, extremely little appropriate data is available for acoustic modelling. Recently, a small five-language corpus of code-switched South African soap opera speech was compiled. We used this corpus to evaluate the application of multilingual neural network acoustic modelling to English-isiZulu code-switched speech recognition. Our aim was to determine whether English-isiZulu speech recognition accuracy can be improved by incorporating three other language pairs in the corpus: English-isiXhosa, English-Setswana and English-Sesotho. Since isiXhosa, like isiZulu, belongs to the Nguni language family, while Setswana and Sesotho belong to the more distant Sotho family, we could also investigate the merits of additional data from within and across language groups. Our experiments using both fully connected DNN and TDNN-LSTM architectures show that English-isiZulu speech recognition accuracy as well as language identification after code-switching is improved more by the incorporation of English-isiXhosa data than by the incorporation of the other language pairs. However additional data from the more distant language group remained beneficial and the best overall performance was always achieved with a multilingual neural network trained on all four language pairs.

Fast ASR-free and Almost Zero-resource Keyword Spotting Using DTW and CNNs for Humanitarian Monitoring
Raghav Menon1, Herman Kamper1, John Quinn2 and Thomas Niesler1
1Department of Electrical and Electronic Engineering, Stellenbosch University, South Africa
2UN Global Pulse, Kampala, Uganda
Wed-P-2-4-3: Time: 14:30-16:30
We use dynamic time warping (DTW) as supervision for training a convolutional neural network (CNN) based keyword spotting system using a small set of spoken isolated keywords. The aim is to allow rapid deployment of a keyword spotting system in a new language to support urgent United Nations (UN) relief programmes in parts of Africa where languages are extremely under-resourced and the development of annotated speech resources is infeasible. First, we use 1920 recorded keywords (40 keyword types, 34 minutes of speech) as exemplars in a DTW-based template matching system and apply it to untranscribed broadcast speech.

Then, we use the resulting DTW scores as targets to train a CNN on the same unlabelled speech. In this way we use just 34 minutes of labelled speech, but leverage a large amount of unlabelled data for training. While the resulting CNN keyword spotter cannot match the performance of the DTW-based system, it substantially outperforms a CNN classifier trained only on the keywords, improving the area under the ROC curve from 0.54 to 0.64. Because our CNN system is several orders of magnitude faster at runtime than the DTW system, it represents the most viable keyword spotter on this extremely limited dataset.

Text-Dependent Speech Enhancement for Small-Footprint Robust Keyword Detection
Meng Yu1, Xuan Ji1, Yi Gao1, Lianwu Chen1, Jie Chen1, Jimeng Zheng1, Dan Su1 and Dong Yu2
1Tencent AI Lab, Shenzhen, China
2Tencent AI Lab, Bellevue, WA, USA
Wed-P-2-4-4: Time: 14:30-16:30
Keyword detection (KWD), also known as keyword spotting, is in great demand in small devices in the era of Internet of Things. Albeit recent progresses, the performance of KWD, measured in terms of precision and recall rate, may still degrade significantly when either the non-speech ambient noises or the human voice and speech-like interferences (e.g., TV, background competing talkers) exist. In this paper, we propose a general solution to address all kinds of environmental interferences. A novel text-dependent speech enhancement (TDSE) technique using a recurrent neural network (RNN) with long short-term memory (LSTM) is presented for improving the robustness of the small-footprint KWD task in the presence of environmental noises and interfering talkers. On our large simulated and recorded noisy and far-field evaluation sets, we show that TDSE significantly improves the quality of the target keyword speech and performs particularly well under speech interference conditions. We demonstrate that KWD with TDSE frontend significantly outperforms the baseline KWD system with or without a generic speech enhancement in terms of equal error rate (EER) in the keyword detection evaluation.

Improved ASR for Under-resourced Languages through Multi-task Learning with Acoustic Landmarks
Di He1, Boon Pang Lim1, Xuesong Yang1, Mark Hasegawa-Johnson2 and Deming Chen1
1Coordinated Science Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801
2Novumind Inc, Santa Clara, USA 95054
Wed-P-2-4-5: Time: 14:30-16:30
Furui first demonstrated that the identity of both consonant and vowel can be perceived from the C-V transition; later, Stevens proposed that acoustic landmarks are the primary cues for speech perception and that steady-state regions are secondary or supplemental. Acoustic landmarks are perceptually salient, even in a language one doesn’t speak and it has been demonstrated that non-speakers of the language can identify features such as the primary articulator of the landmark. These factors suggest a strategy for developing language-independent automatic speech recognition: landmarks can potentially be learned once from a suitably labeled corpus and rapidly applied to many other languages. This paper proposes enhancing the cross-lingual portability of a neural network by using landmarks as the secondary task in multi-task learning (MTL). The network is trained in a well-resourced source language with both phone and landmark labels (English), then adapted to an under-resourced target language with only word labels (Iban). Landmark-tasked MTL reduces source-language phone error rate by 2.9% relative and reduces target-language word error rate by 1.9%-5.9% depending on the amount of target-language training data. These results suggest that landmark-tasked MTL causes the DNN to learn hidden-node features that are useful for cross-lingual adaptation.

Cross-language Phoneme Mapping for Low-resource Languages: An Exploration of Benefits and Trade-offs
Nick K Chibuye1, Todd Rosenstock2 and Brian DeRenzi2
1University of Cape Town
2World Agroforestry Centre (ICRAF)

Punctuation Prediction Model for Conversational Speech
Piotr Żelasko1,2, Piotr Szymański1,2, Jan Mizgajski1, Adrian Szymczak1, Yishay Carmiel1 and Najim Dehak4
1Intelligent Wire, USA
2Department of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, al. Mickiewicza 30, Kraków, Poland
3Department of Computational Intelligence, Wrocław University of Technology, Wybrzeże Stasniawskiego 27, 50-370 Wrocław, Poland
4Center for Language and Speech Processing, The Johns Hopkins University, Baltimore, MD, USA

Notes
impaired people in which a complete phonetic repertoire is obtained by combining lip movements with hand cues. In the proposed system, the dynamic of visual features extracted from lip and hand images using convolutional neural networks (CNN) are modeled by a set of hidden Markov models (HMM), for each phonetic context (tandem architecture). CNN-based feature extraction is compared to an unsupervised approach based on the principal component analysis. A novel temporal segmentation of hand streams is used to train CNNs efficiently. Different strategies for combining the extracted visual features within the HMM decoder are investigated. Experimental evaluation is carried on an audiovisual dataset (containing only continuous French sentences) recorded specifically for this study. In its best configuration and without exploiting any dictionary or language model, the proposed tandem CNN-HMM architecture is able to identify correctly more than 73% of the phoneme (62% when considering insertion errors).

Building Large-vocabulary Speaker-independent Lipreading Systems
Kwanchiva Thangthai1,2 and Richard Harvey1
1School of Computing Sciences, University of East Anglia, Norwich, UK
2National Electronics and Computer Technology Center, Thailand

Wed-P-2-4-11, Time: 14:30-16:30
Constructing a viable lipreading system is a challenge because it is claimed that only 30% of information of speech production is visible on the lips. Nevertheless, in small vocabulary tasks, there have been several reports of high accuracies. However, investigation of larger vocabulary tasks is much rarer.

This work examines constructing a large vocabulary lipreading system using an approach based-on Deep Neural Network Hidden Markov Models (DNN-HMMs). We tackle the problem of lipreading an unseen speaker. We investigate the effect of employing several steps to pre-process visual features. Moreover, we examine the contribution of language modelling in a lipreading system where we use longer n-grams to recognise visual speech. Our lipreading system is constructed on the 6000-word vocabulary TCD-TIMIT audiovisual speech corpus. The results show that visual speech recognition can definitely reach 50% word accuracy on large vocabularies. We actually achieved a mean of 53.83% measured via three-fold cross-validation on the speaker independent setting of the TCD-TIMIT corpus using bigrams.

CRIM’s System for the MGB-3 English Multi-Genre Broadcast Media Transcription
Vishwa Gupta and Gilles Boulianne
Centre de recherche informatique de Montréal (CRIM)

Wed-P-2-4-12, Time: 14:30-16:30
The Second English Multi-Genre Broadcast Challenge (MGB-3) is a controlled evaluation of speech recognition and lightly supervised alignment using BBC TV recordings. CRIM is participating in the speech recognition part of the challenge. This paper presents CRIM’s contributions to the MGB-3 transcription task. This task is inherently more difficult than the first task as the training audio has been reduced from 1200 hours to 500 hours. CRIM’s main contributions are experimentation with bidirectional LSTM models and lattice-free MMI (LF-MMI) trained TDNN models for acoustic modeling, LSTM and DNN models for speech/non-speech detection for input to speaker diarization and LSTM language models for resourcing lattices. We also show that adding senone posteriors to the input of LSTM and DNN models for speech/non-speech detection (VAD) reduces error rate. CRIM’s best single decoding WER for the MGB-3 dev17 dev set (with reference segmentation) went down from 27.6% (with our MGB-1 challenge system) to 24.1% for this task using the LF-MMI trained TDNN models. The final WER of dev17 set (after VAD) is 20.9% and on the new dev18 development set is 20.8%.

Sampling Strategies in Siamese Networks for Unsupervised Speech Representation Learning
Rachid Riad1,2, Corentin Dancette1, Julien Karadayi1, Neil Zeghidour1,3, Thomas Schatz2,4,5 and Emmanuel Dupoux1,3
1CoML/ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France
2NPI/ENS/INSERM/UPEC, Créteil, France
3Facebook A.I. Research, Paris, France
4Department of Linguistics & UMIACS, University of Maryland, College Park MD, USA
5Department of Linguistics, Massachusetts Institute of Technology, Cambridge MA, USA

Wed-P-2-4-13, Time: 14:30-16:30
Recent studies have investigated siamese network architectures for learning invariant speech representations using same-different side information at the word level. Here we investigate systematically an often ignored component of siamese networks: the sampling procedure (how pairs of same vs. different speech are selected). We study how different sampling strategies taking into account Zipf’s Law, the distribution of speakers and the proportions of same and different pairs of words significantly impact the performance of the network. In particular, we show that word frequency compression improves learning across a large range of variations in the number of training pairs. This effect does not apply to the same extent to the fully unsupervised setting, where the pairs of same-different words are obtained by spoken term discovery. We apply these results to pairs of words discovered using an unsupervised algorithm and show an improvement on the state-of-the-art in unsupervised representation learning using siamese networks.

Compact Feedforward Sequential Memory Networks for Small-footprint Keyword Spotting
Mengzhe Chen, Shi.Liang Zhang, Ming Lei, Yong Liu, Haitao Yao and Jie Gao
Alibaba Group, P. R. China

Wed-P-2-4-14, Time: 14:30-16:30
Due to limited resource on devices and complicated scenarios, a compact model with high precision, low computational cost and latency is expected for small-footprint keyword spotting tasks. To fulfill these requirements, in this paper, compact Feed-forward Sequential Memory Network (cFSMN) which combines low-rank matrix factorization with conventional FSMN is investigated for a far-field keyword spotting task. The effect of its architecture parameters is analyzed. Towards achieving lower computational cost, multi-frame prediction (MFP) is applied to cFSMN. For enhancing the modeling capacity, an advanced MFP is attempted by inserting small DNN layers before output layers. The performance is measured by area under the curve (AUC) for detection error tradeoff (DET) curves. The experiments show that compared with a well-tuned long short-term memory (LSTM) which needs the same latency and twofold computational cost, the cFSMN achieves 18.11% and 29.21% AUC relative decreases on the test sets which are recorded in quiet and noisy environment respectively. After applying advanced MFP, the system gets 0.48% and 0.04% AUC relative decrease over conventional cFSMN on the quiet and noisy test sets respectively, while the computational cost relatively reduces 46.58%.

Wed-0-3-1: Zero-resource Speech Recognition
Hall 1; 17:00-19:00; Wednesday, 5 September, 2018
Chair: Florian Metze and Hynek Hermansky

Multilingual Bottleneck Features for Subword Modeling in Zero-resource Languages
Enno Hermann and Sharon Goldwater
ILCC, School of Informatics, University of Edinburgh, UK

Wed-0-3-1-1, Time: 17:00-17:20
How can we effectively develop speech technology for languages where no transcribed data is available? Many existing approaches use no annotated resources at all, yet it makes sense to leverage information from
large annotated corpora in other languages, for example in the form of multilingual bottleneck features (BNFs) obtained from a supervised speech recognition task. In this work, we evaluate the benefits of BNFs for subword modeling (feature extraction) in six unseen languages on a word discrimination task. First we establish a strong unsupervised baseline by combining two existing methods: vocal tract length normalisation (VTLN) and the correspondence autoencoder (cAE). We then show that BNFs trained on a single language already beat this baseline; including up to 10 languages results in additional improvements which cannot be matched by just adding more data from a single language. Finally, we show that the cAE can improve further on the BNFs if high-quality same-word pairs are available.

Exploiting Speaker and Phonetic Diversity of Mismatched Language Resources for Unsupervised Subword Modeling
Siuyan Feng and Tan Lee
Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

Wed-0-3-1-2, Time: 17:20-17:40
This study addresses the problem of learning robust frame-level feature representation for unsupervised subword modeling in the zero-resource scenario. Robustness of the learned features is achieved through effective speaker adaptation and exploiting cross-lingual phonetic knowledge. For speaker adaptation, an out-of-domain automatic speech recognition (ASR) system is used to estimate iMLLR features for untranscribed speech of target zero-resource languages. The iMLLR features are applied in multi-task learning of a deep neural network (DNN) to further obtain phonetically discriminative and speaker-invariant bottleneck features (BNFs). Frame-level labels for DNN training can be acquired based on two approaches: Dirichlet process Gaussian mixture model (DPGMM) clustering and out-of-domain ASR decoding. Moreover, system fusion is performed by concatenating BNFs extracted by different DNNs. Our methods are evaluated by ZeroSpeech 2017 Track one, where the performance is evaluated by ABX minimal pair discriminability. Experimental results demonstrate that: (1) Using an out-of-domain ASR system to perform speaker adaptation of zero-resource speech is effective and efficient; (2) Our system achieves highly competitive performance to state of the art; (3) System fusion could improve feature representation capability.

Unsupervised Word Segmentation from Speech with Attention
Pierre Godard1, Marcely Zanon Boito1, Lucas Ondel2, Alexandre Berard2,1, François Yvon1, Aline Villavicencio1 and Laurent Besacier2
1LIMSI, CNRS, Université Paris-Saclay, Orsay, France
2LIG, UGA, G-INP, CNRS, INRIA, Grenoble, France
3’BUT, Brno, Czech Republic
4CSEE, University of Essex, UK
5CRISTAL, Université de Lille, France

Wed-0-3-1-3, Time: 17:40-18:00
We present a first attempt to perform attentional word segmentation from speech signal, with the final goal of automatically identifying lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a pseudo-phones sequence that is segmented using neural soft alignments (from a neural machine translation model). Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.

Nils Holzenberger1, Mingxing Dui1, Julien Karadayi2, Rachid Riaid1,2
1CLSP, Johns Hopkins University, USA
2ENS, EHESS, PSL Research University, CNRS, INRIA, France

Wed-0-3-1-4, Time: 18:00-18:20
Fixed-length embeddings of words are very useful for a variety of tasks in speech and language processing. Here we systematically explore two methods of computing fixed-length embeddings for variable-length sequences. We evaluate their susceptibility to phonetic and speaker-specific variability on English, a high resource language and Xitsonga, a low resource language, using two evaluation metrics: ABX word discrimination and ROC-AUC on same-different phoneme n-grams. We show that a simple downsampling method supplemented with length information can outperform the variable-length input feature representation on both evaluations. Recurrent autencoders, trained without supervision, can yield even better results at the expense of increased computational complexity.

Full Bayesian Hidden Markov Model Variational Autoencoder for Acoustic Unit Discovery
Thomas Glarner, Patrick Hanebrink, Janek Ebbers and Reinhold Haeb-Umbach
Paderborn University, Germany

Wed-0-3-1-5, Time: 18:20-18:40
The invention of the Variational Autoencoder enables the application of Neural Networks to a wide range of tasks in unsupervised learning, including the field of Acoustic Unit Discovery (AUD). The recently proposed Hidden Markov Model Variational Autoencoder (HMMVAE) allows a joint training of a neural network based feature extractor and a structured prior for the latent space given by a Hidden Markov Model. It has been shown that the HMMVAE significantly outperforms pure GMM-HMM based systems on the AUD task.

However, the HMMVAE cannot autonomously infer the number of acoustic units and thus relies on the GMM-HMM system for initialization.

This paper introduces the Bayesian Hidden Markov Model Variational Autoencoder (BHMVAE) which solves these issues by embedding the HMMVAE in a Bayesian framework with a Dirichlet Process Prior for the distribution of the acoustic units and diagonal or full-covariance Gaussians as emission distributions.

Experiments on Timit and Xitsonga show that the BHMVAE is able to autonomously infer a reasonable number of acoustic units, can be initialized without supervision by a GMM-HMM system, achieves computationally efficient stochastic variational inference by using natural gradient descent and, additionally, improves the AUD performance over the HMMVAE.

Unspeech: Unsupervised Speech Context Embeddings
Benjamin Milde and Chris Biemann
Language Technology, Universität Hamburg

Wed-0-3-1-6, Time: 18:40-19:00
We introduce “Unspeech” embeddings, which are based on unsupervised learning of context feature representations for spoken language. The embeddings were trained on up to 9500 hours of crawled English speech data without transcriptions or speaker information, by using a straightforward learning objective based on context and non-context discrimination with negative sampling. We use a Siamese convolutional neural network architecture to train Unspeech embeddings and evaluate them on speaker comparison, utterance clustering and as a context feature in TDNN-HMM acoustic models trained on TED-LIUM, comparing it to i-vector baselines. Particularly decoding out-of-domain speech data from the recently released Common Voice corpus shows consistent WER reductions. We release our source code and pre-trained Unspeech models under a permissive open source license.

Notes
Impact of Aliasing on Deep CNN-Based End-to-End Acoustic Models
Yuan Gong and Christian Poellabauer
Department of Computer Science and Engineering, University of Notre Dame, IN 46556, USA

A recent trend in audio and speech processing is to learn target labels directly from raw waveforms rather than hand-crafted acoustic features. Previous work has shown that deep convolutional neural networks (CNNs) as front-end can learn effective representations from the raw waveform. However, due to the large dimension of raw audio waveforms, pooling layers are usually used aggressively between temporal convolutional layers. In essence, these pooling layers perform operations that are similar to signal downsampling, which may lead to temporal aliasing according to the Nyquist-Shannon sampling theorem. This paper explores, using a series of experiments, if and how this aliasing effect impacts modern deep CNN-based models.

Keyword Based Speaker Localization: Localizing a Target Speaker in a Multi-speaker Environment
Sunit Sivasankaran, Emmanuel Vincent and Dominique Fohr
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

Speaker localization is a hard task, especially in adverse environmental conditions involving reverberation and noise. In this work we introduce the new task of localizing the speaker who uttered a given keyword, e.g., ‘Stop the music’. We employ a convolutional neural network based localization system and investigate multiple identifiers as additional inputs to the system in order to characterize this speaker. We conduct experiments using ground truth identifiers which are obtained assuming the availability of clean speech and also in realistic conditions where the identifiers are computed from the corrupted speech. We find that the identifier consisting of the ground truth time-frequency mask corresponding to the target speaker provides the best localization performance and we propose methods to estimate such a mask in adverse reverberant and noisy conditions using the considered keyword.

End-to-End Speech Separation with Unfolded Iterative Phase Reconstruction
Zhong-Qiu Wang1,2, Jonathan Le Roux1, DeLiang Wang1,3 and John Hershey1
1Mitsubishi Electric Research Laboratories (MERL), USA
2Department of Computer Science and Engineering, The Ohio State University, USA
3Center for Cognitive and Brain Sciences, The Ohio State University, USA

This paper proposes an end-to-end approach for single-channel speaker-independent multi-speaker speech separation, where time-frequency (T-F) masking, the short-time Fourier transform (STFT) and its inverse are represented as layers within a deep network. Previous approaches, rather than computing a loss on the reconstructed signal, used a surrogative loss based on the target STFT magnitudes. This ignores reconstruction error introduced by phase inconsistency. In our approach, the loss function is directly defined on the reconstructed signals, which are optimized for best separation. In addition, we train through unfolded iterations of a phase reconstruction algorithm, represented as a series of STFT and inverse STFT layers. While mask values are typically limited to lie between zero and one for approaches using the mixture phase for reconstruction, this limitation is less relevant if the estimated magnitudes are to be used together with phase reconstruction. We thus propose several novel activation functions for the output layer of the T-F masking, to allow mask values beyond one. On the publicly-available wsj0-2mix dataset, our approach achieves state-of-the-art 12.6 dB scale-invariant signal-to-distortion ratio (SI-SDR) and 13.1 dB SDR, revealing new possibilities for deep learning based phase reconstruction and representing a fundamental progress towards solving the notoriously-hard cocktail party problem.
Notes
The Apollo Program is one of the most significant benchmarks for technology and innovation in human history. The previously introduced UTD-CRSS Apollo initiative resulted in the digitization of the original analog audio tapes recorded during the Apollo Space Missions. This entire speech data is now being made publicly available with the release of the Fearless Steps Corpus. This corpus consists of a cumulative 19,000 hours of conversational speech spanning over thirty time-synchronized channels. With over six hundred speakers, the corpus has a rich collection of information which can be beneficial for research and advancement in the Speech and Language Community. Recent efforts on this data have led to the generation of pipeline diarization transcripts for the entire Speech Corpus. Research has also been done to address speech and natural language tasks such as speech activity detection, speech recognition and sentiment analysis. This paper provides an overview of the Fearless-Steps Corpus as well as a summary of previous research work achieved and highlights the factors that make the processing of this data a challenging problem. To initiate further development of algorithms on this Corpus, five challenge tasks are also organized. We also describe the challenge tasks with their associated transcriptions.

A Knowledge Driven Structural Segmentation Approach for Play-Talk Classification During Autism Assessment

Manoj Kumar¹, Pooja Chebolu¹, So Hyun Kim², Kassandra Martinez², Catherine Lord² and Shrikanth Narayanan³

¹University of Southern California, Los Angeles, United States
²Department of Psychiatry, Weill Cornell Medicine, New York, United States

Wed-O-3-4-2, Time: 17:20-17:40

Automatically segmenting conversational audio into semantically relevant components has both computational and analytical significance. In this paper, we segment play activities and conversational portions interspersed during clinically administered interactions between a psychologist and a child with autism spectrum disorder (ASD). We show that various acoustic-phonetic and turn-taking features are different between these segments and hence can possibly influence further inference tasks. We adopt a two-step approach for the segmentation problem by taking advantage of the structural relation between the two segments. First, we use a supervised machine learning algorithm to estimate class posteriors at frame-level. Next, we use an implicit-duration hidden Markov model (EDHMM) to align the states using the posteriors from the previous step. The distributional distributions for both play and talk regions are learnt from training data and modeled using the EDHMM. Our results show that speech features can be used to successfully discriminate between play and talk activities, each providing important insights into the child’s condition.

An Open Source Emotional Speech Corpus for Human Robot Interaction Applications

Jesin James, Li Tian and Catherine Inez Watson

Department of Electrical and Computer Engineering, University of Auckland, New Zealand

Wed-O-3-4-3, Time: 17:40-18:00

For further understanding the waywide array of emotions embedded in human speech, we are introducing a strictly-guided simulated emotional speech corpus. In contrast to existing speech corpora, this was constructed by maintaining an equal distribution of 4 long vowels in New Zealand English. This balance is to facilitate emotion related information and glottal source feature comparison studies. Also, the corpus has 5 secondary emotions and 5 primary emotions. Secondary emotions are important in Human-Robot Interaction (HRI) to model natural conversations among humans and robots. But there are few existing speech resources to study these emotions, which has motivated the creation of this corpus. A large scale perception test with 120 participants showed that the corpus has approximately 70% and 60% accuracy in the correct classification of primary and secondary emotions respectively. The reasons behind the differences in perception accuracies of the two emotion types is further investigated. A preliminary prosodic analysis of corpus shows significant differences among the emotions. The corpus is made public at: github.com/tli725/JL-Corpus.

Notes
Speech Database and Protocol Validation Using Waveform Entropy
Ishak Lapidot1, Héctor Delgado2, Massimiliano Todisco2, Nicholas Evans2 and Jean-François Bonastre2
1Afeka Tel-Aviv College of Engineering, ACLP, Israel
2EURECOM, Biot France
3University of Avignon, LIA, France
Wed-0-3-4-4, Time: 18:00-18:20
The assessment of performance for any number of speech processing tasks calls for the use of a suitably large, representative dataset. Dataset design is crucial so as to ensure that any significant variation unrelated to the task in hand is adequately normalised or marginalised. Most datasets are partitioned into training, development and evaluation subsets. Depending on the task, the nature of these three subsets should normally be close to identical. With speech signals being subject to a multitude of different influences, e.g. speaker gender and age, language, dialect, utterance length, etc., the design and validation of speech datasets can become especially challenging. Even if many sources of variation unrelated to the task in hand can easily be marginalised, other sources of more subtle variation can easily be overlooked. Imbalances between training, development and evaluation partitions, can bring into question findings derived from their use. Stringent dataset validation procedures are required. This paper reports a particularly straightforward approach to dataset validation that is based upon waveform entropy.

A French-Spanish Multimodal Speech Communication Corpus Incorporating Acoustic Data, Facial, Hands and Arms Gestures Information
Lucas D. Terissi1, Gonzalo Sad1, Mauricio Cerda2, Slim Oum2, Rodrigo Galvez2, Juan C. Gómez3, Bernard Giraud4 and Nancy Hitschfeld-Kahler4
1CIFASIS-CONICET, Universidad Nacional de Rosario, Argentina
2SCIAN-Lab, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
3Université de Lorraine, LORIA, UMR 7503, Villers-lès-Nancy, France
4Computer Science Department, FCFyM, Universidad de Chile, Santiago, Chile
Wed-0-3-4-5, Time: 18:20-18:40
A Bilingual Multimodal Speech Communication Corpus incorporating acoustic data as well as visual data related to face, hands and arms gestures during speech, is presented in this paper. This corpus comprises different speaking modalities, including scripted text speech, natural conversation and free speech. The corpus has been compiled in two different languages, viz., French and Spanish. The experimental setups for the recording of the corpus, the acquisition protocols and the employed equipment are described. Statistics regarding the number and gender of the speakers, number of words, number of sentences and duration of the recording sessions, are also provided. Preliminary results from the analysis of the correlation among speech, head and hand movements during spontaneous speech are also presented in this paper, showing that acoustic prosodic features are related with head and hand gestures.

L2-ARCTIC: A Non-native English Speech Corpus
Guanglong Zhao1, Sinem Sonsal2, Atif Silpachai1, Ivana Lucic2, Evgeny Chukharev-Hudilainen2, John Levis2 and Ricardo Gutierrez-Osuna1
1Department of Computer Science and Engineering, Texas A&M University, United States
2Department of English, Iowa State University, United States
Wed-0-3-4-6, Time: 18:40-19:00
In this paper, we introduce L2-ARCTIC, a speech corpus of non-native English that is intended for research in voice conversion, accent conversion and mispronunciation detection. This initial release includes recordings from ten non-native speakers of English whose first languages (L1s) are Hindi, Korean, Mandarin, Spanish and Arabic, each L1 containing recordings from one male and one female speaker. Each speaker recorded approximately one hour of read speech from the Carnegie Mellon University ARCTIC prompts, from which we generated orthographic and forced-aligned phonetic transcriptions. In addition, we manually annotated 150 utterances per speaker to identify three types of mispronunciation errors: substitutions, deletions and additions, making it a valuable resource not only for research in voice conversion and accent conversion but also in computer-assisted pronunciation training. The corpus is publicly accessible at https://psi.engr.tamu.edu/l2-arctic-corpus/.

Notes

Wed-SS-3-1: Special Session: The First DIHARD Speech Diarization Challenge
Zbyněk Zajíc1, Marie Kuněšová2, Jan Želinka2 and Marek Hruž2
1University of West Bohemia Faculty of Applied Sciences, NTIS - New Technologies for the Information Society, Univerzitní B, 306 14 Plzeň, Czech Republic
2University of West Bohemia Faculty of Applied Sciences, Dept. of Cybernetics, Univerzitní B, 306 14 Plzeň, Czech Republic
Wed-SS-3-1-1, Time: 17:00-17:17
In this paper, we present the system developed by the team from the New Technologies for the Information Society (NTIS) research center of the University of West Bohemia, for the First DIHARD Speech Diarization Challenge. The base of our system follows the currently-standard approach of segmentation, i-vector extraction, clustering and resegmentation. Here, we describe the modifications to the system which allowed us to apply it to data from a range of different domains. The main contribution to our achievement is an ANN-based domain classifier, which categorizes each conversation into one of the ten domains present in the development set. This classification determines the specific system configuration, such as the expected number of speakers and the stopping criterion for the hierarchical clustering. At the time of writing of this abstract, our best submission achieves a DER of 26.90% and an M of 8.24 bits on the evaluation set (gold speech/nonspeech segmentation).

Speaker Diarization with Enhancing Speech for the First DIHARD Challenge
Lei Sun1, Jun Du1, Chao Jiang2, Xueyang Zhang1, Shan He1, Bing Yin1 and Chin-Hui Lee1
1University of Science and Technology of China, Hefei, Anhui, P. R. China
2Flytek Research, Hefei, Anhui, P. R. China
3Georgia Institute of Technology, Atlanta, GA. USA
Wed-SS-3-1-2, Time: 17:17-17:34
We design a novel speaker diarization system for the first DIHARD challenge by integrating several important modules of speech denoising, speech activity detection (SAD), i-vector design and scoring strategy. One main contribution is the proposed long short-term memory (LSTM) based speech denoising model. By fully utilizing the diversified simulated training data and advanced network architecture using progressive multitask learning with dense structure, the denoising model demonstrates the strong generalization capability to realistic noisy environments. The enhanced speech can boost the performance for the subsequent SAD, segmentation
and clustering. To the best of our knowledge, this is the first time we show significant improvements of deep learning based single-channel speech enhancement over state-of-the-art diarization systems in highly mismatch conditions. For the design of i-vector extraction, we adopt a residual convolutional neural network trained on large dataset including more than 30,000 people. Finally, by score fusion of different i-vectors based on all these techniques, our systems yield diarization error rates (DERs) of 24.56% and 36.05% on the evaluation sets of Track1 and Track2, which are both in the second place among 14 and 11 participating teams, respectively.

But System for DIHARD Speech Diarization Challenge 2018
Mireia Díez, Federico Landini, Lukáš Burget, Johan Rohdin, Anna Snilova, Kateřina Žmoličková, Ondřej Novotný, Karel Veselý, Ondřej Glembek, Oldřich Plchót, Ladislav Mošner and Pavel Matějka
Brno University of Technology, Speech@FIT, Czechia

Wed-SS-3-1-3, Time: 17:34-17:51

This paper presents the approach developed by the BUT team for the first DIHARD speech diarization challenge, which is based on our Bayesian Hidden Markov Model with eigenvoices prior system. Besides the description of the approach, we provide a brief analysis of different techniques and data processing methods tested on the development set. We also introduce a simple method for overlapped speech detection that we used for attaining cleaner speaker models and reassigning overlapped speech to multiple speakers.

Finally, we present results obtained on the evaluation set and discuss findings we made during the development phase and with the help of the DIHARD leaderboard feedback.

Estimation of the Number of Speakers with Variational Bayesian PLDA in the DIHARD Diarization Challenge
Ignacio Víhals, Pablo Gimeno, Alfonso Ortega, Antonio Miguel and Eduardo Lleida
ViVoLAB, Aragón Institute for Engineering Research (I3A), University of Zaragoza, Spain

Wed-SS-3-1-4, Time: 17:51-18:08

This paper focuses on the estimation of the number of speakers for diarization in the context of the DIHARD Challenge at Interspeech 2018. This evaluation seeks the improvement of the diarization task in challenging corpora (YouTube videos, meetings, court audios, etc), containing an undetermined number of speakers with different relevance in terms of speech contributions.

Our proposal for the challenge is a system based on the i-vector PLDA paradigm. Given some initial segmentation of the input audio we extract i-vector representations for each acoustic fragment. These i-vectors are clustered with a Fully Bayesian PLDA. This model, a generative model with latent variables as speaker labels, produces the diarization labels by comparing multiple hypotheses according to different information criteria. These criteria are developed around the Evidence Lower Bound (ELBO) provided by our PLDA.

Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge
Gregory Sell, David Snyder, Alan McCree, Daniel Garcia-Romero, Jesús Vitilla, Matthew Maciejewski, Vimal Manohar, Najim Dehak, Daniel Povey, Shinji Watanabe and Sanjeev Khudanpur
Center for Language and Speech Processing & Human Language Technology Center of Excellence, Johns Hopkins University, USA

Wed-SS-3-1-5, Time: 18:08-18:25

We describe in this paper the experiences of the Johns Hopkins University team during the inaugural DIHARD diarization evaluation. This new task provided microphone recordings in a variety of difficult conditions and challenged researchers to fully consider all speaker activity, without the currently typical practice of ignoring or overlapping speaker segments. This paper explores several key aspects of currently state-of-the-art diarization methods, such as training data selection, signal bandwidth for feature extraction, representations of speech segments (i-vector versus x-vector) and domain of the active processing. In the end, our best system x-vector embeddings trained on wideband microphone data followed by Variational-Bayesian refinement and a speech activity detector specifically trained for this task with in-domain data was found to be the best performing. After presenting these decisions and their final results, we discuss lessons learned and remaining challenges within the lens of this new approach to diarization performance measurement.

The EURECOM Submission to the First DIHARD Challenge
Jose Patino, Héctor Delgado and Nicholas Evans
Department of Digital Security, EURECOM, Sophia Antipolis, France

Wed-SS-3-1-6, Time: 18:25-18:42

The first DIHARD challenge aims to promote speaker diarization research and to foster progress in domain robustness. This paper reports EURECOM’s submission to the DIHARD challenge. It is based upon a low-resource, domain-robust binary key approach to speaker modelling. New contributions include the use of an infinite impulse response – constant Q Mel-frequency filter banks, autoencoders and x-vectors and a novel speaker activity detector specifically trained for this task with in-domain data. Experimental results obtained using the standard DIHARD database show that the contributions reported in this paper deliver relative improvements of 39% in terms of the diarization error rate over the baseline algorithm. An absolute DER of 29% on the evaluation set compares favourably with those of competing systems, especially given that the binary key system is highly efficient, running 63 times faster than real-time.

Joint Discriminative Embedding Learning, Speech Activity and Overlap Detection for the DIHARD Speaker Diarization Challenge
Valter Akira Masato Filho, Diego Augusto Silva and Luis Gustavo Depra Cuzzo

1CPqD, Campinas, Sao Paulo, Brazil
2Federal University of Technology, Curitiba, Parana, Brazil

Wed-SS-3-1-7, Time: 18:42-19:00

The DIHARD is a new, annual speaker diarization challenge focusing on “hard” domains, i.e. datasets in which current state-of-the-art systems are expected to perform poorly. We present our diarization system, which is a neural network jointly optimized for speaker embedding learning, speech activity and overlap detection. We present our network topology and the affinity matrix loss objective function responsible for learning the frame-wise speaker embeddings. The outputs of the network are then clustered with k-means and each frame classified with speech activity is assigned to one or two speakers, depending on the overlap detection. For the training data, we used two well-known meeting corpora - the AMI and the ICSI datasets, together with the provided samples from the DIHARD challenge. To further enhance our system, we present three data augmentation settings: the first is a naive concatenation of isolated speaker utterances from non-diarization datasets, which generates artificial diarization prompts. The second is a simple noise addition with sampled signal-to-noise ratios. The third is using noise suppression over the development data. All training setups are compared in terms of diarization error rate and mutual information in the evaluation set of the challenge.

Notes
Multilingual Grapheme-to-Phoneme Conversion with Global Character Vectors
Jinfu Ni, Yoshinori Shiga and Hisashi Kawai
Advanced Speech Technology Laboratory, ASTREC, National Institute of Information and Communications Technology, Japan

Wed-P-3-1-1, Time: 17:00-19:00

Multilingual grapheme-to-phoneme (G2P) models are useful for multilingual speech synthesis because one model simultaneously copes with multilingual words. We propose a G2P model that combines global character vectors (GCVs) with bidirectional recurrent neural networks (BRNNs) and enables the direct conversion of text (as a sequence of characters) to pronunciation. GCVs are distributional, real-valued representations of characters and their contextual interactions that can be learned from a large-scale text corpus in an unsupervised manner. With the flexibility of learning GCVs from plain text resources, this method has an advantage: it enables monolingual G2P (MoG2P) and multilingual G2P (MuG2P) conversion.

We experiment in four languages (Japanese, Korean, Thai and Chinese) with learning language-dependent (LD) and language-independent (LI) GCVs and then build MoG2P and MuG2P models with two-hidden-layer BRNNs. Our results show that both LD- and LI-GCV-based MoG2P models, whose performances are equivalent, achieved better than 97.7% syllable accuracy, which is a relative improvement from 27% to 90% depending on the language in comparison with Mecab-based models. As for MuG2P, the accuracy is around 98%, which is a slightly degraded performance compared to MoG2P. The proposed method also has the potential of the G2P conversion of non-normalized words, achieving 80% accuracy in Japanese.

A Hybrid Approach to Grapheme to Phoneme Conversion in Assamese
Somnath Roy¹ and Shaktuntala Mahanta²
¹Machine Learning Division, Melvault Software Solutions Pvt. Ltd., Hyderabad
²Department of Humanities and Social Science, IIT, Guwahati

Wed-P-3-1-2, Time: 17:00-19:00

Assamese is one of the low resource Indian languages. This paper implements both rule-based and data-driven grapheme to phoneme (G2P) conversion systems for Assamese. The rule-based system is used as the baseline which yields a word error rate of 35.3%. The data-driven systems are implemented using state-of-the-art sequence learning techniques such as i) Joint-Sequence Model (JSM), ii) Recurrent Neural Networks (RNNs) and iii) bidirectional LSTM (BiLSTM). The BiLSTM yields the lowest WER i.e., 18.7%, which is an absolute 16.6% improvement on the baseline system.

We additionally implement the rules of syllabification for Assamese. The surface output is generated in two forms namely i) phonemic sequence with syllable boundaries and ii) only phonemic sequence. The output of BiLSTM is fed as an input to Hybrid system. The Hybrid system syllabifies the input phonemic sequences to apply the vowel harmony rules. It also applies the rules of schwa-deletion as well as some rules in which the consonants change their form in clusters. The accuracy of the Hybrid system is 17.3% which is an absolute 1.4% improvement over the BiLSTM based G2P.

Investigation of Using Disentangled and Interpretable Representations for One-shot Cross-lingual Voice Conversion
Seyed Hamidreza Mohammadi and Taehwan Kim
ObEN, Inc.

Wed-P-3-1-3, Time: 17:00-19:00

We study the problem of cross-lingual voice conversion in non-parallel speech corpora and one-shot learning setting. Most prior work requires either parallel speech corpora or enough amount of training data from a target speaker. However, we convert an arbitrary sentences of an arbitrary source speaker to target speaker’s given only one target speaker training utterance. To achieve this, we formulate the problem as learning disentangled speaker-specific and context-specific representations and follow the idea of [1] which uses Factorized Hierarchical Variational Autoencoder (FHVAE). After training FHVAE on multi-speaker training data, given arbitrary source and target speakers’ utterance, we estimate those latent representations and then reconstruct the desired utterance of converted voice to that of target speaker. We investigate the effectiveness of the approach by conducting voice conversion experiments with varying size of training utterances and it was able to achieve reasonable performance with even just one training utterance. We also examine the speech representation and show that World vocoder outperforms Short-time Fourier Transform (STFT) used in [1]. Finally, in the subjective tests, for one language and cross-lingual voice conversion, our approach achieved significantly better or comparable results compared to VAE-STFT and GMM baselines in speech quality and similarity.

Using Pupillometry to Measure the Cognitive Load of Synthetic Speech
Avashna Govender and Simon King
The Centre for Speech Technology Research, University of Edinburgh, United Kingdom

Wed-P-3-1-4, Time: 17:00-19:00

It is common to evaluate synthetic speech using listening tests in which intelligibility is measured by asking listeners to transcribe the words heard and naturalness is measured using Mean Opinion Scores. But, for real-world applications of synthetic speech, the effort (cognitive load) required to understand the synthetic speech may be a more appropriate measure. Cognitive load has been investigated in the past, when rule-based speech synthesizers were popular, but there is little or no recent work using state-of-the-art text-to-speech. Studies on the understanding of natural speech have shown that the pupil dilates when increased mental effort is exerted to perform a task. We use pupillometry to measure the cognitive load of synthetic speech submitted to two of the Blizzard Challenge evaluations. Our results show that pupil dilation is sensitive to the quality of synthetic speech. In all cases, synthetic speech imposes a higher cognitive load than natural speech. Pupillometry is therefore proposed as a sensitive measure that can be used to evaluate synthetic speech.

Measuring the Cognitive Load of Synthetic Speech Using a Dual Task Paradigm
Avashna Govender and Simon King
The Centre for Speech Technology Research, University of Edinburgh, United Kingdom

Wed-P-3-1-5, Time: 17:00-19:00

We present a methodology for measuring the cognitive load (listening effort) of synthetic speech using a dual task paradigm. Cognitive load is calculated from changes in a listener’s performance on a secondary task (e.g., reaction time to decide if a visually-displayed digit is odd or even). Previous related studies have only found significant differences between the best and worst quality systems but failed to separate the systems that lie in between. A paradigm that is sensitive enough to detect differences between state-of-the-art, high quality speech synthesizers would be very useful for advancing the state of the art. In our work, four speech synthesis systems from a previous Blizzard Challenge and the corresponding natural speech, were compared. Our results show that reaction times slow down
as speech quality reduces, as we expected: lower quality speech imposes a greater cognitive load, taking resources away from the secondary task. However, natural speech did not have the fastest reaction times. This intriguing result might indicate that, as speech synthesizers attain near-perfect intelligibility, this paradigm is measuring something like the listener’s level of sustained attention and not listening effort.

Attentive Sequence-to-Sequence Learning for Diacritic Restoration of YorùBá Language Text

Iroro Orife

Niger-Volta Language Technologies Institute, US

Wed-P-3-1-6, Time: 17:00-19:00

YorùBá is a widely spoken West African language with a writing system rich in tonal and orthographic diacritics. With very few exceptions, diacritics are omitted from electronic texts, due to limited device and application support. Diacritics provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any Yorùbá text-to-speech (TTS), automatic speech recognition (ASR) and natural language processing (NLP) tasks. Reframing Automatic Diacritic Restoration (ADR) as a machine translation task, we experiment with two different attentive Sequence-to-Sequence neural models to process diacritized text. On our evaluation dataset, this approach produces diacritization error rates of less than 5%. We have released pre-trained models, datasets and source-code as an open-source project to advance efforts on Yorùbá language technology.

Gated Convolutional Neural Network for Sentence Matching

Peixin Chen, Wu Guo, Zhi Chen, Jian Sun and Lanhua You

National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, China

Wed-P-3-1-7, Time: 17:00-19:00

The recurrent neural networks (RNN) have shown promising results in sentence matching tasks, such as paraphrase identification (PI), natural language inference (NLI) and answer selection (AS). However, the recurrent architecture prevents parallel computation within a sequence and is highly time-consuming. To overcome this limitation, we propose a gated convolutional neural network (GCNN) for sentence matching tasks. In this model, the stacked convolutions encode hierarchical contextual representations of a sentence, where the gating mechanism optionally controls and stores the convolutional contextual information. Furthermore, the attention mechanism is utilized to obtain interactive matching information between sentences. We evaluate our model on PI and NLI tasks and the experiments demonstrate the advantages of the proposed approach in terms of both speed and accuracy performance.

On Training and Evaluation of Grapheme-to-Phoneme Mappings with Limited Data

Dhavyansh Sharma

Google LLC, USA

Wed-P-3-1-8, Time: 17:00-19:00

When scaling to low resource languages for speech synthesis or speech recognition in an industrial setting, a common challenge is the absence of a readily available pronunciation lexicon. Common alternatives are handwritten letter-to-sound rules and data-driven grapheme-to-phoneme (G2P) models, but without a pronunciation lexicon it is hard to even determine their quality. We identify properties of a good quality metric and note drawbacks of naive estimates of G2P quality in the domain of small test sets. We demonstrate a novel method for reliable evaluation of G2P accuracy with minimal human effort. We also compare behavior of known state-of-the-art approaches for training with limited data. Finally we evaluate a new active learning approach for training G2P models in the low resource setting.

The Perception and Analysis of the Likeability and Human Likeness of Synthesized Speech

Alice Baird1, Emilia Parada-Cabaleiro1, Simone Hantkel1,2, Felix

1 GLAM – Group on Language, Audio and Music, Imperial College London, UK
2 ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
3 Machine Intelligence and Signal Processing Group, Technische Universität München, Germany
4 Deutsche Telekom, Berlin, Germany

Wed-P-3-1-9, Time: 17:00-19:00

The synthesized voice has become an ever present aspect of daily life. Heard through our smart-devices and from public announcements, engineers continue in an endeavour to achieve naturalness in such voices. Yet, the degree to which these methods can produce likeable, human like voices, has not been fully evaluated. In this work, we present a paradigm suggesting that human like imitation is more obtainable, this study asked 25 listeners to evaluate both the likeability and human likeness of a corpus of 13 German male voices, produced via 5 synthesis approaches (from formant to hybrid unit selection, deep neural network systems) and 1 human control. Results show that unlike visual artificially intelligent elements – as posited by the concept of the Uncanny Valley – likeability consistently improves along with human likeness for the synthesized voice, with recent methods achieving substantially closer results to human speech than older methods. A small scale acoustic analysis shows that the F0 of hybrid systems correlates less closely to human speech with a higher standard deviation for F0. This analysis suggests that limited variance in F0 is linked to a reduction in human likeness, resulting in lower likeability for conventional synthetic speech methods.

Word Emphasis Prediction for Expressive Text to Speech

Yosi Mass, Slava Shechtman, Moran Mordechay, Ron Hoory, Oren Sar Shalom, Guy Lev and David Konopnicki

IBM Research, Haifa, Israel

Wed-P-3-1-10, Time: 17:00-19:00

Word emphasis prediction is an important part of expressive prosody generation in modern Text-To-Speech (TTS) systems. We present a method for predicting emphasized words for expressive TTS, based on a Deep Neural Network (DNN). We show that the presented method outperforms machine learning methods based on hand-crafted features in terms of objective metrics such as precision and recall. Using a listening test, we further demonstrate that the contribution of the predicted emphasized words to the expressiveness of the synthesized speech is subjectively perceivable.

A Comparison of Speaker-based and Utterance-based Data Selection for Text-to-Speech Synthesis

Kai-Zhan Lee, Erica Cooper and Julia Hirschberg

Columbia University, USA

Wed-P-3-1-11, Time: 17:00-19:00

Building on previous work in subset selection of training data for text-to-speech (TTS), this work compares speaker-level and utterance-level selection of TTS training data, using acoustic features to guide selection. We find that speaker-based selection is more effective than utterance-based selection, regardless of whether selection is guided by a single feature or a combination of features. We use US English telephone data collected for automatic speech recognition to simulate the conditions of TTS training. On a Deep Neural Network (DNN). We show that the presented method outperforms machine learning methods based on hand-crafted features in terms of objective metrics such as precision and recall. Using a listening test, we further demonstrate that the contribution of the predicted emphasized words to the expressiveness of the synthesized speech is subjectively perceivable.
Data Requirements, Selection and Augmentation for DNN-based Speech Synthesis from Crowdsourced Data
Markus Toman, Geoffrey S. Meltzer and Rupal Patel
VocalIQ, Inc.
Wed-P-3-1-12, Time: 17:00-19:00
Crowdsourcing speech recordings provides unique opportunities and challenges for personalized speech synthesis as it allows gathering of large quantities of data but with a huge variety in quality. Manual methods for data selection and cleaning quickly become infeasible, especially when producing larger quantities of voices. We present and analyze approaches for data selection and augmentation to cope with this. For differently-sized training sets, we assess speaker adaptation by transfer learning, including layer freezing and sentence selection using maximum likelihood of forced alignment. The methodological framework utilizes statistical parametric speech synthesis based on Deep Neural Networks (DNNs). We compare objective scores for 576 voice models, representing all condition combinations. For a constrained set of conditions we also present results from a subjective listening test. We show that speaker adaptation improves overall quality in nearly all cases, sentence selection helps detecting recording errors and layer freezing proves to be ineffective in our system. We also found that while Mel-Cepstral Distortion (MCD) does not correlate with listener preference across the range of values, the most preferred voices also exhibited the lowest values for MCD. These findings have implications on scalable methods of customized voice building and clinical applications with sparse data.

Inference-Invariant Transformation of Batch Normalization for Domain Adaptation of Acoustic Models
Masayuki Suzuki, Tohru Nagano, Gaku Kurata and Samuel Thomas
IBM Research AI
Wed-P-3-2-3, Time: 17:00-19:00
Batch normalization, or batchnorm, is a popular technique often used to accelerate and improve training of deep neural networks. When existing models that use this technique via batchnorm layers, are used as initial models for domain adaptation or transfer learning, the novel input feature distributions of the adapted domains, considerably change the batchnorm transformations learnt in the training mode from those which are applied in the inference mode. We empirically find that this mismatch can degrade the performance of domain adaptation for acoustic modeling. To mitigate this degradation, we propose an inference-invariant transformation of batch normalization, a method which reduces the mismatch between training mode and inference mode transformations without changing the inference results. This invariance property is achieved by adjusting the weight and bias terms of the batchnorm to compensate for differences in the mean and variance terms when using the adaptation data. Experimental results show that our proposed method performs the best on several acoustic model adaptation tasks with up to 5% relative improvement in recognition performances in both supervised and unsupervised domain adaptation settings.

Active Learning for LF–MMI Trained Neural Networks in ASR
Yanhua Long1, Hong Ye2, Yjie Li3 and Jiaen Liang3
1SHNU-Unisound Joint Laboratory of Natural Human-Computer Interaction, Shanghai Normal University, Shanghai, China
2Beijing Unisound Information Technology Co., Ltd. Beijing, China
Wed-P-3-2-4, Time: 17:00-19:00
This paper investigates how active learning (AL) effects the training of neural network acoustic models based on Lattice-free Maximum Mutual Information (LF-MMI) in automatic speech recognition (ASR). To fully exploit the most informative examples from fresh datasets, different data selection criteria and criteria based on the heterogeneous neural networks were studied. In particular, we examined the relationship among the transcription cost of human labeling, example informativeness and data selection criteria for active learning. As a comparison, we tried both semi-supervised training (SST) and active learning to improve the acoustic models. Experiments showed that active learning outperformed both SST and AL methods, with consistent improvements across different datasets.

Notes

1 Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics
2 Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China
3 University of Chinese Academy of Sciences
were performed for both the small-scale and large-scale ASR systems. Experimental results suggested that, our AL scheme can benefit much more from the fresh data than the SST in reducing the word error rate (WER). The AL yields 6–13% relative WER reduction against the baseline trained on a 4000 hours transcribed dataset, by only selecting 1.2k hrs informative utterances for human labeling via active learning.

An Investigation of Mixup Training Strategies for Acoustic Models in ASR

Ivan Medennikov1, Yuri Khokhlov, Aleksei Romanenko2, Dmitry Popov3, Natalia Tomashenko1,2, Ivan Sarokin1 and Alexander Zatvornitskiy1,2,3
1STC-innovations Ltd, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Speech Technology Center Ltd, St. Petersburg, Russia
4LIUM, University of Le Mans, France

Wed-P-3-2-5, Time: 17:00-19:00

Mixup is a recently proposed technique that creates virtual training examples by combining existing ones. It has been successfully used in various machine learning tasks. This paper focuses on applying mixup to automatic speech recognition (ASR). More specifically, several strategies for acoustic model training are investigated, including both conventional cross-entropy and novel lattice-free MMI models. Considering mixup as a method of data augmentation as well as regularization, we compare it with widely used speed perturbation and dropout techniques. Experiments on Switchboard-1, AMI and TED-LIUM datasets shows consistent improvement of word error rate up to 13% relative. Moreover, mixup is found to be particularly effective on test data mismatched to the training data.

Comparison of Unsupervised Modulation Filter Learning Methods for ASR

Purvi Agrawal and Sriram Ganapathy
Learning and Extraction of Acoustic Patterns Lab (LEAP), Dept. of Electrical Engg., Indian Institute of Science, Bengaluru-560012, India

Wed-P-3-2-6, Time: 17:00-19:00

The widespread deployment of automatic speech recognition (ASR) system in consumer centric applications such as voice interaction and voice search demands the need for noise robustness in such systems. One approach to this problem is to achieve the desired robustness in speech representations used in the ASR. Motivated from studies on robust human speech recognition, we analyse the unsupervised data-driven temporal modulation filter learning for robust feature extraction. In this paper, we compare various unsupervised models for data driven filter learning like convolutional autoencoder (CAE), generative adversarial network (GAN) and convolutional restricted Boltzmann machine (CRBM). The unsupervised models are designed to learn a set of filters from long temporal trajectories of speech sub-band energy. The filters learnt from these models are used for modulation filtering of the input spectrogram before the ASR training. The ASR experiments are performed on Wall Street Journal (WSJ) Aurora-4 database with clean and multi condition training setup. The experimental results obtained from the modulation filtered representations shows considerable robustness to noise, channel distortions and reverberant conditions compared to other feature extraction methods. Among the three approaches compared in this paper, the GAN approach provides the most consistent improvements in ASR accuracy in different training scenarios.

Improved Training for Online End-to-End Speech Recognition Systems

Suyoun Kim1, Michael Seltzer1, Jinyu Li2 and Rui Zhao3
1Carnegie Mellon University
2Facebook
3Microsoft AI & Research

Wed-P-3-2-7, Time: 17:00-19:00

Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training. Otherwise, the networks may fail to find a good local optimum. This is particularly true for online networks, such as unidirectional LSTMs. Currently, the best strategy to train such systems is to bootstrap the training from a bed-triphone system. However, this is time consuming and more importantly, is impossible for languages without a high-quality pronunciation lexicon. In this work, we propose an initialization strategy that uses teacher-student learning to transfer knowledge from a large, well-trained, offline end-to-end speech recognition model to an online end-to-end model, eliminating the need for a lexicon or any other linguistic resources. We also explore curriculum learning and label smoothing and show how they can be combined with the proposed teacher-student learning for further improvements. We evaluate our methods on a Microsoft Cortana personal assistant task and show that the proposed method results in a 19% relative improvement in word error rate compared to a randomly-initialized baseline system.

Combining Natural Gradient with Hessian Free Methods for Sequence Training

Adnan Haider and Philip Woodland
Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.

Wed-P-3-2-8, Time: 17:00-19:00

This paper presents a new optimisation approach to train Deep Neural Networks (DNNs) with discriminative sequence criteria. At each iteration, the method combines information from the Natural Gradient (NG) direction with local curvature information of the error surface that enables better paths on the parameter manifold to be traversed. The method has been applied within a Hessian Free (HF) style optimisation framework to sequence train both standard fully-connected DNNs and Time Delay Neural Networks as speech recognition acoustic models. The efficacy of the method is shown using experiments on a Multi-Genre Broadcast (MGB) transcription task and neural networks using sigmoid and ReLU activation functions have been investigated. It is shown that for the same number of updates this proposed approach achieves larger reductions in the word error rate (WER) than both NG and HF and also leads to a lower WER than standard stochastic gradient descent.

Lattice-free State-level Minimum Bayes Risk Training of Acoustic Models

Naoyuki Kanda, Yusuke Fujita and Kenji Nagamatsu
Hitachi Ltd., Japan

Wed-P-3-2-9, Time: 17:00-19:00

Lattice-free maximum mutual information (LF-MMI) training, which enables MMI-based acoustic model training without any lattice generation procedure, has recently been proposed. Although LF-MMI showed high accuracy in many tasks, its MMI criterion does not necessarily maximize the speech recognition accuracy. In this work, we propose a lattice-free state-level minimum Bayes risk training (LF-sMBR), which maximizes state-level expected accuracy without relying on a lattice generation procedure. As is the case with the LF-MMI, LF-sMBR avoids redundant lattice generation by exploiting forward-backward calculation on phone N-gram space, which enables a much simpler and faster training based on an sMBR criterion. We found that special care for silence phones was essential for improving the accuracy by LF-sMBR. In our experiments on the AMI, CSJ and Librispeech corpora, LF-sMBR achieved small but consistent improvements over LF-MMI AMs, showing state-of-the-art results for each test set.

A Study of Enhancement, Augmentation and Autoencoder Methods for Domain Adaptation in Distant Speech Recognition

Hao Tang, Wei-Ning Hsu, François Grondin and James Glass
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Wed-P-3-2-10, Time: 17:00-19:00

Speech recognizers trained on close-talking speech do not generalize to distant speech and the word error rate degradation can be as large as 40% absolute. Most studies focus on tackling distant speech recognition as a separate problem, leaving little effort to adapting close-talking speech recognizers to distant speech. In this work, we review several approaches...
from a domain adaptation perspective. These approaches, including speech enhancement, multi-condition training, data augmentation and autoencoders, all involve a transformation of the data between domains. We conduct experiments on the AMI data set, where these approaches can be realized under the same controlled setting. These approaches lead to different amounts of improvement under their respective assumptions. The purpose of this paper is to quantify and characterize the performance gap between the two domains, setting the baseline for studying adaptation of speech recognizers from close-talking speech to distant speech. Our results also have implications for improving distant speech recognition.

Multilingual Deep Neural Network Training Using Cyclical Learning Rate
Andreas Saeborg Kirkedal and Yeon-Jun Kim
Interactions LLC, USA

Wed-P-3-2-11, Time: 17:00-19:00
Deep Neural Network (DNN) acoustic models are an essential component in automatic speech recognition (ASR). The main sources of accuracy improvements in ASR involve training DNN models that require large amounts of supervised data and computational resources. While the availability of sufficient monolingual data is a challenge for low-resource languages, the computational requirements for resource rich languages increases significantly with the availability of large data sets.

In this work, we provide novel solutions for these two challenges in the context of training a feed-forward DNN acoustic model (AM) for mobile voice search. To address the data-sparcity challenge, we bootstrap our multilingual AM using data from languages in the same language family. To reduce training time, we use cyclical learning rate (CLR) which has demonstrated fast convergence with competitive or better performance when training neural networks on tasks related to text and images.

We reduce training time for our Mandarin Chinese AM with 81.4% token accuracy from 40 to 21.3 hours and increase the word accuracy on three romance languages by 2-5% with multilingual AMs compared to monolingual DNN baselines.

Wed-P-3-3: Application of ASR in Medical Practice
Hall 4-6: Poster-3, 17:00-19:00, Wednesday, 5 September, 2018
Chair: Phil Green

Development of the CUHK Dysarthric Speech Recognition System for the UA Speech Corpus
Jianwei Yu1, Xurong Xie1, Shansong Liu1, Shoukang Hu1, Max W. Y. Lam1, Xixin Wu2, Ka Ho Wong1, Xunying Liu1 and Helen Meng1
1Department of Systems Engineering and Engineering Management
2Department of Electric Engineering
The Chinese University of Hong Kong, Hong Kong SAR, China

Wed-P-3-3-1, Time: 17:00-19:00
Dysarthric speech recognition is a highly challenging task. The articulatory motor control problems associated with neuro-motor conditions produces large mismatch against normal speech. In addition, such data is difficult to collect in large quantities. This paper presents an initial attempt at the Chinese University of Hong Kong to develop an automatic speech recognition (ASR) system for the Universal Access Speech (UASpeech) task. A range of deep neural network (DNN) acoustic models and their more advanced variants based on time delayed neural networks (TDNNs) and long short-term memory recurrent neural networks (LSTM-RNNs) were developed. Speaker adaptation by learning hidden unit contributions (LHUC) was used. A semi-supervised complementary auto-encoder system was further constructed to improve the bottleneck feature extraction. Two out-of-domain ASR systems separately trained on broadcast news and switchboard data were cross domain adapted to the UASpeech data and used in system combination. The final combined system gave an overall word accuracy of 69.4% on the 16-speaker test set.

Automatic Evaluation of Speech Intelligibility Based on I-vectors in the Context of Head and Neck Cancers
Imed Laaridh1, Corinne Fredouille1, Alain Ghio1, Muriel Lalain2 and Virginie Woisard1
1University of Avignon, LIA, France
2Aix-Marseille Univ, CNRS, LPL UMR 7309, Aix-en-Provence, France

Wed-P-3-3-2, Time: 17:00-19:00
In disordered speech context and despite its well-known subjectivity, perceptual evaluation is still the most commonly used method in clinical practice to evaluate the intelligibility level of patients’ speech productions. However and thanks to increasing computing power, automatic speech processing systems have witnessed a democratization in terms of users and application areas including the medical practice.

In this paper, we evaluate an automatic approach for the prediction of cancer patients’ speech intelligibility based on the representation of the speech acoustic in the total variability subspace based on the i-vector paradigm. Experimental evaluations of the proposed predictive approach have shown a very high correlation rate with perceptual intelligibility when applied on the French speech corpora C2S1 (r=0.84).

They have also demonstrated the robustness of the approach when using a limited amount of disordered speech per patient, which may lead to the redesign and alleviation of the test protocols usually used in disordered speech evaluation context.

Dysarthric Speech Recognition Using Convolutional LSTM Neural Network
Myungjung Kim1, Beiming Cao1, Kwanghoon An1 and Jun Wang1 2
1Speech Disorders & Technology Lab, Department of Bioengineering
2Callier Center for Communication Disorders, University of Texas at Dallas, United States

Wed-P-3-3-3, Time: 17:00-19:00
Dysarthria is a motor speech disorder that impedes the physical production of speech. Speech in patients with dysarthria is generally characterized by poor articulation, breathy voice and monotonic intonation. Therefore, modeling the spectral and temporal characteristics of dysarthric speech is critical for better performance in dysarthric speech recognition. Convolutional long short-term memory recurrent neural networks (CLSTM-RNNs) have recently successfully been used in normal speech recognition, but have rarely been used in dysarthric speech recognition. We hypothesized CLSTM-RNNs have the potential to capture the distinct characteristics of dysarthric speech, taking advantage of convolutional neural networks (CNNs) for extracting effective local features and LSTM-RNNs for modeling temporal dependencies of the features. In this paper, we investigate the use of CLSTM-RNNs for dysarthric speech recognition. Experimental evaluation on a database collected from nine dysarthric patients showed that our approach provides substantial improvement over both standard CNN and LSTM-RNN based speech recognizers.

Perceptual and Automatic Evaluations of the Intelligibility of Speech Degraded by Noise Induced Hearing Loss Simulation
Imed Laaridh1, Julien Tardieu2, Cynthia Maguen2, Pascal Gaillard2, Jérôme Farinas1 and Julien Pinquier2
1IRIT, Université de Toulouse, CNRS, Toulouse, France
2M5HS-T (USR 3414), Université de Toulouse, CNRS, France
This study aims at comparing perceptual and automatic intelligibility measures on degraded speech. It follows a previous study that designed a novel approach for the automatic prediction of Age-Related Hearing Loss (ARHL) effects on speech intelligibility.

In this work, we adapted this approach to a different type of hearing disorder: the Noise Induced Hearing Loss (NIHL), i.e., hearing loss caused by noise exposure at work. Thus, we created a speech corpus made of both isolated words and short sentences pronounced by three speakers (male, female and child) and we simulated different levels of NIHL. A repetition task has been carried out with 60 participants to collect perceptual intelligibility scores. Then, an Automatic Speech Recognition (ASR) system has been designed to predict the perceptual scores of intelligibility. The perceptual evaluation showed similar effects of NIHL simulation on the male, female and child speakers. In addition, the automatic intelligibility measure, based on automatic speech recognition scores, was proven to well predict the effects of the different severity levels of NIHL. Indeed, high correlation coefficients were obtained between the automatic and perceptual intelligibility measures on both speech repetition tasks: 0.94 for isolated words task and 0.97 for sentences task.

Articular Features for ASR of Pathological Speech
Emre Ylimaz1,2, Vikramjit Mitra1, Chris Bartels1 and Horacio Franco1
1CLS/CLST, Radboud University, Nijmegen, Netherlands
2Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore
3University of Maryland, College Park, MD, USA
4STAR Lab, SRI International, Menlo Park, CA, USA
Wed-P-3-3-5, Time: 17:00-19:00
In this work, we investigate the joint use of articulatory and acoustic features for automatic speech recognition (ASR) of pathological speech. Despite long-lasting efforts to build speaker- and text-independent ASR systems for people with dysarthria, the performance of state-of-the-art systems is still considerably lower on this type of speech than on normal speech. The most prominent reason for the inferior performance is the high variability in pathological speech that is characterized by the spectrotemporal deviations caused by articulatory impairments due to various etiologies. To cope with this high variation, we propose to use speech representations which utilize articulatory information together with the acoustic properties. A designated acoustic model, namely a fused-feature-map convolutional neural network (FCNN), which performs frequency convolution on acoustic features and time convolution on articulatory features is trained and tested on a Dutch and a Flemish pathological speech corpus. The ASR performance of FCNN-based ASR system using joint features is compared to other neural network architectures such conventional CNNs and time-frequency convolutional networks (TFCNNs) in several training scenarios.

Mining Multimodal Repositories for Speech Affecting Diseases
Joana Correia1,2, Bhiksha Raj1, Isabel Franscose1 and Francisco Teixeira1
1Carnegie Mellon University, USA
2INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal
Wed-P-3-3-6, Time: 17:00-19:00
The motivation for this work is to contribute to the collection of large in-the-wild multimodal datasets in which the speech of the subject is affected by certain medical conditions. Our mining effort is focused on video blogs (vlogs) and as a proof-of-concept we have selected three target diseases: Depression, Parkinson’s disease and cold.

Given the large scale nature of the online repositories, we take advantage of existing retrieval algorithms to narrow the pool of candidate videos for a given query related with the disease (e.g. depression vlog) and on top of that we apply several filtering techniques. These techniques explore both audio, video, text and metadata cues, in order to retrieve vlogs that include a single speaker which, at some point, admits that he/she is currently affected by a given disease. The use of straightforward NLP techniques on the automatically transcribed data showed that distinguishing between narratives of present and past experiences is harder than distinguishing between narratives of self experiences and of someone else’s.

The three resulting speech datasets were tested with neural networks trained with speech data collected in controlled conditions, yielding results only slightly below the ones achieved with the original test datasets.

Long Distance Voice Channel Diagnosis Using Deep Neural Networks
Zhen Qin, Tom Ko and Guangjian Tian
Huawei Noah’s Ark Research Lab, Hong Kong, China
Wed-P-3-3-7, Time: 17:00-19:00
In long distance telephone network, it is time-consuming to detect and locate the problematic devices. Although hints could be given from the types of distortion in the test calls, it is tedious to manually classify the distortion types from a large number of calls.

In this paper, we present our work on using a deep neural network-based classifier, to automatically detect and identify the type of distortion which often occurs in long distance calls. We verified our approach with data from real telecommunication networks and the results showed that our approach can achieve an average recall rate of 71% in classification. We believe our method can lead to a huge reduction of manpower and time in long distance voice channel troubleshooting.

Speech Recognition for Medical Conversations
Chung-Cheng Chiu1, Anshuman Tripathi1, Katherine Chou1, Chris Co1, Navdeep Jaitly1, Diana Jauzaiker1, Anjuli Kannan1, Patrick Nguyen1, Hasim Sak1, Ananth Sankar1, Justin Tansuwan1, Nathan Wan, Yonghui Wu1 and Xuedong Zhang1
1Google
2LinkedIn
Wed-P-3-3-8, Time: 17:00-19:00
In this paper we document our experiences with developing speech recognition for medical transcription – a system that automatically transcribes doctor-patient conversations. Towards this goal, we built a system along two different methodological lines – a Connectionist Temporal Classification (CTC) phoneme based model and a Listen Attend and Spell (LAS) grapheme based model. To train these models we used a corpus of anonymized conversations representing approximately 14,000 hours of speech. Because of noisy transcripts and alignments in the corpus, a significant amount of effort was invested in data cleaning issues. We describe a two-stage strategy we followed for segmenting the data. The data cleanup and development of a matched language model was essential to the success of the CTC based models. The LAS based models, however were found to be resilient to alignment and transcript noise and did not require the use of language models. CTC models were able to achieve a word error rate of 20.1% and the LAS models were able to achieve 18.3%. Our analysis shows that both models perform well on important medical utterances and therefore can be practical for transcribing medical conversations.

Prosodic Focus Acquisition in French Early Cochlear Implanted Children
Hall 4-6: Poster-4, 17:00-19:00, Wednesday, 5 September, 2018
Chair: T V Sreenivas

Wed-P-3-4: Source and Supra-segmentals

Wed-P-3-4: Source and Supra-segmentals
Chadi Farah1,2, Stephane Roman1 and Mariapaola D’Imperio2
1Pediatric Otolaryngology department, La Timone Children’s Hospital (APHM), Marseille, France
2Aix-Marseille Univ, CNRS, Laboratoire Parole Langage, Aix-en-Provence, France

Notes

This study aims to evaluate prosody production in these children, to determine whether they show prosodic effect on word duration.

We conducted a cross-sectional study of 10 prelingually hearing impaired French speaking children (4–7 years old), without comorbidities, CI before the age of 18 months between 2009 and 2012. The speech production task consisted in playing a computer-based semi-structured game, where children interacted with their caregiver. Results were interpreted according to both chronological age and hearing age (HA).

In our series, 6- and 7-year old children (HA<6.2 years) showed stronger lengthening of the focused word in the corrective narrow focus condition than in the contrastive narrow focus which in turn was stronger than in broad focus condition. Only 7-year old children adopted a strategy similar to that of adults, lengthening the end-phrase adjective to preserve the typical phrasing pattern of French.

This study shows for the first time that early CI children are able to acquire important intonation structure features comparable to adult patterns.

The Role of Temporal Variation in Narrative Organization
Nassima Fezza
Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France

Wed-P-3-4-2, Time: 17:00-19:00

The aim of this study was to see if temporal variation can be considered as a robust cue in the discourse structuring process. If so, at what level(s) of the discursive structure does it operate? In a bottom-up corpus-based approach, we analyze a 58-minute corpus of 60 natural French speech narratives. First, the corpus was segmented at the phonemic, syllabic, lexical and inter-pausal unit levels. Second, a narrative segmentation was applied using the criteria of Labov’s evaluative model, which is based on semantic and informational criteria. Duration data was then extracted automatically at each level of granularity. The mapping of discourse segmentation to acoustic-phonetic analyses was made on two structural levels: micro and macro. A positive effect of local temporal variation in discourse structuring was not found, however, the existence of a link between the narrative internal segmentation and speech rate variation was identified. This variation is long-term, progressive and gradual which suggests a manipulation of this feature. In relation to the content, temporal values can be seen as contextual cues: relevant information is presented with a slower speech rate, while minor content is presented with a faster speech rate.

Interaction Mechanisms between Glottal Source and Vocal Tract in Pitch Glides
Tiina Murtola1 and Jarmo Malinen2
1Department of Signal Processing and Acoustics, Aalto University, Finland
2Department of Mathematics and Systems Analysis, Aalto University, Finland

Wed-P-3-4-3, Time: 17:00-19:00

A computational model for vowel production has been used to simulate rising pitch glides in the time domain. Such glides reveal multi-faceted nonlinear system behaviour when the fundamental frequency \(f_o \) is near the first vocal tract resonance \(f_{R1} \). There are multiple physical mechanisms for how the acoustic field in the vocal tract can interact with vocal fold dynamics causing this behaviour. The model used in this work includes the direct impact of the acoustic pressure on the transversal plane of the vocal folds and an acoustic perturbation component to the glottal flow. Simulations indicate that both of these mechanisms, when applied separately, cause similar perturbations in phonation parameters when \(f_o \) crosses \(f_{R1} \). Enabling both mechanisms simultaneously tends to make the separately emerging features more prominent. In simulated glottal flow waveforms, the tendency towards a formant ripple increases when acoustic feedback to glottal flow is enabled, whereas the phenomenon occurs more rarely as a result of the direct acoustic pressure to vocal folds. In all cases, the formant ripple is more pronounced for frequencies below \(f_{R1} \).

Relating Articulatory Motions in Different Speaking Rates
Asta Singh1, G. Nisha Meenakshi2 and Prasanta Kumar Ghosh2
1Electrical Communication Engineering
2Electrical Engineering
Indian Institute of Science, Bangalore-560012, India

Wed-P-3-4-4, Time: 17:00-19:00

Movements of articulators (e.g., tongue, lips and jaw) in different speaking rates are related in a complex manner. In this work, we examine the underlying function to transform articulatory movements involved in producing speech at a neutral speaking rate into those at fast and slow speaking rates (N2F and N2S). For this we use articulatory movement data collected from five subjects using an Electromagnetic articulograph at neutral, fast and slow speaking rates. As candidate transformation functions (TF), we use affine transformations with a diagonal matrix and a full matrix and a nonlinear function modeled by a deep neural network (DNN). Since the duration of an utterance in different speaking rates would typically be unequal, it is required to time align the articulatory movement trajectories, which, in turn, affects the TF learnt. Therefore, we propose an iterative algorithm to alternately optimize for the TF and the time alignments. Subject specific experiments reveal that while N2F transformation can be well described by an affine transformation with a full matrix, N2S transformation is better represented by a more complex nonlinear function modeled by a DNN. This could be because subjects exhibit gross articulatory movements during fast speech and hyper-articulate while producing slow speech.

Estimation of the Asymmetry Parameter of the Glottal Flow Waveform Using the Electroglottographic Signal
João Cabral
The ADAPT Research Centre, Trinity College Dublin, Ireland

Wed-P-3-4-5, Time: 17:00-19:00

Glottal activity information can be very important in several speech processing applications, such as in speech therapy, voice disorder diagnosis, voice transformation and text-to-speech synthesis. However, the use of algorithms for estimating glottal parameters from the speech signal is very limited in those applications because of problems with robustness and accuracy. For this reason, current research studies of the glottal source are usually constrained to isolated speech sounds or short segments of speech recorded in controlled conditions and methods requiring manual intervention. An alternative way to obtain more accurate and reliable glottal parameter estimates is to use other recording equipment besides the audio microphone. Electroglottography is the most popular non-invasive measurement of vocal fold motion. It has been widely used to estimate the glottal opening and closing instants, but it does not provide direct information about the other important glottal parameters. This paper proposes an automatic method for estimation of the glottal parameters from the electroglottographic signal that permits to measure an additional parameter related to the asymmetry of the glottal flow pulse. This is a very important characteristic correlated with voice quality and widely studied in voice source analysis, commonly represented by the speed quotient parameter.
The main objective of this paper is to accurately classify the pathological voice based on the disorders in vocal folds. For this purpose, we have explored the use of Electroglottographic (EGG) signals that carry significant information related to characteristics of vocal folds. Four important parameters, namely, close quotient, open quotient, average pitch period and jitter computed from the phase of the EGG signal have been explored for discriminating the patients based on the disorder in their vocal folds. These parameters have been used for classification of three types of vocal fold disorders: vocal nodules, vocal polyps and laryngitis. In this study we have used the EGG signals of seventy-nine patients having disorders in vocal folds, collected from hospital. The database contains the simultaneous recording of seven data types, indicating acute active muscular movements, (3) the inspiratory and expiratory controls during speech differed largely from those in quiet breathing, indicating active vocal muscular movements, (4) the vital capacity volume did not sufficiently correlate with the subjects’ expiratory and inspiratory air volume during speech and (5) a better English pronunciation might be supported by alternative control of inspiration and respiration.

Automatic Glottis Localization and Segmentation in Stroboscopic Videos Using Deep Neural Network

Achuth Rao MV1, Rahul Krishnamurthy1, Pebbili Gopikishore1, Veeramani Priyadarsini1 and Prasanta Kumar Ghosh1 1Electrical Engineering, Indian Institute of Science, Bangalore 560012, India 2Kasturba medical college, Manipal Academy for Higher Education, Mangalore 575001, India 3All India Institute of Speech and Hearing, Mysuru, 570006, India

Plenary Talk-3

Helen Meng

Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong

Speech and Language Processing for Learning and Wellbeing

Plenary Talk-3, Time: 08:30-09:30

Spoken language is a primary form of human communication. Spoken language processing techniques must incorporate knowledge of acoustics, phonetics and linguistics in analyzing speech. While great strides have been made in the community in general speech recognition, reaching human parity in performance, our team has been focusing on the problems of recognizing and analyzing non-native, learners’ speech for the purpose of mispronunciation detection and diagnosis in computer-aided pronunciation training. In order to generate personalized, corrective feedback, we have also developed an approach that uses phonetic posterior-grams (PPGs) for personalized, cross-lingual text-to-speech synthesis given arbitrary textual input, based on voice conversion techniques. We have also extended our work to disordered speech, focusing on automated distinctive feature (DF)-based analyses of dysarthric recordings. The analyses are intended to inform intervention strategies. Additionally, voice conversion is further developed to restore disordered speech to normal speech. This talk will present the challenges in these problems, our approaches and solutions, as well as our ongoing work.
Far-Field Speech Recognition Using Multivariate Autoregressive Models
Sriram Ganapathy1 and Madhumita Harish2
1Learning and Extraction of Acoustic Patterns (LEAP) Lab, Indian Institute of Science, Bangalore
2Carnegie Mellon University, Pittsburgh, U.S.A.
Thu-0-1-1-1, Time: 10:00-10:20

Automatic speech recognition in far-field reverberant environments is challenging even with the state-of-the-art recognition systems. The main issues are artifacts in the signal due to the long-term reverberation that results in temporal smearing. The autoregressive modeling approach to speech feature extraction involves representing the high energy regions of the signal which are less susceptible to noise. In this paper, we propose a novel method of speech feature extraction using multivariate AR modeling (MAR) of temporal envelopes. The sub-band discrete cosine transform coefficients obtained from multiple speech bands are used in a multivariate linear prediction setting to derive features for speech recognition. For single channel far-field speech recognition, the features are derived using multi-band linear prediction. In the case of multi-channel far-field speech recognition, we use the multi-channel data in the MAR framework. We perform several speech recognition experiments in the REVERBE Challenge database for single and multi-microphone settings. In these experiments, the proposed feature extraction method provides significant improvements over baseline methods (average relative improvements of 9.7% and 3.9% in single microphone conditions for clean and multi-conditions respectively and 6.3% in multi-microphone conditions). The results with clean training on single microphone conditions further illustrate the effectiveness of the MAR.

Efficient Implementation of the Room Simulator for Training Deep Neural Network Acoustic Models
Chanwoo Kim1, Ehsan Variani2, Arun Narayanan2 and Michel Bacchian2
1Samsung Research
2Google Speech
Thu-0-1-1-2, Time: 10:20-10:40

In this paper, we describe how to efficiently implement an acoustic room simulator to generate large-scale simulated data for training deep neural networks. Even though Google Room Simulator in [1] was shown to be quite effective in reducing the Word Error Rates (WERs) for far-field applications by generating simulated far-field training sets, it requires a very large number of FFTs. Room Simulator used approximately 80% of CPU usage in our CPU/GPU training architecture [2]. In this work, we implement an efficient OverLap Addition (OLA) based filtering using the open-source FFTW3 library. Further, we investigate the effects of the Room Impulse Response (RIR) lengths. Experimentally, we conclude that we can cut the tail portions of RIRs whose power is less than 20 dB below the maximum power without sacrificing the speech recognition accuracy. However, we observe that cutting RIR tail more than this threshold harms the speech recognition accuracy for recorded test sets. Using these approaches, we were able to reduce CPU usage for the room simulator portion down to 9.69% in CPU/GPU training architecture. Profiling result shows that we obtain 22.4 times speed-up on a single machine and 37.3 times speed up on Google’s distributed training infrastructure.

Stream Attention for Distributed Multi-Microphone Speech Recognition
Xiaofei Wang1,2, Ruizhi Li1 and Hynek Hermansky1
1Center for Language and Speech Processing, Johns Hopkins University
2Institute of Acoustics, Chinese Academy of Sciences
Thu-0-1-1-3, Time: 10:40-11:00

Exploiting multiple microphones has been a widely-used strategy for robust automatic speech recognition (ASR). Particularly, in a general hands-free scenario, acquisition of speech usually happens using a set of distributed microphones or arrays simultaneously. Each microphone or array (defined as a stream) carries a different quality of information. The technique of stream fusion is beneficial to provide the best distant recognition performance against the effects of potential disturbances such as noise, reverberation, as well as the speaker movement.

In this work, we propose a stream attention framework to improve the far-field ASR performance in the distributed multi-microphone configuration.

Frame-level attention vectors have been derived by predicting the ASR performance of the acoustic modeling of individual streams using the posterior probabilities from the classifier. They are used to characterize the amount of useful information each stream contributes, for the purpose of an efficient and better-performing decoding scheme.

In this paper, we investigate the ASR performance measures using our proposed stream attention system on real recorded datasets, Mixer-6 and DIRHA-WSJ.

The experimental results show that the proposed framework yields substantial improvements in word error rate (WER) compared to conventional strategies.

Recognizing Overlapped Speech in Meetings: A Multichannel Separation Approach Using Neural Networks
Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, Xiong Xiao and Fil Alleva
Microsoft AI and Research, One Microsoft Way, Redmond, WA, USA
Thu-0-1-1-4, Time: 11:00-11:20

The goal of this work is to develop a meeting transcription system that can recognize speech even when utterances of different speakers are overlapped. While speech overlaps have been regarded as a major obstacle in accurately transcribing meetings, a traditional beamformer with a single output has been exclusively used because previously proposed speech separation techniques have critical constraints for application to real meetings. This paper proposes a new signal processing module, called an unmixing transducer and describes its implementation using a windowed BLSTM. The unmixing transducer has a fixed number, say J, of output channels, where J may be different from the number of meeting attendees and transforms an input multi-channel acoustic signal into J time-synchronous audio streams. Each utterance in the meeting is separated and emitted from one of the output channels. Then, each output signal can be simply fed to a speech recognition back-end for segmentation and transcription. Our meeting transcription system using the unmixing transducer outperforms a system based on a state-of-the-art neural mask-based beamformer by 10.8%. Significant improvements are observed in overlapped segments. To the best of our knowledge, this is the first report that applies overlapped speech recognition to unconstrained real meeting audio.

Integrating Neural Network Based Beamforming and Weighted Prediction Error Dereverberation
Lukas Drude1, Christoph Boeddeker1, Jahn Heymann1, Reinhold Haeb-Umbach1, Keisuke Kinoshita2, Marc Delcroix2 and Tomohiro Nakatani2
1Paderborn University, Department of Communications Engineering, Paderborn, Germany
2NTT Communication Science Laboratories, NTT CORPORATION, Kyoto, Japan
Thu-0-1-1-5, Time: 11:20-11:40

The weighted prediction error (WPE) algorithm has proven to be a very
successful dereverberation method for the REVERB challenge. Likewise, neural network based mask estimation for beamforming demonstrated very good noise suppression in the CHiME 3 and CHiME 4 challenges. Recently, it has been shown that this estimator can also be trained to perform dereverberation and denoising jointly. However, up to now a comparison of a neural beamformer and WPE is still missing, so is an investigation into a combination of the two. Therefore, we here provide an extensive evaluation of both and consequently propose variants to integrate deep neural network based beamforming with WPE. For these integrated variants we identify a consistent WER reduction on two distinct databases. In particular, our study shows that deep learning based beamforming benefits from a model-based dereverberation technique (i.e. WPE) and vice versa. Our key findings are: (a) Neural beamforming yields the lower WER in comparison to WPE if the more channels and noise are present; (b) Integration of WPE and a neural beamformer consistently outperforms all stand-alone systems.

A Probability Weighted Beamformer for Noise Robust ASR
Suliang Bu1, Yunxin Zhao1, Meiuyh Hwang2 and Sining Sun3
1Dept. of Electrical Engineering and Computer Science, University of Missouri-Columbia, USA
2Mobvoi AI Lab, Redmond WA, USA
3Sch. of Computer Science, Northwestern Polytechnical University, Xi’an, China

Thu-O-1-1-6, Time: 11:40-12:00
We investigate a novel approach to spatial filtering that is adaptive to conditions at different time-frequency (TF) points for noise removal by taking advantage of speech sparsity. Our approach combines a noise reduction beamformer with a minimum variance distortionless response (MVDR) beamformer or Generalized Eigenvalue (GEV) beamformer through TF posterior probabilities of speech presence (PPSP). To estimate PPSP, we study both statistical model-based and neural network based methods, where in the former, we use complex Gaussian mixture modeling (CGMM) on temporally augmented spatial spectral features and in the latter, we use neural network (NN) based TF masks to initialize speech and noise covariance matrices in CGMM. We have conducted experiments on CHiME-3 task. On its real noisy speech test set, our methods of feature augmentation, TF dependent spatial filter and NN-based mask initialization on covariances for CGMM have yielded relative word error rate (WER) reductions cumulatively by 8%, 16% and 25% over the original CGMM based MVDR. On the real test data, the three methods have also produced consistent WER reductions when replacing MVDR by GEV.

Thu-O-1-2-2, Time: 10:20:10:40
Natural language generators for task-oriented dialog should be able to vary the style of the output utterance while still effectively realizing the system dialog actions and their associated semantics. While the use of neural generation for training the response generation component of conversational agents promises to simplify the process of producing high quality responses in new domains, to our knowledge, there has been very little investigation of neural generators for task-oriented dialog that can vary their response style and we know of no experiments on models that can generate responses that are different in style from those seen during training, while still maintaining semantic fidelity to the input meaning representation. Here, we show that a model that is trained to achieve a single stylistic personality target can produce outputs that combine stylistic targets. We carefully evaluate the multivoice outputs for both semantic fidelity and for similarities to and differences from the linguistic features that characterize the original training style. We show that contrary to our predictions, the learned models do not always simply interpolate model parameters, but rather produce styles that are distinct and novel from the personalities they were trained on.

Expressions with Variational Autoencoder
Kei Akuzawa, Yusuke Iwasawa and Yutaka Matsuo
Graduate School of Engineering, The University of Tokyo, Japan

Thu-O-1-2-3, Time: 10:40-11:00
A novel method of controlling paralinguistic information in neural network-based dialogue speech synthesis is proposed. Controlling paralinguistic information was achieved by feeding emotion dimensions in continuous values into the input layer of the neural networks. Compared to the method using the multiple regression HMM, the naturalness of synthesized speech was improved. The controllability of paralinguistic information was evaluated by examining the shift of the distribution of synthesized parameters. A subjective evaluation test revealed that the correlation between given and perceived paralinguistic information was moderate, though less apparent compared to the multiple regression HMM-based method.
Rapid Style Adaptation Using Residual Error Embedding for Expressive Speech Synthesis

Xixin Wu¹, Yuewen Cao¹, Mu Wang¹, Songxiang Liu¹,
Shiyin Kang², Zhiyong Wu¹,², Kunying Liu¹, Dan Su¹, Dong Yu¹ and Helen Meng¹,²

¹Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, China
²Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

Thu-0-1-2-5, Time: 11:20-11:40

Synthesizing expressive speech with appropriate prosodic variations, e.g., various styles, still has much room for improvement. Previous methods have explored to use manual annotations as conditioning attributes to provide variation information. However, the related training data are expensive to obtain and the annotated style codes can be ambiguous and unreliable. In this paper, we explore utilizing the residual error as conditioning attributes. The residual error is the difference between the prediction of a trained average model and the ground truth. We encode the residual error into a style embedding via a neural network-based error encoder. The embedding is then fed to the target synthesis model to provide information for modeling various style distributions more accurately. The average model and the error encoder are jointly optimized with the target synthesis model. Our proposed method has two advantages: 1) the embedding is automatically learned with no need of manual annotations, which helps overcome data sparsity and ambiguity limitations; 2) For any unseen audio utterance, the style embedding can be efficiently generated. This enables rapid adaptation to the desired style to be achieved with only one adaptation utterance. Experimental results show that our method outperforms the baseline in speech quality and style similarity.

EMPHASIS: An Emotional Phoneme-based Acoustic Model for Speech Synthesis System

Hao Li¹, Yongguo Kang and Zhenyu Wang

Baidu Speech Department
Baidu Inc. Baidu Technology Park, Beijing, 100193, China

Thu-0-1-2-6, Time: 11:40-12:00

We present EMPHASIS, an emotional phoneme-based acoustic model for speech synthesis system. EMPHASIS includes a phoneme duration prediction model and an acoustic parameter prediction model. It uses a CBHG-based regression network to model the dependencies between linguistic features and acoustic features. We modify the input and output layer structures of the network to improve the performance. For the linguistic features, we apply a feature grouping strategy to enhance emotional and prosodic features. The acoustic parameters are designed to be suitable for the regression task and waveform reconstruction. EMPHASIS can synthesize speech in real-time and generate expressive interrogative and exclamatory speech with high audio quality. EMPHASIS is designed to be a multi-lingual model and can synthesize Mandarin-English speech for now. In the experiment of emotional speech synthesis, it achieves better subjective results than other real-time speech synthesis systems.

Notes

231
Automatic recognition of spontaneous emotion in conversational speech is an important yet challenging problem. In this paper, we propose a deep neural network model to track continuous emotion changes in the arousal-valence two-dimensional space by combining inputs from raw waveform signals and spectrograms, both of which have been shown to be useful in the emotion recognition task. The neural network architecture contains a set of convolutional neural network (CNN) layers and bidirectional long short-term memory (BLSTM) layers to account for both temporal and spectral variation and model contextual content. Experimental results of predicting valence and arousal on the SEMAINE database and the RECOLA database show that the proposed model significantly outperforms model using hand-engineered features, by exploiting waveforms and spectrograms as input. We also compare the effects of waveforms vs. spectrograms and find that waveforms are better at capturing arousal, while spectrograms are better at capturing valence. Moreover, combining information from both inputs provides further improvement to the performance.

We investigate a number of Deep Neural Network (DNN) architectures for emotion identification with the IEMOCAP dataset. First we compare different feature extraction front-ends: we compare high-dimensional MFCC input (equivalent to filterbanks), versus frequency-domain and time-domain approaches to learning filters as part of the network. We obtain the best results with the time-domain filter-learning approach. Next we investigated different ways to aggregate information over the duration of an utterance. We tried approaches with a single label per utterance with time aggregation inside the network, and approaches where the label is repeated for each frame. Having a separate label per frame seemed to work best and the best architecture that we tried interleaves TDNN-LSTM with time-restricted self-attention, achieving a weighted accuracy of 70.6%, versus 61.8% for the best architecture that we tried using deep learning have shown strong success in many problems, especially in image processing. In particular, deep generative models such as Variational Autoencoders (VAEs) have gained enormous success in generating features for natural images. Inspired by this, we propose VAEs for deriving the latent representation of speech signals and use this representation to classify emotions. To the best of our knowledge, we are the first to propose VAEs for speech emotion classification. Evaluations on the IEMOCAP dataset demonstrate that features learned by VAEs can produce state-of-the-art results for speech emotion classification.

We derive articulatory dynamics from the acoustic speech signal has been addressed in several speech production studies. In this paper, we investigate whether it is possible to predict articulatory dynamics from phonetic information without having the acoustic speech signal. The input data may be considered as not sufficiently rich acoustically, as probably there is no explicit coarticulation information but we expect that the phonetic sequence provides compact yet rich knowledge.

Motivated by the recent success of deep learning techniques used in the acoustic-to-arthural inversion, we have experimented around the bidirectional gated recurrent neural network architectures. We trained these models with an EMA corpus and have obtained good performances similar to the state-of-the-art articulatory inversion from LSF features, but using only the phoneme labels and durations.

Tongue Segmentation with Geometrically Constrained Snake Model
Zhihua Su1, Jianguo Wei1, Qiang Fang1, Jianrong Wang1 and Kiyoshi Honda2
1School of Computer Software, Tianjin University, Tianjin, China

Thu-O-1-3-3, Time: 10:40-11:00
Automatic recognition of spontaneous emotion in conversational speech is an important yet challenging problem. In this paper, we propose a deep neural network model to track continuous emotion changes in the arousal-valence two-dimensional space by combining inputs from raw waveform signals and spectrograms, both of which have been shown to be useful in the emotion recognition task. The neural network architecture contains a set of convolutional neural network (CNN) layers and bidirectional long short-term memory (BLSTM) layers to account for both temporal and spectral variation and model contextual content. Experimental results of predicting valence and arousal on the SEMAINE database and the RECOLA database show that the proposed model significantly outperforms model using hand-engineered features, by exploiting waveforms and spectrograms as input. We also compare the effects of waveforms vs. spectrograms and find that waveforms are better at capturing arousal, while spectrograms are better at capturing valence. Moreover, combining information from both inputs provides further improvement to the performance.

Thu-O-1-3-4, Time: 11:00-11:20
We investigate a number of Deep Neural Network (DNN) architectures for emotion identification with the IEMOCAP dataset. First we compare different feature extraction front-ends: we compare high-dimensional MFCC input (equivalent to filterbanks), versus frequency-domain and time-domain approaches to learning filters as part of the network. We obtain the best results with the time-domain filter-learning approach. Next we investigated different ways to aggregate information over the duration of an utterance. We tried approaches with a single label per utterance with time aggregation inside the network, and approaches where the label is repeated for each frame. Having a separate label per frame seemed to work best and the best architecture that we tried interleaves TDNN-LSTM with time-restricted self-attention, achieving a weighted accuracy of 70.6%, versus 61.8% for the best previously published system which used 257-dimensional Fourier log-energies as input.
Articulatory visualization aims at providing precise visual information of the speech organs (tongue, lips and velum) that accompany with speech signals. It is often critical in fundamental studies and certain applications. To construct an articulatory visualization system, the profile of the speech organs must be segmented from images acquired by various types of medical equipments. In this paper, a geometrically constrained snake model is proposed to segment tongue profiles from mid-sagittal MRI to deal with the situation in which the tongue contacts with the surrounding structures and the target object with inhomogeneity nature. The result indicates that the proposed method improves segmentation performance significantly compared with the traditional snake model.

Low Resource Acoustic-to-articulatory Inversion Using Bi-directional Long Short Term Memory
Aravind Illa and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India
Thu-0-1-4-3, Time: 10:40-11:00

Estimating articulatory movements from speech acoustic features is known as acoustic-to-articulatory inversion (AAI). Large amount of parallel data from speech and articulatory movement is required for training an AAI model in a subject dependent manner, referred to as subject dependent AAI (SD-AAI). Electromagnetic articulograph (EMA) is a promising technology to record such parallel data, but it is expensive, time consuming and tiring for a subject. In order to reduce the demand for parallel acoustic-articulatory data in the AAI task for a subject, we, in this work, propose a subject-adaptive AAI method (SA-AAI) from an existing AAI model which is trained using large amount of parallel data from a fixed set of subjects. Experiments are performed with 30 subjects’ acoustic-articulatory data and AAI is trained using BLSTM network to examine the amount of data needed for a new target subject for the SA-AAI to achieve an AAI performance equivalent to that of SD-AAI. Experimental results reveal that the proposed SA-AAI performs similar to that of the SD-AAI with ~62.5% less training data. Among different articulators, the SA-AAI performance for tongue articulators matches with the corresponding SD-AAI performance with only ~12.5% of the data used for SD-AAI training.

Automatic Visual Augmentation for Concatenation Based Synthesized Articulatory Videos from Real-time MRI Data for Spoken Language Training
Chandana S, Chiranjeevi Yarra, Ritu Aggarwal, Sanjeev Kumar Mittal, Kausthubha N K, Raseena K T, Astha Singh and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute of Science (IISc), Bangalore-560012, India
Thu-0-1-4-4, Time: 11:00-11:20

For the benefit of spoken language training, concatenation based articulatory video synthesis has been proposed in the past to overcome the limitation in the articulatory data recording. For this, real time magnetic resonance imaging (rt-MRI) video image-frames (IFs) containing articulatory movements have been used. These IFs require a visual augmentation for better understanding. We, in this work, propose an augmentation method using pixel intensities in the regions enclosed by the articulatory boundaries obtained from air-tissue boundaries (ATBs). Since, the pixel intensities reflect the muscle movements in the articulators, the augmented IFs could provide realistic articulatory movements, when we color them accordingly. However, the ATB manual annotation is time consuming; hence, we propose to synthesize ATBs using the ATBs from a few selected frames that have been used in synthesizing the articulatory videos. We augment a set of synthesized articulatory videos for 50 words obtained from the MRI-TIMIT database. Subjective evaluation on the quality of the augmented videos using twenty-one subjects suggests that the videos are visually more appealing than the respective synthesized rt-MRI videos with a rating of 3.75 out of 5, where a score of 5 (1) indicates that the augmented video quality is excellent (poor).

Air-Tissue Boundary Segmentation in Real-Time Magnetic Resonance Imaging Video Using Semantic Segmentation with Fully Convolutional Networks
Valliappan CA, Renuka Mannem and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute of Science, Bangalore-560012, India
Thu-0-1-4-5, Time: 11:20-11:40

This paper presents results from the first of two steps needed for exploring the effect of speech enhancement on TV estimation. Experiments showed a 10% relative improvement in correlation over the baseline clean-speech trained system. This paper presents results from the first of two steps needed for exploring the effect of speech enhancement on TV estimation. Experiments showed a 10% relative improvement in correlation over the baseline clean-speech trained system.
Designing a Pneumatic Bionic Voice Prosthesis - A Statistical Approach for Source Excitation Generation
Farzaneh Ahmadi1 and Tomoki Toda2
1MARCS Institute, Western Sydney University 2Information Technology Center, Nagoya University
Thu-SS-1-1-2, Time: 10:05-10:20
This study follows up on our pioneering work in designing a Pneumatic Bionic Voice (PBV) prosthesis for larynx amputees. PBV prostheses are electronic adaptations of the traditional Pneumatic Artificial Larynx (PAL) device. The PBV is a non-invasive mechanical voice source, driven exclusively by respiration and with an exceptionally high voice quality. Following the PAL design closely, the PBV prosthesis is anticipated to substitute the medical gold standard of voice prostheses by generating a similar voice quality while remaining non-invasive and non-surgical. This paper describes a statistical approach to estimate the excitation waveform of the PBV source using the PAL as a reference. A Gaussian mixture model of the joint probability density of respiration and PAL voice features is implemented to estimate the excitation waveform of the PBV. The evaluation on a database of more than two hours of continuous speech shows a close match between 10 pattern and mel-cepstra of the estimated PBV source and the PAL. When used to re-synthesize the original speech, the intelligibility of the PBV speech remains high and is scored 7.1±0.4 compared to 7.9±0.15 of the original PAL source.

A Neural Model to Predict Parameters for a Generalized Command Response Model of Intonation
Bastian Schnell1,2 and Philip N. Garner3
1Idiap Research Institute, Martigny, Switzerland 2Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Thu-SS-1-1-3, Time: 10:10-10:35
The Generalised Command Response (GCR) model is a time-local model of intonation that has been shown to lend itself to (cross-language) transfer of emphasis. In order to generalise the model to longer prosodic sequences, we show that it can be driven by a recurrent neural network emulating a spiking neural network. We show that a loss function for error backpropagation can be formulated analogously to that of the Spike Pattern Association Neuron (SPAN) method for spiking networks. The resulting system is able to generate prosody comparable to a state-of-the-art deep neural network implementation, but potentially retaining the transfer capabilities of the GCR model.

Articulation-to-Speech Synthesis Using Articulatory Flesh Point Sensors’ Orientation Information
Beiming Cao1, Myuongjung Kim1, Jun R. Wang2, Jan van Santen3, Ted Mau4 and Jun Wang5,6
1Speech Disorders & Technology Lab, Department of Bioengineering 2Calier Center for Communication Disorders, University of Texas at Dallas, United States 3Center for Spoken Language Understanding, Oregon Health & Science University, United States 4Department of Otolaryngology - Head and Neck Surgery University of Texas Southwestern Medical Center, United States
Thu-SS-1-1-4, Time: 10:35-10:50
Articulation-to-speech (ATS) synthesis generates audio waveform directly from articulatory information. Current works in ATS used articulatory movement information (spatial coordinates) only. The orientation information of articulatory flesh points has rarely been used, although some devices (e.g., electromagnetic articulography) provide that. Previous work indicated that orientation information contains significant information for speech production. In this paper, we explored the performance of applying orientation information of flesh points on articulators (i.e., tongue, lips and jaw) in ATS. Experiments using articulators’ movement information with or without orientation information were conducted using standard deep neural networks (DNNs) and long-short term memory-recurrent neural networks (LSTM-RNNs). Both objective and subjective evaluations indicated that adding orientation information of flesh points on articulators in addition to movement information generated higher quality speech output than using movement information only.

Effectiveness of Generative Adversarial Network for Non-Audible Murmur-to-Whisper Speech Conversion
Neil Shah, Nirmesh Shah and Hemant Patil
Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India
Thu-SS-1-1-5, Time: 10:50-11:05
The murmur produced by the speaker and captured by the NonAudible Murmur (NAM)—one of the Silent Speech Interface (SSI) technique, suffers from the speech quality degradation. This is due to the lack of radiation effect at the lips and lowpass nature of the soft tissue, which attenuates the high frequency related information. In this work, a novel method for NAM-to-Whisper (NAM2WHSP) speech conversion incorporating Generative Adversarial Network (GAN) is proposed. The GAN minimizes the distributional divergence between the whispered speech and the generated speech parameters (through adversarial optimization). The objective and subjective evaluation performed on the proposed system, justifies the ability of adversarial optimization over Maximum Likelihood (ML)-based optimization networks, such as a Deep Neural Network (DNN), in preserving and improving the speech quality and intelligibility. The adversarial optimization learns the mapping function with 54.2% relative improvement in MOS and 29.83% absolute reduction in % WER w.r.t. the state-of-the-art mapping techniques. Furthermore, we evaluated the proposed framework by analyzing the level of contextual information and the number of training utterances required for optimizing the network parameters, for the given task and database.

Investigating Objective Intelligibility in Real-Time EMG-to-Speech Conversion
Lorenz Diener and Tanja Schultz
Cognitive Systems Lab, University of Bremen, Germany
Thu-SS-1-1-6, Time: 11:05-11:20
This paper presents an analysis of the influence of various system parameters on the output quality of our neural network based real-time EMG-to-Speech conversion system. This EMG-to-Speech system allows for the direct conversion of facial surface electromyographic signals into audible speech in real time, allowing for a closed-loop setup where users get direct audio feedback. Such a setup opens new avenues for research and applications through co-adaptation approaches.

In this paper, we evaluate the influence of several parameters on the output quality, such as time context, EMG-Audio delay, network-, training data- and Mel spectrogram size. The resulting output quality is evaluated based on the objective output quality measure STOI.

Domain-Adversarial Training for Session Independent EMG-based Speech Recognition
Michael Wand1, Tanja Schultz2 and Jürgen Schmidhuber1
1Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), USAI & SUPSI, Manno-Lugano, Switzerland 2University of Bremen, Bremen, Germany
Thu-SS-1-1-7, Time: 11:20-11:35
We present our research on continuous speech recognition based on Surface Electromyography (EMG), where speech information is captured by electrodes attached to the speaker’s face. This method allows speech processing without requiring that an acoustic signal is present; however, reattachment of the EMG electrodes causes subtle changes in the recorded signal, which degrades the recognition accuracy and thus poses a major challenge for practical application of the system. Based on the growing body of recent work in domain-adversarial training of neural networks, we present a system which adapts the neural network frontend of our recognizer to data from a new recording session, without requiring supervised enrollment.
Multi-Task Learning of Speech Recognition and Speech Synthesis Parameters for Ultrasound-based Silent Speech Interfaces

László Tóth¹, Gábor Gosztonyi², Tamás Grósz¹,², Alexandra Markó³,⁴ and Tamás Gábor Csapó³,⁴
¹Institute of Informatics, University of Szeged, Hungary
²MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
³Department of Phonetics, Eötvös Loránd University, Budapest, Hungary
⁴MTA-ELTE Lendület Lingual Articulation Research Group, Budapest, Hungary

Thu-SS-1-1-8, Time: 11:35-11:50
Silent Speech Interface systems apply two different strategies to solve the articulatory-to-acoustic conversion task. The recognition-and-synthesis approach applies speech recognition techniques to map the articulatory data to a textual transcript, which is then converted to speech by a conventional text-to-speech system. The direct synthesis approach seeks to convert the articulatory information directly to speech synthesis (vocoder) parameters. In both cases, deep neural networks are an evident and popular choice to learn the mapping task. Recognizing that the learning of speech recognition and speech synthesis targets (acoustic model states vs. vocoder parameters) are two closely related tasks over the same ultrasound tongue image input, here we experiment with the multi-task training of deep neural networks, which seeks to solve the two tasks simultaneously.

Our results show that the parallel learning of the two types of targets is indeed beneficial for both tasks. Moreover, we obtained further improvements by using multi-task training as a weight initialization step before task-specific training. Overall, we report a relative error rate reduction of about 7% in both the speech recognition and the speech synthesis tasks.

Discussion and Closing
Thu-SS-1-1-9, Time: 11:50-12:00

Thu-SS-1-2: Special Session: Low Resource Speech Recognition Challenge for Indian Languages

M R 1.01-1.02; 10:00-12:00; Thursday, 6 September, 2018
Chairs: Kalika Bali, Krishna Doss Mohan, Rupesh Kumar Mehta, Nirajan Nayak, Sunayana Sitaram and Radhakrishnan Srikanth

Introduction
Thu-SS-1-2-1, Time: 10:00-10:15

Transcription Correction for Indian Languages Using Acoustic Signatures
Jeena JPrakash¹, Golda Brunet Rajam² and Hema Murthy²
¹Indian Institute of Technology, Madras, India
²Government College of Engineering, Salem, India

Thu-SS-1-2-2, Time: 10:15-10:30
Accurate phonetic transcription of the speech corpus has a significant impact on the performance of speech processing applications especially for low resource languages. Mismatches between the transcriptions and their utterances occur often at phoneme level due to insertion/deletion/substitution errors. This is very common in Indian languages owing to schwa deletion in the context of vowels and agglutination in the context of consonants.

An attempt is made in this paper to use acoustic cues at the syllable level to remove vowels from the transcription when they are poorly articulated or absent. Hidden Markov model (HMM) based forced Viterbi alignment (FVA) and group delay (GD) based signal processing are employed in tandem to achieve this task. Disambiguation between FVA (which produces vowel boundaries based on transcription) and GD boundaries (which uses signal processing cues for syllables) are used to correct the transcription. An increase in likelihood of 0.3% is observed across 3 Indian languages, namely, Gujarati, Telugu and Tamil.

BUT System for Low Resource Indian Language ASR

Bhargav Pulugundla¹,², Murali Karthick Baskar¹, Santosh Kesiraju¹,², Ekaterina Egorova¹, Martin Karafiát³, Lukáš Burget¹ and Jan Černocký¹
¹Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Czechia
²Phoneix s.r.o., Czechia
³IIIT Hyderabad, India

Thu-SS-1-2-3, Time: 10:30-10:45
This paper describes the BUT ‘Jilebi’ team’s speech recognition systems created for the 2018 low resource speech recognition challenge for Indian languages. We investigate modifications of multilingual time-delay neural network (TDNN) architectures with transfer learning and compare them to bi-directional residual memory networks (BRNN) and bi-directional LSTM. Our best submission based on system combination achieved word error rates of 13.92% (Tamil), 14.71% (Telugu) and 14.06% (Gujarati). We present the details of submitted systems and also the post-evaluation analysis done for lexicon discovery using unsupervised word segmentation.

DA-IICT/IIITV System for Low Resource Speech Recognition Challenge 2018

Hardik B. Sailor¹, Maddala Venkata Siva Krishna¹, Diksha Chhabra¹, Ankur T. Patil¹, Madhu Kambale¹ and Hemant Patil¹
¹Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar–382007, Gujarat, India
²Indian Institute of Information Technology (IIIT), Vadodara, Gujarat, India

Thu-SS-1-2-4, Time: 10:45-11:00
This paper presents an Automatic Speech Recognition (ASR) system, in the Gujarati language, developed for Low Resource Speech Recognition Challenge for Indian Languages in INTERSPEECH 2018. For front-end, Amplitude Modulation (AM) features are extracted using the standard and data-driven auditory filterbanks. Recurrent Neural Network Language Models (RNNLM) are used for this task. There is a relative improvement of 36.1% and 40.95% in perplexity on the test and blind test sets, respectively, compared to 3-gram LM. TimeDelay Neural Network (TDNN) and TDNN-Long Short-Term Memory (LSTM) models are employed for acoustic modeling.

The statistical significance of proposed approaches is justified using a bootstrap-based % Probability of Improvement (POI) measure. RNNLM rescoring with 3-gram LM gave an absolute reduction of 0.69-1.29% in Word Error Rate (WER) for various feature sets. AM features extracted using the gammatone filterbank (AM-GTFB) performed well on the blind test set compared to the FBANK baseline (POI=70%). The combination of ASR systems further increased the performance with an absolute reduction of 1.8% and 2.24% in WER for test and blind test sets, respectively (100% POI).
An Exploration towards Joint Acoustic Modeling for Indian Languages: IIIT-H Submission for Low Resource Speech Recognition Challenge for Indian Languages, INTERSPEECH 2018

Hari Krishna, Krishna Gurugubelli, Vishnu Vidyadharra Raju V and Anil Kumar Vuppalap

Speech Processing Laboratory, KCIS
International Institute of Information Technology, Hyderabad, India

Thu-SS-1-2-5, Time: 11:00-11:15

India being a multilingual society, a multilingual automatic speech recognition system (ASR) is widely appreciated. Despite different orthographies, Indian languages share same phonetic space. To exploit this property, a joint acoustic model has been trained for developing multilingual ASR system using a common phone-set. Three Indian languages namely Telugu, Tamil and Gujarati are considered for the study. This work studies the amenability of two different acoustic modeling approaches for training a joint acoustic model using common phone-set. Sub-space Gaussian mixture models (SGMM) and recurrent neural networks (RNN) trained with connectionist temporal classification (CTC) objective function are explored for training joint acoustic models. From the experimental results, it can be observed that the joint acoustic models trained with RNN-CTC have performed better than SGMM system even on 120 hours of data (approx 40 hrs per language). The joint acoustic model trained with RNN-CTC has performed better than monolingual models, due to an efficient data sharing across the languages. Conditioning the joint model with language identity had a minimal advantage. Sub-sampling the features by a factor of 2 while training RNN-CTC models has reduced the training times and has performed better.

TDNN-based Multilingual Speech Recognition System for Low Resource Indian Languages

Noor Fatima, Tanvina Patel, Mahima C and Anuroof Iyengar
Cogknit Semantics, Bangalore, Karnataka, India

Thu-SS-1-2-6, Time: 11:15-11:30

India is a diverse and multilingual country. It has vast linguistic variations, spoken across its billion plus population. Lack of resources in terms of transcribed speech data, phonetic pronunciation dictionary or lexicon and text collection has hindered the development and improvement of the ASR systems for Indic languages. With the Interspeech 2018 Special Session: Low Resource Speech Recognition Challenge for Indian Languages, efforts have been made to solve this issue to an extent. In this paper, we explore the fact that the shared phonetic properties of the languages are essential for improved ASR performance. We build a multilingual Time Delay Neural Network (TDNN) based baseline WERs. We further reduce in word error rate (WER) compared to the challenge organizer’s Time Delay Neural Network (TDNN) based baseline WERs. We further extend these systems with multilingual training approaches that lead to an additional 4.5% to 11.1% relative reduction in WER as measured on the development set.

Articulatory and Stacked Bottleneck Features for Low Resource Speech Recognition

Vishwas M. Shetty, Rini A Sharon, Basi Abraham, Tejaswi Seeram, Anusha Prakash, Nithya Ravi and S. Unmesh
Indian Institute of Technology-Madras, India

Thu-SS-1-2-7, Time: 11:30-11:45

In this paper, we discuss the benefits of using articulatory and stacked bottleneck features (SBF) for low resource speech recognition. Articulatory features (AF) which capture the underlying attributes of speech production are found to be robust to channel and speaker variations. However, building an efficient articulatory classifier to extract AF requires an enormous amount of data. In low resource acoustic modeling, we propose to train the bidirectional long short-term memory (BLSTM) articulatory classifier by pooling data from the available low resource Indian languages, namely, Gujarati, Tamil and Telugu. This is done in the context of Microsoft Indian Language challenge. Similarly, we train a multilingual bottleneck feature extractor and an SBF extractor using the pooled data. To bias, the SBF network towards the target language, a second network in the stacked architecture was trained using the target language alone. The performance of ASR system trained with stand-alone AF is observed to be at par with the multilingual bottleneck features. When the AF and the biased SBF are appended, they are found to outperform the conventional filterbank features in the multilingual deep neural network (DNN) framework and the high-resolution Mel frequency cepstral coefficient (MFCC) features in the time-delayed neural network(TDNN) framework.

ISI ASR System for the Low Resource Speech Recognition Challenge for Indian Languages

Jayadev Billa
Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA

Thu-SS-1-2-8, Time: 11:45-12:00

This paper describes the ISI ASR system used to generate ISIs submissions across Gujarati, Tamil and Telugu speech recognition tasks as part of the Low Resource Speech Recognition Challenge for Indian Languages. The key constraints on this task were limited training data and the restriction that no external data be used. The ISI ASR system leverages our earlier work on data augmentation and dropout approaches and current work on multilingual training within a Eesen based end-to-end Long Short Term Memory (LSTM) based automatic speech recognition (ASR) system trained with the Connectionist Temporal Classification (CTC) loss criterion and demonstrates, to the best of our knowledge, one of the first times such systems have been applied to low resource languages with performance comparable and some cases better than hybrid DNN systems.

Our best monolingual systems show between 6.5% to 25.5% relative reduction in word error rate (WER) compared to the challenge organizer’s Time Delay Neural Network (TDNN) based baseline WERs. We further extend these systems with multilingual training approaches that lead to an additional 4.5% to 11.1% relative reduction in WER as measured on the development set.
AGROASSAM: A Web Based Assamese Speech Recognition Application for Retrieving Agricultural Commodity Price and Weather Information
Abhishek Day1, Abhassh Deka2, Siddhika Imani1, Barsha Deka2, Rohit Sinha1, S R Mahadeva Prasann3,4, Priyankoo Sarmah5, K Samudravijaya2 and Nirmala S.R.1
1'GUIST, Gauhati University, Guwahati-781014, India
2'Indian Institute of Technology Guwahati, Guwahati-781039, India
3'Indian Institute of Technology Dharwad, Dharwad-580011, India
Thu-S&T-1-1-2, Time: 10:00-12:00
This paper presents a speech-based web application developed for retrieving the price of agricultural commodities and weather related information in Assamese language. The price of agricultural commodities are retrieved from AGMARKNET website while the weather related informations are extracted from the IMD website. Both these websites are updated on a daily basis by the Government of India. The back-end of the application consists of automatic speech recognition (ASR) modules developed using state-of-the-art acoustic modeling approaches. Word error rates (WERs) of 7.79% and 4.98% are achieved for commodity and district names respectively.

Voice-powered Solutions with Cloud AI
Dan Aharon
Google, Inc.
Thu-S&T-1-1-3, Time: 10:00-12:00
Google has been a leader in research into speech recognition, speech synthesis and natural language and much of that innovation has powered Google products like Search, Google Assistant, Google Maps android and others.
Google Cloud AI aims to help enterprises, startups, students and any other developer use AI to build great end user experiences and benefiting from investments Google has made in this space.
Google Cloud Speech-to-Text (formerly known as Cloud Speech API) was first released in Beta in 2016, was followed by Dialogflow Enterprise Edition in 2017 and Cloud Text-to-Speech in 2018. Each of these products is backed by cutting-edge research that Google has conducted in these spaces.

This set of products is expected to be generally available before this conference starts and we’re excited to see how participants would use them to build new speech-powered experiences including mobile apps, connected devices (cars, TVs, speakers), robots, etc. We will showcase multiple demos at the show, that show how to build your own personal shopper or personal assistant using Cloud AI technology.

We will also show how easy it is to connect this to a phone line and turn this into a conversational IVR that feels like a personal agent.

Speech Synthesis in the Wild
Ganesh Sivaraman, Parav Nagarsheth and Elie Khoury
Pindrop, Atlanta USA
Thu-S&T-1-1-4, Time: 10:00-12:00
Speech synthesis has wide range of applications in modern artificial intelligence technologies. Most state-of-the-art speech synthesis systems usually require high quality recordings of large amounts of speech data of the target speaker. We focus on low-budget speech synthesis. Our software deals with methods to perform statistical parametric speech synthesis using unlabeled and mixed quality speech data sourced from the internet. An average voice model trained using DNA is adapted to a target speaker using different speaker adaptation strategies. Preprocessing methods like speech enhancement, diarization and segmentation are applied to the sourced data. Utterance selection based on Mean cepstral distortion and forced alignment confidence are applied to prune the noisy and mis-aligned data. The mixed quality data thus pre-processed is then used to adapt the average voice model and duration models to the target speaker.

The software to be demonstrated automates the whole procedure from preprocessing to synthesis. The software will be demonstrated by performing live synthesis using audio sourced from Youtube.

Shu Nie1,3, Shan Liang1, Bin Liu1,2, Yaping Zhang1,3, Wenju Liu1 and Jianhua Tao1,2,3
1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2CAS Center for Excellence in Brain Science and Intelligence Technology
3School of Artificial Intelligence, University of Chinese Academy of Sciences
Thu-P-1-1-1, Time: 10:00-12:00
Noise statistics and speech spectrum characteristics are the essential information for the single channel speech enhancement. The signal processing-based methods mainly rely on noise statistics estimation. They perform very well for stationary noise, but have remained difficult to cope with non-stationary noise. While the deep learning-based methods mainly focus on the perception on the spectrum characteristics of speech and have a capacity in dealing with non-stationary noise. However, the performance would degrade dramatically for the unseen noise types, which could be due to the over-reliance on data and the ignorance to domain knowledge of signal process. Obviously, the hybrid signal processing/deep learning scheme may be a smart alternative. In this paper, we incorporate the powerful perceptual capabilities of deep learning in the conventional speech enhancement framework. Deep learning is used to estimate the speech presence probability and the update factor of noise statistics, which are then integrated into the Wiener filter-based speech enhancement structure to enhance the desired speech. All components are jointly optimized by a spectrum approximation objective. Systematic experiments on CHIME-4 and NOISEX-92 demonstrate the proposed hybrid signal processing/deep learning approach to noise suppression in noise-unmatched and noise-matched conditions.

A Deep Neural Network Based Harmonic Noise Model for Speech Enhancement
Zhenghong Guyang1, Hongjiang Yu1, Wei-Ping Zhu1 and Benoit Champagne2
1Dept. of Electrical and Computer Engineering, Concordia University, Montreal, Canada
2Dept. of Electrical and Computer Engineering, McGill University, Montreal, Canada
Thu-P-1-1-2, Time: 10:00-12:00
In this paper, we present a novel deep neural network (DNN) based speech enhancement method that uses a harmonic noise model (HNM) to estimate the clean speech. By utilizing HNM to model the clean speech in the short-time Fourier transform domain and extracting some time-frequency features of noisy speech for the DNN training, the new method predicts the harmonic and residual amplitudes of clean speech from a set of noisy speech features. In order to emphasize the importance of the harmonic component and reduce the effect caused by the residual, a scaling factor is also introduced and applied to the residual amplitude. The enhanced speech is reconstructed with the estimated clean speech amplitude and the noisy phase of HNM. Experimental results demonstrate that our proposed HNM-
DNN method outperforms two existing DNN based speech enhancement methods in terms of both speech quality and intelligibility.

A Convolutional Recurrent Neural Network for Real-Time Speech Enhancement
Ke Tān1 and DeLiang Wang1,2
1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University
Thu-P-1-1-3, Time: 10:00-12:00
Many real-world applications of speech enhancement, such as hearing aids and cochlear implants, desire real-time processing, with no or low latency. In this paper, we propose a novel convolutional recurrent network (CRN) to address real-time monaural speech enhancement. We incorporate a convolutional encoder-decoder (CED) and long short-term memory (LSTM) into the CRN architecture, which leads to a causal system that is naturally suitable for real-time processing. Moreover, the proposed model is noise- and speaker-independent, i.e. noise types and speakers can be different between training and test. Our experiments suggest that the CRN leads to consistently better objective intelligibility and perceptual quality than an existing LSTM based model. Moreover, the CRN has much fewer trainable parameters.

All-Neural Multi-Channel Speech Enhancement
Zhong-Qiu Wang1 and DeLiang Wang1,2
1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA
Thu-P-1-1-4, Time: 10:00-12:00
This study proposes a novel all-neural approach for multi-channel speech enhancement, where robust speaker localization, acoustic beamforming, post-filtering and spatial filtering are all done using deep learning based time-frequency (T-F) masking. Our system first performs monaural speech enhancement on each microphone signal to obtain the estimated ideal ratio masks for beamforming and robust time delay of arrival (TDOA) estimation. Then with the estimated TDOA, directional features indicating whether each T-F unit is dominated by the signal coming from the estimated target direction are computed. Next, the directional features are combined with the spectral features extracted from the beamformed signal to achieve further enhancement. Experiments on a two-microphone setup in reverberant environments with strong diffuse babble noise demonstrate the effectiveness of the proposed approach for multi-channel speech enhancement.

Deep Learning for Acoustic Echo Cancellation in Noisy and Double-Talk Scenarios
Hao Zhang1 and DeLiang Wang1,2,3
1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA
3Center of Intelligent Acoustics and Immersive Communications, Northwestern Polytechnical University, China
Thu-P-1-1-5, Time: 10:00-12:00
Traditional acoustic echo cancellation (AEC) works by identifying an acoustic impulse response using adaptive algorithms. We formulate AEC as a supervised speech separation problem, which separates the loudspeaker signal and the near-end signal so that only the latter is transmitted to the far end. A recurrent neural network with bidirectional long short-term memory (BLSTM) is trained to estimate the ideal ratio mask from features extracted from the mixtures of near-end and far-end signals. A BLSTM estimated mask is then applied to separate and suppress the far-end signal, hence removing the echo. Experimental results show the effectiveness of the proposed method for echo removal in double-talk, background noise and nonlinear distortion scenarios. In addition, the proposed method can be generalized to untrained speakers.

The Conversation: Deep Audio-Visual Speech Enhancement
Triantafyllos Alfouaras, Joon Son Chung and Andrew Zisserman
Visual Geometry Group, Department of Engineering Science, University of Oxford, UK
Thu-P-1-1-6, Time: 10:00-12:00
Our goal is to isolate individual speakers from multi-talker simultaneous speech in videos. Existing works in this area have focussed on trying to separate utterances from known speakers in controlled environments. In this paper, we propose a deep audio-visual speech enhancement network that is able to separate a speaker’s voice given lip regions in the corresponding video, by predicting both the magnitude and the phase of the target signal. The method is applicable to speakers unheard and unseen during training and for unconstrained environments. We demonstrate strong quantitative and qualitative results, isolating extremely challenging real-world examples.

Student-Teacher Learning for BLSTM Mask-based Speech Enhancement
Aswin Shanmugam Subramanian, Szu-Jui Chen and Shinji Watanabe
Center for Language and Speech Processing, Johns Hopkins University
Thu-P-1-1-7, Time: 10:00-12:00
Spectral mask estimation using bidirectional long short-term memory (BLSTM) neural networks has been widely used in various speech enhancement applications and it has achieved great success when it is applied to multichannel enhancement techniques with a mask-based beamformer. However, when these masks are used for single channel speech enhancement they severely distort the speech signal and make them unsuitable for speech recognition. This paper proposes a student-teacher learning paradigm for single channel speech enhancement. The beamformed signal from multichannel enhancement is given as input to the teacher network to obtain soft masks. An additional cross-entropy loss term with the soft mask target is combined with the original loss, so that the student network with single-channel input is trained to mimic the soft mask obtained with multichannel input through beamforming. Experiments with the CHiME-4 challenge single channel track data shows improvement in ASR performance.

Speech Enhancement Using Deep Mixture of Experts Based on Hard Expectation Maximization
Pavan Karjol and Prasanta Kumar Ghosh
Electrical Engineering, Indian Institute of Science, Bengaluru 560012, India
Thu-P-1-1-8, Time: 10:00-12:00
We consider the problem of deep mixture of experts based speech enhancement. The deep mixture of experts, where experts are considered as deep neural network (DNN), is difficult to train due to the network structure. In this work, we propose a pre-training method for individual DNN in deep mixture of experts. We use hard expectation maximization (EM) to pre-train the individual DNNs. After pre-training, we take a weighted combination of outputs of individual DNN experts and jointly train the whole system. We compare the proposed method with single DNN based speech enhancement scheme. Speech enhancement experiments, in four SNR conditions, show the superiority of proposed method over the baseline scheme. The average improvements obtained for four seen noise cases over single DNN scheme are 0.08, 0.59 dB and 0.015 in terms of objective measures viz perceptual evaluation of speech quality (PESQ), segmental signal to noise ratio (seg SNR) and short time objective intelligibility (STOI) respectively.

Adversarial Feature-Mapping for Speech Enhancement
Zhong Meng1,2, Jinyu Li1, Yifan Gong1 and Bing-Hwang (Fred) Lin
Center for Cognitive and Brain Sciences, The Ohio State University, USA
Thu-P-1-1-9, Time: 10:00-12:00
We consider the problem of deep mixture of experts based speech enhancement. The deep mixture of experts, where experts are considered as deep neural network (DNN), is difficult to train due to the network structure. In this work, we propose a pre-training method for individual DNN in deep mixture of experts. We use hard expectation maximization (EM) to pre-train the individual DNNs. After pre-training, we take a weighted combination of outputs of individual DNN experts and jointly train the whole system. We compare the proposed method with single DNN based speech enhancement scheme. Speech enhancement experiments, in four SNR conditions, show the superiority of proposed method over the baseline scheme. The average improvements obtained for four seen noise cases over single DNN scheme are 0.08, 0.59 dB and 0.015 in terms of objective measures viz perceptual evaluation of speech quality (PESQ), segmental signal to noise ratio (seg SNR) and short time objective intelligibility (STOI) respectively.
Feature-mapping with deep neural networks is commonly used for single-channel speech enhancement, in which a feature-mapping network directly transforms the noisy features to the corresponding enhanced ones and is trained to minimize the mean square errors between the enhanced and clean features. In this paper, we propose an adversarial feature-mapping (AFM) method for speech enhancement which advances the feature-mapping approach with adversarial learning. An additional discriminator network is introduced to distinguish the enhanced features from the real clean ones. The two networks are jointly optimized to minimize the feature-mapping loss and simultaneously mini-maximize the discrimination loss.

The distribution of the enhanced features is further pushed towards that of the clean features through this adversarial multi-task training. To achieve better performance on ASR task, senone-aware (SA) AFM is further proposed in which an acoustic model network is jointly trained with the feature-mapping and discriminator networks to optimize the senone classification loss in addition to the AFM losses. Evaluated on the CHiME-3 dataset, the proposed AFM achieves 16.95% and 5.27% relative word error rate (WER) improvements over the real noisy data and the feature-mapping baseline respectively and the SA-AFM achieves 9.85% relative WER improvement over the multi-conditional acoustic model.

Biophysically-inspired Features Improve the Generalizability of Neural Network-based Speech Enhancement Systems
Deeepabab and Sarah Verhulst
Dept. of Information Technology, Ghent University, Belgium
Thu-P-1-1-10, Time: 10:00-12:00
Recent advances in neural network (NN)-based speech enhancement schemes are shown to outperform most conventional techniques. However, the performance of such systems in adverse listening conditions such as negative signal-to-noise ratio (SNR) is still far from that of humans. Motivated by the remarkable performance of humans under these challenging conditions, this paper investigates whether biophysically-inspired features can mitigate the poor generalization capabilities of NN-based speech enhancement systems. We make use of features derived from several human auditory periphery models for training a speech enhancement system that employs long short-term memory (LSTM) and evaluate them on a variety of mismatched testing conditions. The results reveal that biophysically-inspired auditory models such as nonlinear transmission loss models improve the generalizability of LSTM-based noise suppression systems in terms of various objective quality measures, suggesting that such features lead to robust speech representations that are less sensitive to the noise type.

Error Modeling via Asymmetric Laplace Distribution for Deep Neural Network Based Single-Channel Speech Enhancement
Li Chai1, Jun Du1 and Chin-Hui Lee2
1University of Science and Technology of China, Hefei, Anhui, P. R. China
2Georgia Institute of Technology, Atlanta, GA, USA
Thu-P-1-1-11, Time: 10:00-12:00
The minimum mean squared error (MMSE) as a conventional training criterion for deep neural network (DNN) based speech enhancement has been found many problems. In our recent work, a maximum likelihood (ML) approach to parameter learning by modeling the prediction error vector as a Gaussian density was proposed. In this study, our preliminary statistical analysis reveals the super-Gaussianity and asymmetry of the prediction error distribution. Consequently, we adopt the asymmetric Laplace distribution (ALD) instead of the Gaussian distribution (GD) to model the prediction error vectors. Then the new derivation for optimizing the proposed ML-ALD-DNN with both DNN and ALD parameters is presented. Moreover, we can well interpret the asymmetry parameter of ALD as the balance control between noise reduction and speech preservation from both formulations and experiments. This implies that the customization of DNN models for the different noise types and levels is possible by the setting of the asymmetry parameter. Finally, our ML-ALD-DNN approach achieves better STOI and SSNR measures over both MMSE-DNN and ML-GD-DNN approaches.

A Priori SNR Estimation Based on a Recurrent Neural Network for Robust Speech Enhancement
Yangyang Xia1 and Richard Stern2
1Department of Electrical and Computer Engineering, Carnegie Mellon University
2Language Technologies Institute, Carnegie Mellon University
Thu-P-1-1-12, Time: 10:00-12:00
Speech enhancement under highly non-stationary noise conditions remains a challenging problem. Classical methods typically attempt to identify a frequency-domain optimal gain function that suppresses noise in noisy speech. These algorithms typically produce artifacts such as "musical noise" that are detrimental to machine and human understanding, largely due to inaccurate estimation of noise power spectra. The optimal gain function is commonly referred to as the ideal ratio mask (IRM) in neural-network-based systems and the goal becomes estimation of the IRM from the short-time Fourier transform amplitude of degraded speech. While these data-driven techniques are able to enhance speech quality with reduced artifacts, they are frequently not robust to types of noise that they had not been exposed to in the training process. In this paper, we propose a novel recurrent neural network (RNN) that bridges the gap between classical and neural-network-based methods. By reformulating the classical decision-directed approach, the priori and a posteriori SNRs become latent variables in the RNN, from which the frequency-dependent estimated likelihood of speech presence is used to update recursively the latent variables. The proposed method provides substantial enhancement of speech quality and objective accuracy in machine interpretation of speech.

Supervised Small-Footprint Audio Event Detection
Shao-Yen Tseng1, Juncheng Li2, Yun Wang2, Florian Metze3, Joseph Szurley1 and Samarjit Das2
1Robert Bosch LLC, Research and Technology Center, USA
2University of Southern California, Department of Electrical Engineering, USA
3Carnegie Mellon University, Language Technology Institute, USA
Thu-P-1-2-1, Time: 10:00-12:00
State-of-the-art audio event detection (AED) systems rely on supervised learning using strongly labeled data. However, this dependence severely limits scalability to large-scale datasets where fine resolution annotations are too expensive to obtain. In this paper, we propose a small-footprint multiple instance learning (MIL) framework for multi-class AED using weakly annotated labels. The proposed MIL framework uses audio embeddings extracted from a pre-trained convolutional neural network as input features. We show that by using audio embeddings the MIL framework can be implemented using a simple DNN with performance comparable to recurrent neural networks.

We evaluate our approach by training an audio tagging system using a subset of AudioSet, which is a large collection of weakly labeled YouTube video excerpts. Combined with a late-fusion approach, we improve the
F1 score of a baseline audio tagging system by 17%. We show that audio embeddings extracted by the convolutional neural networks significantly boost the performance of all MIL models. This framework reduces the model complexity of the AED system and is suitable for applications where computational resources are limited.

Unsupervised Temporal Feature Learning Based on Sparse Coding Embedded BoAW for Acoustic Event Recognition

Liwen Zhang¹, Jiqing Han¹ and Shiwen Deng²
¹Harbin Institute of Technology, China
²Harbin Normal University, China

Thu-P-1-2-2, Time: 10:00-12:00

The performance of an Acoustic Event Recognition (AER) system highly depends on the statistical information and the temporal dynamics in the audio signals. Although the traditional Bag of Audio Words (BoAW) and the Gaussian Mixture Models (GMM) approaches can obtain more statistics information by aggregating multiple frame-level descriptors of an audio segment compared with the frame-level feature learning methods, its temporal information is unresolved. Recently, more and more Deep Neural Networks (DNN) based AER methods have been proposed to effectively capture the temporal information in audio signals and achieved better performance, however, these methods usually required the manually annotated labels and fixed-length input during feature learning process. In this paper, we proposed a novel unsupervised temporal feature learning method, which can effectively capture the temporal dynamics for an entire audio signal with arbitrary duration by building direct connections between the BoAW histograms sequence and its time indexes using a non-linear Support Vector Regression (SVR) model. Furthermore, to make the feature representation have a better signal reconstruction ability, we embedded the sparse coding approach in the conventional BoAW framework. Compared with the BoAW and Convolutional Neural Network (CNN) baselines, experimental results showed our method brings improvements of 9.7% and 4.1% respectively.

Data Independent Sequence Augmentation Method for Acoustic Scene Classification

Zhang Teng, Kaihai Zhang and Ji Wu
Multimedia Signal and Intelligent Information Processing Lab, Department of Electronic Engineering, Tsinghua University, Beijing, PR China

Thu-P-1-2-3, Time: 10:00-12:00

Augmenting datasets by transforming inputs in a way such as vocal tract length perturbation (VTLP) is a crucial ingredient of the state of the art methods for speech recognition tasks. In contrast to speech, sounds coming from realistic environments have no speaker to speaker variations. Typically, tract length perturbation (VTLP) is a crucial ingredient of the state of the art methods for speech recognition tasks. In this paper, we propose a novel unsupervised temporal feature learning method, which can effectively capture the temporal dynamics for an entire audio signal with arbitrary duration by building direct connections between the BoAW histograms sequence and its time indexes using a non-linear Support Vector Regression (SVR) model. Furthermore, to make the feature representation have a better signal reconstruction ability, we embedded the sparse coding approach in the conventional BoAW framework. Compared with the BoAW and Convolutional Neural Network (CNN) baselines, experimental results showed our method brings improvements of 9.7% and 4.1% respectively.

A Compact and Discriminative Feature Based on Auditory Summary Statistics for Acoustic Scene Classification

Hongwei Song¹, Jiqing Han¹ and Shiwen Deng²
¹Harbin Institute of Technology, China
²Harbin Normal University, China

Thu-P-1-2-4, Time: 10:00-12:00

One of the biggest challenges of acoustic scene classification (ASC) is to find proper features to better represent and characterize environmental sounds. Environmental sounds generally involve more sound sources while exhibiting less structure in temporal spectral representations. However, the background of an acoustic scene exhibits temporal homogeneity in acoustic properties, suggesting it could be characterized by distribution rather than temporal details. In this work, we investigated using auditory summary statistics as the feature for ASC tasks. The inspiration comes from a recent neuroscience study, which shows the human auditory system tends to perceive sound textures through time-averaged statistics. Based on these statistics, we further proposed to use linear discriminant analysis to eliminate redundancies among these statistics while keeping the discriminative information, providing an extreme compact representation for acoustic scenes. Experimental results show the outstanding performance of the proposed feature over the conventional handicraft features.
In this paper, we present a state-of-the-art system for audio event detection. The labels on the training (and evaluation) data specify the set of events occurring in each audio clip, but neither the time spans nor the order in which they occur. Specifically, our task of weakly supervised learning is the “Detection and Classification of Acoustic Scenes and Events (DCASE) 2017” challenge. We use the winning entry in this challenge given by Xu et al. as our starting point and identify several important modifications that allow us to improve on their results significantly. Our techniques pertain to aggregation and consolidation over time and frequency signals over a (temporal) sequence before decoding the labels. In general, our work is also relevant to other tasks involving learning from weak labeling of sequential data.

Early Detection of Continuous and Partial Audio Events Using CNN

Ian McLoughlin1, Yan Song1, Lam Dang Pham1, Ramaswamy Palaniappan1, Huy Phan1 and Yue Lang1

1The University of Kent, School of Computing, Medway, UK
2The University of Science and Technology of China, Hefei, PRC
3University of Oxford, Department of Engineering Science, Oxford, UK
4Huawei European Research Center, Munich, Germany

Thu-P-1-2-8, Time: 10:00-12:00

Sound event detection is an extension of the static auditory classification task into continuous environments, where performance depends jointly upon the detection of overlapping events and their correct classification. Several approaches have been published to date which either develop novel classifiers or employ well-trained static classifiers with a detection front-end.

This paper takes the latter approach, by combining a proven CNN classifier acting on spectrogram image features, with time-frequency shaped energy detection that identifies seed regions within the spectrogram that are characteristic of auditory energy events. Furthermore, the shape detector is optimised to allow early detection of events as they are developing. Since some sound events naturally have longer durations than others, waiting until completion of entire events before classification may not be practical in a deployed system. The early detection capability of the system is thus evaluated for the classification of partial events.

Performance for continuous event detection is shown to be good, with accuracy being maintained well when detecting partial events.

Robust Acoustic Event Classification Using Bag-of-Visual-Words

Manjunath Mulimani and Shashidhar G Koolagudi

National Institute of Technology Karnataka, Surathkal, India

Thu-P-1-2-9, Time: 10:00-12:00

This paper presents a novel Bag-of-Visual-Words (BoVW) approach, to represent the grayscale spectrograms of acoustic events. Such, BoVW representations are referred as histograms of visual features, used for Acoustic Event Classification (AEC). Further, Chi-square distance between histograms of visual features evaluated, which generates kernel to Support Vector Machines (Chi-square SVM) classifier. Evaluation of the proposed histograms of visual features together with Chi-square SVM classifier is conducted on different categories of acoustic events from UPC-TALP corpora in clean and different noise conditions. Results show that proposed approach is more robust to noise and achieves improved recognition accuracy compared to other methods.

Wavelet Transform Based Mel-scaled Features for Acoustic Scene Classification

Shefali Waldekar and Goutam Saha

Dept of Electronics and Electrical Communication Engineering, IIT Kharagpur, Kharagpur, India

Thu-P-1-2-10, Time: 10:00-12:00

Acoustic scene classification (ASC) is an audio signal processing task where mel-scaled spectral features are widely used by researchers. These features, considered de facto baseline in speech processing, traditionally employ Fourier based transforms. Unlike speech, environmental audio spans a larger range of audible frequency and might contain short high-frequency transients and continuous low-frequency background noise, simultaneously. Wavelets, with a better time-frequency localization capacity, can be considered more suitable for dealing with such signals. This paper attempts ASC by a novel use of wavelet transform based mel-scaled features. The proposed features are shown to possess better discriminative properties than other spectral features while using a similar classification framework. The experiments are performed on two datasets, similar in scene classes but differing by dataset size and length of the audio samples. When compared with two benchmark systems, one based on mel-frequency cepstral coefficients and Gaussian mixture models and the other based on log mel-band energies and multi-layer perceptron, the proposed system performed considerably better on the test data.

Multi-modal Attention Mechanisms in LSTM and Its Application to Acoustic Scene Classification

Teng Zhang, Kai Wai Zhang and Ji Wu

Multimedia Signal and Intelligent Information Processing Lab, Department of Electronic Engineering, Tsinghua University, Beijing, P.R. China

Thu-P-1-2-11, Time: 10:00-12:00

Neural network architectures such as long short-term memory (LSTM) have been proven to be powerful models for processing sequences including text, audio and video. On the basis of vanilla LSTM, multi-modal attention mechanisms are proposed in this paper to synthesize the time and semantic information of input sequences. First, we reconstruct the forget and input gates of the LSTM unit from the perspective of attention model in the temporal dimension. Then the memory content of the LSTM unit is recalculated using a cluster-based attention mechanism in semantic space. Experiments on acoustic scene classification tasks show performance improvements of the proposed methods when compared with vanilla LSTM. The classification errors on LITIS ROUEN dataset and DCASE2016 dataset are reduced by 16.5% and 7.7% relatively. We get a second place in the Kaggle’s YouTube-8M video understanding challenge and multi-modal attention based LSTM model is one of our best-performing single systems.

Thu-P-1-3: Language Modeling

Hall 4-6: Poster-3, 10:00-12:00, Thursday, 6 September, 2018

Chair: Mikko Kurimo

Contextual Language Model Adaptation for Conversational Agents

Anirudh Raju1, Behnam Hedayatnia1, Linda Liu2, Ankur Gandhe1, Chandra Khatri1, Angeliki Metallinou1, Anu Venkatesh1 and Ariya Rastrow1

1Amazon Alexa Machine Learning
2University of Rochester

Thu-P-1-3-1, Time: 10:00-12:00

Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented...
Active Memory Networks for Language Modeling
Oscar Chen, Anton Ragni, Mark Gales and Xie Chen
Cambridge University Engineering Dept., Cambridge, U.K.
Thu-P-1-3-2, Time: 10:00-12:00
Making predictions of the following word given the back history of words may be challenging without meta-information such as the topic. Standard neural network language models have an implicit representation of the topic via the back history of words. In this work a more explicit form of topic representation is used via an attention mechanism. Though this makes use of the same information as the standard model, it allows parameters of the network to focus on different aspects of the task. The attention model provides a form of topic representation that is automatically learned from the data. Whereas the recurrent model deals with the (conditional) history representation. The combined model is expected to reduce the stress on the standard model to handle multiple aspects. Experiments were conducted on the Penn Tree Bank and BBC Multi-Genre Broadcast News (MGB) corpora, where the proposed approach outperforms standard forms of recurrent models in perplexity. Finally, N-best list rescoring for speech recognition in the MGB3 task shows word error rate improvements over comparable standard form of recurrent models.

Unsupervised and Efficient Vocabulary Expansion for Recurrent Neural Network Language Models in ASR
Yerbolat Khassanov and Eng Siong Chng
Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore
Thu-P-1-3-3, Time: 10:00-12:00
In automatic speech recognition (ASR) systems, recurrent neural network language models (RNNLM) are used to rescore a word lattice or N-best hypotheses list. Due to the expensive training, the RNNLM’s vocabulary set accommodates only small shortlist of most frequent words. This leads to suboptimal performance if an input speech contains many out-of-shortlist (OOS) words.

An effective solution is to increase the shortlist size and retrain the entire network which is highly inefficient. Therefore, we propose an efficient method to expand the shortlist set of a pretrained RNNLM without incurring expensive retraining and using additional training data. Our method exploits the structure of RNNLM which can be decoupled into three parts: input projection layer, middle layers and output projection layer. Specifically, our method expands the word embedding matrices in projection layers and keeps the middle layers unchanged. In this approach, the functionality of the pretrained RNNLM will be correctly maintained as long as OOS words keeps the middle layers unchanged. In this approach, the functionality of the pretrained RNNLM will be correctly maintained as long as OOS words keeps the middle layers unchanged. In this approach, the functionality of the pretrained RNNLM will be correctly maintained as long as OOS words keeps the middle layers unchanged.

Improving Language Modeling with an Adversarial Critic for Automatic Speech Recognition
Yike Zhang1, Pengyuan Zhang1 and Yonghong Yan1,2
1Institute of Acoustics, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China
Thu-P-1-3-4, Time: 10:00-12:00
Recurrent neural network language models (RNNLMs) trained via the maximum likelihood principle suffer from the exposure bias problem in the inference stage. Therefore, potential recognition errors limit their performance on re-scoring N-best lists of the speech recognition outputs. Inspired by the generative adversarial net (GAN), this paper proposes a novel approach to alleviate this problem. We regard the RNN LM as a generative model in the training stage. And an auxiliary neural critic is used to encourage the RNN LM to learn long-term dependencies from corrupted contexts by forcing it generating valid sentences. Since the vanilla GAN has limitations when generating discrete sequences, the proposed framework is optimized though the policy gradient algorithm. Experiments were conducted on two mandarin speech recognition tasks. Results show the proposed method achieved lower character error rates on both datasets compared with the maximum likelihood method, whereas it increased perplexities slightly. Finally, we visualised the sentences generated from the RNN LM. Results demonstrate the proposed method really helps the RNN LM to learn long-term dependencies and alleviates the exposure bias problem.

Training Recurrent Neural Network through Moment Matching for NLP Applications
Yue Deng1, Yilin Shen1, KaWai Chen2,3 and Hongxia Jin1
1AI Center, Samsung Research America, Mountain View, CA, USA
2University of California, San Diego, La Jolla, CA, USA
Thu-P-1-3-5, Time: 10:00-12:00
Recurrent neural network (RNN) is conventionally trained in the supervised mode but used in the free-running mode for inferences on testing samples. The supervised mode takes ground truth token values as RNN inputs but the free-running mode can only use self-predicted token values as surrogating inputs. Such inconsistency inevitably results in poor generalizations of RNN on out-of-sample data. We propose a moment matching (MM) training strategy to alleviate such inconsistency by simultaneously taking these two distinct modes and their corresponding dynamics into consideration. Our MM-RNN shows significant performance improvements over existing approaches when tested on practical NLP applications including logic form generation and image captioning.

Investigation on LSTM Recurrent N-gram Language Models for Speech Recognition
Zoltán Tuske1,2, Ralf Schlüter1 and Hermann Ney1
1Human Language Technology and Pattern Recognition, Computer Science Department, RWTH Aachen University, 52056 Aachen, Germany
2IBM Research, Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598
Thu-P-1-3-6, Time: 10:00-12:00
Recurrent neural networks (RNN) with long short-term memory (LSTM) are the current state of the art to model long term dependencies. However, the supervised modes indicate that NN language models cannot capture all the length of history to achieve excellent performance. In this paper, we extend the previous investigation on LSTM network based n-gram modeling to the domain of automatic speech recognition (ASR). First, applying recent optimization techniques and up to 6-layer LSTM networks, we improve LM perplexities by nearly 50% relative compared to classic count models on three different domains. Then, we demonstrate by experimental results that perplexities improve significantly only up to 40-grams when limiting the LM history. Nevertheless, the ASR performance saturates already around 20-grams despite across sentence modeling. Analysis indicates that the performance gain of LSTM NNLM over count models results only partially from the longer context and cross sentence modeling capabilities. Using equal context, we show that deep 4-gram LSTM can significantly outperform large interpolated count models by performing the backing off process on the entire vocabulary.

Online Incremental Learning for Speaker-Adaptive Language Models
Chih Chi Hu, Bing Liu, John Shen and Ian Lane
Electrical and Computer Engineering, Carnegie Mellon University,
In this study, we present a computational framework to participate in the Self-Assessed Affect Sub-Challenge in the INTERSPEECH 2018 Computation Paralinguistics Challenge. The goal of this sub-challenge is to classify the valence scores given by the speaker themselves into three different levels, i.e., low, medium and high. We explore fusion of Bi-directional LSTM with baseline SVM models to improve the recognition accuracy. In specifics, we extract frame-level acoustic LLDs as input to the BLSTM with a modified attention mechanism and separate SVMs are trained using the standard ComParE_16 baseline feature sets with minority class upsampling. These diverse prediction results are then further fused using a decision-level score fusion scheme to integrate all of the developed models. Our proposed approach achieves a 62.94% and 67.04% unweighted average recall (UAR), which is an 6.24% and 1.04% absolute improvement over the best baseline provided by the challenge organizer. We further provide a detailed comparison analyVoice control is a prominent interaction method on personal computing devices. While automatic speech recognition (ASR) systems are readily applicable for large audiences, there is room for further adaptation at the edge, i.e. locally on devices, targeted for individual users. In this work, we explore improving ASR systems over time through a user’s own interactions. Our online learning approach for speaker-adaptive language modeling leverages a user’s most recent utterances to enhance the speaker dependent features and traits. We experiment with the Large-Vocabulary Continuous Speech Recognition corpus Tedium v2 and demonstrate an average reduction in perplexity (PPL) of 19.18% and average relative reduction in word error rate (WER) of 2.80% compared to a state-of-the-art baseline on Tedium v2.sis between different models.

Efficient Language Model Adaptation with Noise Contrastive Estimation and Kullback-Leibler Regularization

Jesús Andrés-Ferrer, Nathan Bodenstab and Paul Vozila

Nuance Communications

Thu-P-1-3-8, Time: 10:00-12:00

Many language modeling (LM) tasks have limited in-domain data for training. Exploiting out-of-domain data while retaining the relevant in-domain statistics is a desired property in these scenarios.

Kullback-Leibler Divergence (KLD) regularization is a popular method for acoustic model (AM) adaptation. KLD regularization assumes that the last layer is a softmax that fully activates the targets of both in-domain and out-of-domain models.

Unfortunately, this softmax activation is computationally prohibitive for language modeling where the number of output classes is large, typically 50k to 100k, but may even exceed 800k in some cases. The computational bottleneck of the softmax during LM training can be reduced by an order of magnitude using techniques such as noise contrastive estimation (NCE), which replaces the cross-entropy loss function with a binary classification problem between the target output and random noise samples.

In this work we combine NCE and KLD regularization and offer a fast domain adaptation method for LM training, while also retaining important attributes of the original NCE, such as self-normalization. We show on a medical domain-adaptation task that our method improves perplexity by 10.1% relative to a strong LSTM baseline.

Recurrent Neural Network Language Model Adaptation for Conversational Speech Recognition

Ke Li¹, Hainan Xu², Yiming Wang², Daniel Povey² and Sanjeev Khudanpur¹,²

¹Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
²Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, MD, USA

Thu-P-1-3-9, Time: 10:00-12:00

We propose two adaptation models for recurrent neural network language models (RNNLMs) to capture topic effects and long-distance triggers for conversational automatic speech recognition (ASR). We use a fast marginal adaptation (FMA) framework to adapt a RNNLM. Our first model is effectively a cache model - the word frequencies are estimated by counting words in a conversation (utterance-level hold-one-out) from first-pass decoded word lattices and then is interpolated with a background unigram distribution. In the second model, we train a deep neural network (DNN) on conversational transcriptions to predict word frequencies given word frequencies from first-pass decoded word lattices. The second model can in principle model trigger and topic effects but is harder to train. Experiments on three conversational corpora show modest WER and perplexity reductions with both adaptation models.

What to Expect from Expected Kneser-Ney Smoothing

Michael Levit, Sarangarajan Parthasarathy and Shuangyu Chang

Microsoft, USA

Thu-P-1-3-10, Time: 10:00-12:00

Kneser-Ney smoothing on expected counts was proposed recently. In this paper we revisit this technique and suggest a number of optimizations and extensions. We then analyse its performance in several practical speech recognition scenarios that depend on fractional sample counts, such as training on uncertain data, language model adaptation and Word-Phrase-Entity models. We show that the proposed approach to smoothing outperforms known alternatives by a significant margin.

i-Vectors in Language Modeling: An Efficient Way of Domain Adaptation for Feed-Forward Models

Karel Beneš¹, Santosh Kesiraju¹,² and Lukáš Burget¹

¹Brno University of Technology, Speech@FIT and IT4I Center of Excellence, Czechia
²IIIT - Hyderabad, India

Thu-P-1-3-11, Time: 10:00-12:00

We show an effective way of adding context information to shallow neural language models. We propose to use Subspace Multinomial Model (SMM) for context modeling and we add the extracted i-vectors in a computationally efficient way. By adding this information, we shrink the gap between shallow feed-forward network and an LSTM from 65 to 31 points of perplexity on the Wikitext-2 corpus (in the case of neural 5-gram model). Furthermore, we show that SMM i-vectors are suitable for domain adaptation and a very small amount of adaptation data (e.g. endmost 5% of a Wikipedia article) brings substantial improvement. Our proposed changes are compatible with most optimization techniques used for shallow feedforward LMs.

Thu-P-1-4: Speech Pathology, Depression and Medical Applications

Hall 4-6: Poster-4, 10:00-12:00, Thursday, 6 September, 2018

Chair: Elmar Noeth

How Did You like 2017? Detection of Language Markers of Depression and Narcissism in Personal Narratives

Eva-Maria Rathner¹, Julia Djamali¹, Yannik Terhorst¹, Björn Schuller¹,², Nicholas Cummins¹, Gudrun Salamon³, Christina Hunger-Schoppe³ and Harald Baumeister³

¹Clinical Psychology and Psychotherapy, University of Ulm, Germany
²ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing, University of Augsburg, Germany
Depression Detection from Short Utterances via Diverse Smartphones in Natural Environmental Conditions
Zhaocheng Huang¹, Julien Epps¹, Dale Joachim² and Michael Chen⁴
¹School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
²Sonde Health, Boston MA, USA
Thur-P-1-4-2, Time: 10:00-12:00
Depression is a leading cause of disease burden worldwide, however there is an unmet need for screening and diagnostic measures that can be widely deployed in real-world environments. Voice-based diagnostic methods are convenient, non-invasive to elicit and can be collected and processed in near real-time using modern smartphones, smart speakers and other devices. Studies in voice-based depression detection to date have primarily focused on laboratory-collected voice samples, which are not representative of typical user environments or devices. This paper conducts the first investigation of voice-based depression assessment techniques on real-world data from 887 speakers, recorded using a variety of different smartphones. Evaluations on 16 hours of speech show that conservative segment selection strategies using highly thresholded voice activity detection, coupled with tailored normalization approaches are effective for mitigating smartphone channel variability and background environmental noise. Together, these strategies can achieve F1 scores comparable with or better than those from a combination of clean recordings, a single recording environment and long utterances. The scalability of speech elicitation via smartphone allows detailed models dependent on gender, smartphone manufacturer and/or elicitation task. Interestingly, results herein suggest that normalization based on these criteria may be more effective than tailored models for detecting depressed speech.

Multi-Lingual Depression-Level Assessment from Conversational Speech Using Acoustic and Text Features
Yasin Özkanca¹, Cenk Demiroglu¹, Aslı Besirli² and Selime Celik²
¹Ozyeğin University, Turkey
²Sisli Etfal Hospital, Turkey
Thur-P-1-4-3, Time: 10:00-12:00
Depression is a common mental health problem around the world with a large burden on economies, well-being, hence productivity, of individuals. Its early diagnosis and treatment are critical to reduce the costs and even save lives. One key aspect to achieve that goal is to use voice technologies and monitor depression remotely and relatively inexpensively using automated agents.

Although there has been efforts to automatically assess depression levels from audiovisual features, use of transcriptions along with the acoustic features has emerged as a more recent research venue. Moreover, difficulty in data collection and the limited amounts of data available for research are also challenges that are hampering the success of the algorithms. One of the novel contributions in this paper is to exploit the databases from multiple languages for feature selection. Since a large number of features can be extracted from speech and given the small amounts of training data available, effective data selection is critical for success. Our proposed multi-lingual method was effective at selecting better features and significantly improved the depression assessment accuracy. We also use text-based features for assessment and propose a novel strategy to fuse the text- and speech-based classifiers which further boosted the performance.

Dysarthric Speech Classification Using Glottal Features Computed from Non-words, Words and Sentences
Narendra N P and Paavo Alku
Aalto University, Department of Signal Processing and Acoustics, Espoo, Finland
Thur-P-1-4-4, Time: 10:00-12:00
Dysarthria is a neuro-motor disorder resulting from the disruption of normal activity in speech production leading to slow, slurred and imprecise (low intelligible) speech. Automatic classification of dysarthria from speech can be used as a potential clinical tool in medical treatment. This paper examines the effectiveness of glottal source parameters in dysarthric speech classification from three categories of speech signals, namely non-words, words and sentences. In addition to the glottal parameters, two sets of acoustic parameters extracted by the openSMILE toolkit are used as baseline features. A dysarthric speech classification system is proposed by training support vector machines (SVMs) using features extracted from speech utterances and their labels indicating dysarthria/healthy. Classification accuracy results indicate that the glottal parameters contain discriminating information required for the identification of dysarthria. Additionally, the complementary nature of the glottal parameters is demonstrated when these parameters, in combination with the openSMILE-based acoustic features, result in improved classification accuracy. Analysis of classification accuracies of the glottal and openSMILE features for non-words, words and sentences is carried out. Results indicate that in terms of classification accuracy the word level is best suited in identifying the presence of dysarthria.

Identifying Schizophrenia Based on Temporal Parameters in Spontaneous Speech
Gábor Gosztolya¹, Anila Bagi²,³, Szilvia Szalóki²,³, István Szendi⁴,⁵ and Ildikó Hoffmann⁴,⁵
¹MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
²University of Szeged, Department of Hungarian Linguistics, Szeged, Hungary
³Department of Psychiatry, University of Szeged, Hungary
⁴Research Institute for Linguistics, Hungarian Academy of Sciences, Budapest, Hungary
⁵Prevention of Mental Illnesses Interdisciplinary Research Group, University of Szeged, Hungary
Thur-P-1-4-5, Time: 10:00-12:00
Schizophrenia is a neurodegenerative disease with spectrum disorder, consisting of groups of different deficits. It is, among other symptoms, characterized by reduced information processing speed and deficits in verbal fluency. In this study we focus on the speech production fluency of patients with schizophrenia compared to healthy controls. Our aim is to show that a temporal speech parameter set consisting of articulation tempo, speech tempo and various pause-related indicators, originally defined for the sake of early detection of various dementia types such as Mild Cognitive Impairment and early Alzheimer’s Disease, is able to capture specific differences in the spontaneous speech of the two groups. We tested the applicability of the temporal indicators by machine learning (i.e. by using Support-Vector Machines). Our results show that members of the
two speaker groups could be identified with classification accuracy scores of between 70-80% and F-measure scores between 81% and 87%. Our detailed examination revealed that, among the pause-related temporal parameters, the most useful for distinguishing the two speaker groups were those which took into account both the silent and filled pauses.

Using Prosodic and Lexical Information for Learning Utterance-level Behaviors in Psychotherapy
Karan Singh1, Zhuohao Chen1, Nikolaos Flemotomos1, James Gibson1, Dogan Can1, David Atkins2 and Shrikanth Narayanan1
1Signal Analysis and Interpretation Lab, University of Southern California, Los Angeles, CA, USA
2Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
Thu-P-1-4-6, Time: 10:00-12:00

In this paper, we present an approach for predicting utterance level behaviors in psychotherapy sessions using both speech and lexical features. We train long short term memory (LSTM) networks with an attention mechanism using words, both manually and automatically transcribed and prosodic features, at the word level, to predict the annotated behaviors. We demonstrate that prosodic features provide discriminative information relevant to the behavior task and show that they improve prediction when fused with automatically derived lexical features. Additionally, we investigate the weights of the attention mechanism to determine words and prosodic patterns which are of importance to the behavior prediction task.

Automatic Speech Assessment for People with Aphasia Using TDNN-BLSTM with Multi-Task Learning
Ying Qin1, Tan Lee1, Siyuian Feng1 and Anthony Pak Hin Kong1
1Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
2Department of Communication Sciences and Disorders, University of Central Florida, USA
Thu-P-1-4-7, Time: 10:00-12:00

This paper describes an investigation on automatic speech assessment for people with aphasia (PWA) using a DNN based automatic speech recognition (ASR) system. The main problems being addressed are the lack of training speech in the intended application domain and the relevant degradation of ASR performance for impaired speech of PWA. We adopt the TDNN-BLSTM structure for acoustic modeling and apply the technique of multi-task learning with large amount of domain-mismatched data. This leads to a significant improvement on the recognition accuracy, as compared with a conventional single-task learning DNN system. To facilitate the extraction of robust text features for quantifying language impairment in PWA speech, we propose to incorporate N-best hypotheses and confusion network representation of the ASR output. The severity of impairment is predicted from text features and supra-segmental duration features using different regression models. Experimental results show a high correlation of 0.842 between the predicted severity level and the subjective Aphasia Quotient score.

Towards an Unsupervised Entrainment Distance in Conversational Speech Using Deep Neural Networks
Md Nasir1, Brian Bacoum2, Shrikanth Narayanan1 and Panayiotis Georgiou1
1University of Southern California, Los Angeles, CA, USA
2University of Utah, Salt Lake City, UT, USA
Thu-P-1-4-8, Time: 10:00-12:00

Entrainment is a known adaptation mechanism that causes interaction participants to adapt or synchronize their acoustic characteristics. Understanding how interlocutors tend to adapt to each other’s speaking style through entrainment involves measuring a range of acoustic features and comparing those via multiple signal comparison methods. In this work, we present a turn-level distance measure obtained in an unsupervised manner using a Deep Neural Network (DNN) model, which we call Neural Entrainment Distance (NED). This metric establishes a framework that learns an embedding from the population-wide entrainment in an unlabeled training corpus. We use the framework for a set of acoustic features and validate the measure experimentally by showing its efficacy in distinguishing real conversations from fake ones created by randomly shuffling speaker turns. Moreover, we show real world evidence of the validity of the proposed measure. We find that high value of NED is associated with high ratings of emotional bond in suicide assessment interviews, which is consistent with prior studies.

Patient Privacy in Paralinguistic Tasks
Francisco Teixeira, Alberto Abad and Isabel Trancoso
INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal
Thu-P-1-4-9, Time: 10:00-12:00

Recent developments in cryptography and, in particular in Fully Homomorphic Encryption (FHE), have allowed for the development of new privacy preserving machine learning schemes. In this paper, we show how these schemes can be applied to the automatic assessment of speech affected by medical conditions, allowing for patient privacy in diagnosis and monitoring scenarios. More specifically, we present results for the assessment of the degree of Parkinson’s Disease, the detection of a Cold and both the detection and assessment of the degree of Depression.

To this end, we use a neural network in which all operations are performed in an FHE context. This implies replacing the activation functions by linear and second degree polynomials, as only additions and multiplications are viable. Furthermore, to guarantee that the inputs of these activation functions fall within the convergence interval of the approximation, a batch normalization layer is introduced before each activation function. After training the network with unencrypted data, the resulting model is then employed in an encrypted version of the network, to produce encrypted predictions.

Our tests show that the use of this framework yields results with little to no performance degradation, in comparison to the baselines produced for the same datasets.

A Lightly Supervised Approach to Detect Stuttering in Children’s Speech
Sadeen Alharbi1, Madina Hasan1, Anthony J H Simons1, Shelagh Brumfit2 and Phil Green2
1Computer Science Department, The University of Sheffield, 2Human Communication Sciences Department, The University of Sheffield, Sheffield, United Kingdom
Thu-P-1-4-10, Time: 10:00-12:00

In speech pathology, new assistive technologies using ASR and machine learning approaches are being developed for detecting speech disorder events. Classically-trained ASR model tends to remove disfluencies from spoken utterances, due to its focus on producing clean and readable text output. However, diagnostic systems need to be able to track speech disfluencies, such as stuttering events, in order to determine the severity level of stuttering. To achieve this, ASR systems must be adapted to recognise full verbatim utterances, including pseudo-words and non-meaningful part-words. This work proposes a training regime to address this problem and preserve a full verbatim output of stuttering speech. We use a lightly-supervised approach using task-oriented lattices to recognise the stuttering speech of children performing a standard reading task. This approach improved the WER by 27.8% relative to a baseline that used word-lattices generated from the original prompt. The improved results preserved 63% of stuttering events (including sound, word, part-word and phrase repetition and revision). This work also proposes a separate correction layer on top of the ASR that detects prolongation events (which are poorly recognised by the ASR). This increases the percentage of preserved stuttering events to 70%.

Notes
Learning Conditional Acoustic Latent Representation with Gender and Age Attributes for Automatic Pain Level Recognition

Jeng-Lin Li\(^1\), Yi-Ming Weng\(^2\), Chip-Jin Ng\(^2\) and Chi-Chun Lee\(^1\)

\(^1\)Department of Electrical Engineering, National Tsing Hua University, Taiwan
\(^2\)Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan

Thu-P-1-4-11, Time: 10:00-12:00

Pain is an unpleasant internal sensation caused by bodily damages or physical illnesses with varied expressions conditioned on personal attributes. In this work, we propose an age-gender embedded latent acoustic representation learned using conditional maximum mean discrepancy variational autoencoder (MMD-CVAE). The learned MMD-CVAE embeds personal attributes information directly in the latent space. Our method achieves a 70.7\% in extreme set classification (severe versus mild) and 47.7\% in three-class recognition (severe, moderate and mild) by using these MMD-CVAE encoded features on a large-scale real patients pain database. Our method improves a relative of 11.34\% and 17.51\% compared to using acoustic representation without age-gender conditioning in the extreme set and the three-class recognition respectively.

Further analyses reveal under severe pain, females have higher maximum of jitter and lower harmonic energy ratio between F0, H1 and H2 compared to males and the minimum value of jitter and shimmer are higher in the elderly compared to the non-elder group.

Perspective Talk-4

Hall 3, 12:00-12:30, Thursday, 6 September, 2018
Chair: Srikanth Madikeri

Speaker and Language Recognition -- From Laboratory Technologies to the Wild

Sriram Ganapathy
Department of Electrical Engineering, Indian Institute of Science, Bangalore, India

Thu-Perspective-4, Time: 12:00-12:30

Detecting the paralinguistic components of speech like speaker and language is of substantial interest for many commercial, surveillance and security applications. The problem is at least three decades old with some of the early techniques based on simple Gaussian mixture models. A significant advancement in this area came about a decade ago with the advent of joint factor representation analysis and i-vector models. The last couple of years have seen further breakthroughs with deep embeddings and end-to-end models based on deep learning. With these improvements in modeling speaker and language, the application of the technology has also moved from clean controlled speech data to telephone channel recordings, far-field microphones and more recently to multi-speaker conversations in the wild. In this talk, I will provide a prospective view of the broad research directions in the field of speaker and language recognition. I will also highlight some of the recent advancements from our work on hierarchical end-to-end approaches with relevance modeling.

Industry Presentation-7

Hall 3, 12:30-13:00, Thursday, 6 September, 2018
Chairs: Raghavendra Biti and Priyankoo Sarmah

Presenter: Vikram Vij
Company: Samsung

Industry Presentation-8

Hall 1, 12:30-13:00, Thursday, 6 September, 2018
Chairs: Krishna Doss Mohan and Samudravijaya K

Presenter: Liang Gao
Company: Baidu

Industry Presentation-9

Hall 2, 12:30-13:00, Thursday, 6 September, 2018
Chairs: Kalika Bali and Deepu Vijayasenan

Presenter: Ryan Leary
Company: Nvidia

Thu-0-2-1: Spoken Language Understanding

Hall 3, 14:30-16:30, Thursday, 6 September, 2018
Chairs: Dilek Hakkani-Tür and Giuseppe Riccardi

A Deep Reinforcement Learning Based Multimodal Coaching Model (DCM) for Slot Filling in Spoken Language Understanding(SLU)

Yu Wang, Abhishek Patel, Yilin Shen and Hongxia Jin
Samsung Research America

Thu-0-2-1-1, Time: 14:30-14:50

In this paper, a deep reinforcement learning (DRL) based multimodal coaching model (DCM) for slot filling in SLU is proposed. This new model functions as a
coach to help an RNN based tagger to learn the wrong labeled slots, hence may further improve the performance of an SLU system. Besides, users can also coach the model by correcting its mistakes and help it progress further. The performance of DCM is evaluated on two datasets: one is the benchmark ATIS corpus dataset, another is our in-house dataset with three different domains. It shows that the new system gives a better performance than the current state-of-the-art results on ATIS by using DCM. Furthermore, we build a demo app to further explain how user’s input can also be used as a real-time coach to improve model’s performance even more.

Is ATIS Too Shallow to Go Deeper for Benchmarking Spoken Language Understanding Models?

Frédéric Béchet* and Christian Raymond*
“Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
*INSIA Rennes INRIA/IRISA, Rennes, France
Thu-O-2-1-2, Time: 14:50-15:10
The ATIS (Air Travel Information Service) corpus will be soon celebrating its 30th birthday. Designed originally to benchmark spoken dialog systems, it still represents the most well-known corpus for benchmarking Spoken Language Understanding (SLU) systems. In 2010, in a paper titled “What is left to be understood in ATIS?”, Tur et al. discussed the relevance of this corpus after more than 10 years of research on statistical models for performing SLU tasks. Nowadays, in the Deep Neural Network (DNN) era, ATIS is still used as the main benchmark corpus for evaluating all kinds of DNN models, leading to further improvements, although rather limited, in SLU accuracy compared to previous state-of-the-art models. We propose in this paper to investigate these results obtained on ATIS from a qualitative point of view rather than just a quantitative point of view and answer the following questions: what kind of qualitative improvement brought DNN models to SLU on the ATIS corpus? Is there anything left, from a qualitative point of view, in the remaining 5% of errors made by current state-of-the-art models?

Robust Spoken Language Understanding via Paraphrasing

Avik Ray, Yilin Shen and Hongxia Jin
Samsung Research America, Mountain View, California, USA
Thu-O-2-1-3, Time: 15:10-15:30
Learning intents and slot labels from user utterances is a fundamental step in all spoken language understanding (SLU) and dialog systems. State-of-the-art neural network based methods, after deployment, often suffer from performance degradation on encountering paraphrased utterances and out-of-vocabulary words, rarely observed in their training set. We address this challenging problem by introducing a novel paraphrasing based SLU model which can be integrated with any existing SLU model in order to improve their overall performance. We propose two new paraphrase generators using RNN and sequence-to-sequence based neural networks to encode context by processing multiple utterances from the dialogue at each turn, resulting in significant trade-offs between accuracy and computational efficiency. On the other hand, downstream components like the dialogue state tracker (DST) already keep track of the dialogue state, which can serve as a summary of the dialogue history. In this work, we propose an efficient approach to encoding context from prior utterances for SLU. More specifically, our architecture includes a separate recurrent neural network (RNN) based encoding module that accumulates dialogue context to guide the frame parsing sub-tasks and can be shared between SLU and DST. In our experiments, we demonstrate the effectiveness of our approach on dialogues from two domains.

Spoken SQuAD: A Study of Mitigating the Impact of Speech Recognition Errors on Listening Comprehension

Chia-Hsuan Lee, Szu-Lin Wu, Chi-Liang Liu and Hung-yi Lee
College of Electrical Engineering and Computer Science, National Taiwan University, Taiwan
Thu-O-2-1-4, Time: 15:30-15:50
Reading comprehension has been widely studied. One of the most representative reading comprehension tasks is Stanford Question Answering Dataset (SQuAD), on which machine is already comparable with human. On the other hand, accessing large collections of multimedia or spoken content is much more difficult and time-consuming than plain text content for humans. It’s therefore highly attractive to develop machines which can automatically understand spoken content. In this paper, we propose a new listening comprehension task – Spoken SQuAD. On the new task, we found that speech recognition errors have catastrophic impact on machine comprehension and several approaches are proposed to mitigate the impact.

User Information Augmented Semantic Frame Parsing Using Progressive Neural Networks

Yilin Shen, Xiangyu Zeng, Yu Wang and Hongxia Jin
Samsung Research America, Mountain View, CA, USA
Thu-O-2-1-5, Time: 15:50-16:10
Semantic frame parsing is a crucial component in spoken language understanding (SLU) to build spoken dialog systems. It has two main tasks: intent detection and slot filling. Although state-of-the-art approaches showed good results, they require large annotated training data and long training time. In this paper, we aim to alleviate these drawbacks for semantic frame parsing by utilizing the ubiquitous user information. We design a novel progressive deep neural network model to incorporate prior knowledge of user information immediately to better and quickly train a semantic frame parser. Due to the lack of benchmark dataset with real user information, we synthesize the simplest type of user information (location and time) on ATIS benchmark data. The results show that our approach leverages such simple user information to outperform state-of-the-art approaches by 0.25% for intent detection and 0.31% for slot filling using standard training data. When using smaller training data, the performance improvement on intent detection and slot filling reaches up to 1.35% and 1.20% respectively. We also show that our approach can achieve similar performance as state-of-the-art approaches by using less than 80% annotated training data. Moreover, the training time to achieve the similar performance is also reduced by over 60%.

An Efficient Approach to Encoding Context for Spoken Language Understanding

Raghav Gupta, Abhinav Rastogi and Dilek Hakkani-Tür
Google AI, Mountain View
Thu-O-2-1-6, Time: 16:10-16:30
In task-oriented dialogue systems, spoken language understanding, or SLU, refers to the task of parsing natural language user utterances into semantic frames. Making use of context from prior dialogue history holds the key to more effective SLU. State of the art approaches to SLU use memory networks to encode context by processing multiple utterances from the dialogue at each turn, resulting in significant trade-offs between accuracy and computational efficiency. On the other hand, downstream components like the dialogue state tracker (DST) already keep track of the dialogue state, which can serve as a summary of the dialogue history. In this work, we propose an efficient approach to encoding context from prior utterances for SLU. More specifically, our architecture includes a separate recurrent neural network (RNN) based encoding module that accumulates dialogue context to guide the frame parsing sub-tasks and can be shared between SLU and DST. In our experiments, we demonstrate the effectiveness of our approach on dialogues from two domains.

--

Thu-O-2-2: Source Separation from Monaural Input

Hall 1; 14:30-16:30; Thursday, 6 September, 2018
Chairs: Pravesh Biyani and Michael Mandel
--

Deep Speech Denoising with Vector Space Projections

Jeffrey Hertherly; Paul Gamble, Maria Alejandra Barrios, Cory Stephenson and Karl Ni
Lab41, In-Q-Tel
Thu-O-2-2-1, Time: 14:30-14:50
We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise. Our approach is inspired
by the recent success of neural network models separating speakers from other speakers and singers from instrumental accompaniment. Unlike prior art, we leverage embedding spaces produced with source-contrastive estimation, a technique derived from negative sampling techniques in natural language processing, while simultaneously obtaining a continuous inference mask. Our embedding space directly optimizes for the discrimination of speaker and noise by jointly modeling their characteristics. This space is generalizable in that it is not speaker or noise specific and is capable of denoising speech even if the model has not seen the speaker in the training set. Parameters are trained with dual objectives: one that promotes a selective bandpass filter that eliminates noise at time-frequency positions that exceed signal power and another that proportionally splits time-frequency content between signal and noise. We compare to state of the art algorithms as well as traditional sparse non-negative matrix factorization solutions. The resulting algorithm avoids severe computational burden by providing a more intuitive and easily optimized approach, while achieving competitive accuracy.

A Shifted Delta Coefficient Objective for Monaural Speech Separation Using Multi-task Learning
Chenglin Xu1, Wei Rao2, Eng Siong Ching3 and Haizhou Li1,2
1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Temasek Laboratories@NTU, Nanyang Technological University, Singapore
3Department of Electrical and Computer Engineering, National University of Singapore, Singapore
Thu-O-2-2-2, Time: 14:50-15:10
This paper addresses the problem of monaural speech separation for simultaneous speakers. Recent studies such as uPIT, cuPIT-Grid LSTM and their variants have advanced the state-of-the-art separation models. Delta and acceleration coefficients are typically used in the objective function to capture short time dynamics. We consider that such coefficients don’t benefit from the temporal information over a long range such as phoneme and syllable. In this paper, we propose a novel multi-task learning framework, that we call SDC-MTL, by extending the SDC objective to explore the temporal information over a long range of the spectral dynamics. The SDC ensures the temporal continuity of output frames within the same speaker. In addition, we propose a novel multi-task learning framework, that we call SDC-MTL, by extending the SDC objective with a subtask of predicting the time-frequency labels (silence, single, overlapped) of the mixture. The experimental results show 11.7% and 3.9% relative improvements on WSJ0-2mix dataset under open conditions over the uPIT and cuPIT-Grid LSTM baselines. A further analysis shows 17.8% and 6.2% relative improvements with speakers of same gender.

A Two-Stage Approach to Noisy Cochannel Speech Separation with Gated Residual Networks
Ke Tan1 and DeLiang Wang1,2
1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA
Thu-O-2-2-3, Time: 15:10-15:30
Cochannel speech separation is the task of separating two speech signals from a single mixture. The task becomes even more challenging if the speech mixture is further corrupted by background noise. In this study, we focus on a gender-dependent scenario, where target speech is from a male speaker and interfering speech from a female speaker. We propose a two-stage separation strategy to address this problem in a noise-independent way. In the proposed system, denoising and cochannel separation are performed successively by two modules, which are based on a newly-introduced convolutional neural network for speech separation. The evaluation results demonstrate that the proposed system substantially outperforms one-stage baselines in terms of objective intelligibility and perceptual quality.

Monaural Audio Source Separation Using Variational Autoencoders
Laxmi Pandey, Anurendra Kumar and Vinay Nambodiri
Indian Institute of Technology Kanpur
Thu-O-2-2-4, Time: 15:30-15:50
We introduce a monaural audio source separation framework using a latent generative model. Traditionally, discriminative training for source separation is proposed using deep neural networks or non-negative matrix factorization. In this paper, we propose a principled generative approach using variational autoencoders (VAE) for audio source separation. VAE computes efficient Bayesian inference which leads to a continuous latent representation of the input data(spectrogram). It contains a probabilistic encoder which projects an input data to latent space and a probabilistic decoder which projects data from latent space back to input space. This allows us to learn a robust latent representation of sources and interfering speech from a single mixture. We extend the VAE with noise and other sources. The latent representation is then fed to the decoder to yield the separated source. Both encoder and decoder are implemented via multilayer perceptron (MLP). In contrast to prevalent techniques, we argue that VAE is a more principled approach to source separation. Experimentally, we find that the proposed framework yields reasonable improvements when compared to baseline methods available in the literature i.e. DNN and RNN with different masking functions and autoencoders. We show that our method performs better than the best of the relevant methods with ~20% improvement in the source to distortion ratio.

Towards Automated Single Channel Source Separation Using Neural Networks
Arpita Gang1, Pravesh Biyani1 and Akshay Soni2
1IIIT Delhi, India
2Oath Research, USA
Thu-O-2-2-5, Time: 15:50-16:10
Many applications of single channel source separation (SCSS) including automatic speech recognition (ASR), hearing aids etc. require an estimation of only one source from a mixture of many sources. Treating this special case as a regular SCSS problem where in all constituent sources are given equal priority in terms of reconstruction may result in a suboptimal separation performance. In this paper, we tackle this separation problem by suitably modifying the orthodox SCSS framework and focus on only one source at a time. The proposed approach is a generic framework that can be applied to any existing SCSS algorithm, improves performance and scales well with there are more than two sources in the mixture unlike most existing SCSS methods. Additionally, existing SCSS algorithms rely on fine hyper-parameter tuning hence making them difficult to use in practice. Our framework takes a step towards automatic tuning of the hyper-parameters thereby making our method better suited for the mixture to be separated and thus practically more useful. We test our framework on a neural network based algorithm and the results show an improved performance in terms of SDR and SAR.

Investigations on Data Augmentation and Loss Functions for Deep Learning Based Speech-Background Separation
Hakan Erdogan and Takuya Yoshioka
Microsoft AI and Research, One Microsoft Way, Redmond, WA, USA
Thu-O-2-2-6, Time: 16:10-16:30
A successful deep learning-based method for separation of a speech signal from an interfering background audio signal is based on neural network prediction of time-frequency masks which multiply noisy signal’s short-time Fourier transform (STFT) to yield the STFT of an enhanced signal. In this paper, we investigate training strategies for mask-prediction-based speech-background separation systems. First, we examine the impact of mixing speech and noise files on the fly during training, which enables models to be trained on virtually infinite amount of data. We also investigate the effect of using a novel signal-to-noise ratio related loss function, instead of mean-squared error which is prone to scaling differences among utterances. We evaluate bi-directional long-short term memory (BLSTM) networks as well as a combination of convolutional and BLSTM (CNN+BLSTM) networks for mask prediction and compare performances of real and complex-valued

Notes
mask prediction. Data-augmented training combined with a novel loss function yields significant improvements in signal to distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) as compared to the best published result on CHiME-2 medium vocabulary data set when using a CNN+BLSTM network.

Thu-O-2-3-1: Multimodal Systems
Hall 2, 14:30-16:30, Thursday, 6 September, 2018
Chairs: Bjorn Hoffmeister and Dinesh Jayagopi

Annotator Trustability-based Cooperative Learning Solutions for Intelligent Audio Analysis
Simone Hantke1,2, Christoph Stempf1,3 and Bjorn Schuller1,4
1Chair for Embedded Intelligence on Health Care and Wellbeing, University of Augsburg, Germany
2Machine Intelligence & Signal Processing Group, Technische Universität München, Germany
3Chair of Complex & Intelligent Systems, University of Passau, Germany
4GLAM – Group on Language, Audio & Music, Imperial College London, UK
Thu-O-2-3-1, Time: 14:30-14:50
A broad range of artificially intelligent applications are nowadays available resulting in a need for masses of labelled data for the underlying machine learning models. This annotated data, however, is scarce and expensive to obtain from expert-like annotators. Crowdsourcing has been shown as a viable alternative, but it has to be carried out with adequate quality control to obtain reliable labels. Whilst crowdsourcing allows for the rapid collection of large-scale annotations, another technique called Cooperative Learning, aims at reducing the overall annotation costs, by learning to select only the most important instances for manual annotation. In this regard, we investigate the advantages of this approach and combine crowdsourcing with different iterative cooperative learning paradigms for audio data annotation, incorporating an annotator trustability score to reduce the labeling effort needed and, at the same time, to achieve better classification results. Key experimental results on an emotion recognition task show a considerable relative annotation reduction compared to a ‘non-intelligent’ approach of up to 85.3%. Moreover, the proposed trustability-based methods reach an unweighted average recall of 74.8%, while the baseline approach peaks at 61.2%. Therefore, the proposed trustability-based approaches efficiently reduce the manual annotation load, as well as improving the model.

Semi-supervised Cross-domain Visual Feature Learning for Audio-Visual Broadcast Speech Transcription
Rongfeng Su1,2, Xunying Liu1,2 and Lan Wang1,3
1CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
2Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences
3The Chinese University of Hong Kong, Hong Kong, China
Thu-O-2-3-2, Time: 14:50-15:10
Visual information can be incorporated into automatic speech recognition (ASR) systems to improve their robustness in adverse acoustic conditions. Conventional audio-visual speech recognition (AVSR) systems require highly specialized audio-visual (AV) data in both system training and evaluation. For many real-world speech recognition applications, only audio information is available. This presents a major challenge to a wider application of AVSR systems. In order to address this challenge, this paper proposes a semi-supervised visual feature learning approach for developing AVSR systems on a DARPA GALE Mandarin broadcast transcription task. Audio to visual feature inversion long short-term memory (LSTM) neural networks (LSTMs) were initially constructed using limited amounts of out of domain AV data. The acoustic features domain mismatch against the broadcast data was further reduced using multi-level domain adaptive deep networks. Visual features were then automatically generated from the broadcast speech audio and used in both AVSR system training and testing time. Experimental results suggest a CNN based AVSR system using the proposed semi-supervised cross-domain audio-to-visual feature generation technique outperformed the baseline audio only CNN ASR system by an average CER reduction of 6.8% relative. In particular, on the most difficult Phoenix TV subset, a CER reduction of 1.32% absolute (8.34% relative) was obtained.

Deep Lip Reading: A Comparison of Models and an Online Application
Triantafyllos Aforous, Joon Son Chung and Andrew Zisserman
Visual Geometry Group, Department of Engineering Science, University of Oxford, UK
Thu-O-2-3-3, Time: 15:10-15:30
The goal of this paper is to develop state-of-the-art models for lip reading -visual speech recognition. We develop three architectures and compare their accuracy and training times: (i) a recurrent model using LSTMs, (ii) a fully convolutional model, and (iii) the recently proposed transformer model. The recurrent and fully convolutional models are trained with a Connectionist Temporal Classification loss and use an explicit language model for decoding, the transformer is a sequence-to-sequence model. Our best performing model improves the state-of-the-art word error rate on the challenging BBC-Oxford Lip Reading Sentences 2 (LRS2) benchmark dataset by over 20 percent. As a further contribution we investigate the fully convolutional model when used for online (real time) lip reading of continuous speech and show that it achieves high performance with low latency.

Iterative Learning of Speech Recognition Models for Air Traffic Control
Ajay Srinivasamurthy1, Petr Notčič1, Mittul Singh2, Youssef Ouali4, Matthias Kleinert4, Heiko Ehr4 and Hartmut Helmke2
1Idiap Research Institute, Martigny, Switzerland
2Saarland Informatics Campus, Saarbrücken, Germany
3German Aerospace Center, Braunschweig, Germany
Thu-O-2-3-4, Time: 15:30-15:50
Automatic Speech Recognition (ASR) has recently proved to be a useful tool to reduce the workload of air traffic controllers leading to significant gains in operational efficiency. Air Traffic Control (ATC) systems in operation rooms around the world generate large amounts of untranscribed speech and radar data each day, which can be utilized to build and improve ASR models. In this paper, we propose an iterative approach that utilizes increasing amounts of untranscribed speech and radar data to iteratively update the acoustic model, language model and command prediction model. In particular, we propose to use text data from a given air traffic situation from both radar and speech data to incrementally build the necessary ASR models for an ATC operational area. Our approach uses a semi-supervised learning framework to combine speech and radar data for decoding, the transformer is a sequence-to-sequence model. Starting with seed models built with a limited amount of manually transcribed data, we simulate an operational scenario to adapt and improve the models through semi-supervised learning. Experiments on two independent ATC areas (Vienna and Prague) demonstrate the utility of our proposed methodology that can scale to operational environments with minimal manual effort for learning and adaptation.

Speaker Adaptive Audio-Visual Fusion for the Open-Vocabulary Section of AVICAR
Leda Sari1,2, Mark Hasegawa-Johnson1,2, Kumaran S1, Georg Stemmer1 and Krishnakumar N Nair1
1Department of Electrical and Computer Engineering, University of
Dithered Quantization for Frequency-Domain Speech and Audio Coding

Tom Backstrom, Johannes Fischer and Sneha Das

1 Aalto University, Department of Signal Processing and Acoustics, Finland
2 International Audio Laboratories Erlangen, Friedrich-Alexander University (FAU), Germany

Thu-O-2-4-1, Time: 14:30-14:50

A common issue in coding speech and audio in the frequency domain, which appears with decreasing bitrate, is that quantization levels become increasingly sparse. With low accuracy, high-frequency components are typically quantized to zero, which leads to a muffled output signal and musical noise. Band-width extension and noise-filling methods attempt to treat the problem by inserting noise of similar energy as the original signal, at the cost of low signal to noise ratio. Dithering methods however provide an alternative approach, where both accuracy and energy are retained. We propose a hybrid coding approach where low-energy samples are quantized using dithering, instead of the conventional uniform quantizer. For dithering, we apply 1 bit quantization in a randomized sub-space. We further show that the output energy can be adjusted to the desired level using a scaling parameter. Objective measurements and listening tests demonstrate the advantages of the proposed methods.

Postfiltering with Complex Spectral Correlations for Speech and Audio Coding

Sneha Das and Tom Backstrom

Department of Signal Processing and Acoustics, Aalto University, Finland

Thu-O-2-4-4, Time: 15:30-15:50

Audio codecs are typically transform-domain based and efficiently code stationary musical signals but they struggle with speech and signals with dense transients such as applause. The temporal noise shaping (TNS) tool standardized in HE-AAC alleviates the issue of noise unmasking in these troublesome cases via signal-adaptive filtering of the transform domain quantization noise, albeit at the cost of significant additional side information in the bitstream. We present a novel alternative referred to as...
Multi-frame Quantization of LSF Parameters Using a Deep Autoencoder and Pyramid Vector Quantizer

Yaxing Li1, Esthete Derb Emiru1, Shengwu Xiong1, Anna Zhu1, Pengfei Duan1 and Yichang Li2
1School of Computer Science and Technology, Wuhan University of Technology, China
2School of Computer Science and Engineering, Nanjing University of Science & Technology, China

Thu-0-2-4-5, Time: 15:50-16:10

This paper presents a multi-frame quantization of line spectral frequency (LSF) parameters using a deep autoencoder (DAE) and pyramid vector quantizer (PVQ). The object is to provide sophisticated LSF quantization for the ultra-low bit rate speech coders with moderate delay. For the compression and de-correlation of multiple LSF frames, a DAE possessing linear coder-layer units with Gaussian noise is used. The DAE demonstrates a high degree of modelling flexibility for multiple LSF frames. To quantize the coder-layer vector effectively, a PVQ is considered. Comparing the discrete cosine model (DCM), the DAE-based multi-frame LSF quantization approach shows better modelling accuracy of multi-frame LSF parameters and possesses an advantage in that the coder-layer dimensions could be any value. The compressed coder-layer dimensions of the DAE govern the trade-off between the modelling distortion and the coder-layer quantization distortion. The experimental results show that the proposed algorithm with determined optimal coder-layer dimension outperforms the DCM-based multi-frame LSF quantization approach in terms of spectral distortion (SD) performance and robustness across different speech segments.

Multi-frame Coding of LSF Parameters Using Block-Constrained Trellis Coded Vector Quantization

Yaxing Li1, Shan Xu1, Shengwu Xiong1, Anna Zhu1, Pengfei Duan1 and Yueming Ding2
1School of Computer Science and Technology, Wuhan University of Technology, China
2School of Computer Science and Engineering, Tianjin University of Technology, China

Thu-0-2-4-6, Time: 16:10-16:30

In this paper, the predictive block-constrained trellis coded vector quantization (BC-TCVQ) schemes are developed for quantization of multiple frames line spectral frequency (LSF) parameters. The consequent LSF frames are interleaved to subvectors for trellis modeling. The predictive BC-TCVQ systems are then designed to encode multi-frame LSF parameters. The performance evaluation of proposed schemes is compared with the single-frame LSF encoding methods using multi-stage vector quantization (MSVQ) and predictive block-constrained trellis coded quantization (BC-TCQ), demonstrating significant reduction of bit rate for transparent coding. The developed multi-frame LSF quantization schemes show satisfactory performance even at very low encoding rate and thus can be efficiently applied to the speech coders with moderate delay.
This paper introduces a new method to extract speaker embeddings from a deep neural network (DNN) for text-independent speaker verification. Usually, speaker embeddings are extracted from a speaker-classification DNN that averages the hidden vectors over the frames of a speaker; the hidden vectors produced from all the frames are assumed to be equally important. We relax this assumption and compute the speaker embedding as a weighted average of a speaker’s frame-level hidden vectors and their weights are automatically determined by a self-attention mechanism. The effect of multiple attention heads are also investigated to capture different aspects of a speaker’s input speech. Finally, a PLDA classifier is used to compare pairs of embeddings. The proposed self-attentive speaker embedding system is compared with a strong DNN embedding baseline on NIST SRE 2016. We find that the self-attentive embeddings achieve superior performance. Moreover, the improvement produced by the self-attentive speaker embeddings is consistent with both short and long testing utterances.

An Improved Deep Embedding Learning Method for Short Duration Speaker Verification
Zhifu Gao1, Yan Song1, Ian Mcloughlin1, Wu Guo1 and Lirong Dai1
1National Engineering Laboratory of Speech and Language Information Processing, University of Science and Technology of China, Hefei, China
2School of Computing, University of Kent, Medway, UK

Thu-P-2-1-4, Time: 14:30-16:30
This paper presents an improved deep embedding learning method based on convolutional neural network (CNN) for short-duration speaker verification (SV). Existing deep learning-based SV methods generally extract short embeddings from a feed-forward deep neural network, in which the long-term speaker characteristics are captured via a pooling operation over the input speech. The extracted embeddings are then scored via a backend model, such as Probabilistic Linear Discriminative Analysis (PLDA). Two improvements are proposed for frontend embedding learning based on the CNN structure: (1) Motivated by the WaveNet for speech synthesis, dilated filters are designed to achieve a tradeoff between computational efficiency and receptive-filter size; and (2) A novel cross-convolutional-layer pooling method is exploited to capture 1st-order statistics for modelling long-term speaker characteristics. Specifically, the activations of one convolutional layer are aggregated with the guidance of the feature maps from the successive layer. To evaluate the effectiveness of our proposed methods, extensive experiments are conducted on the modified female portion of NIST SRE 2010 evaluations, with conditions ranging from 10s-10s to 5s-4s. Excellent performance has been achieved on each evaluation condition, significantly outperforming existing SV systems using i-vector and d-vector embeddings.

Avoiding Speaker Overfitting in End-to-End DNNs Using Raw Waveform for Text-Independent Speaker Verification
Jee-woon Jung, Hee-soo Heo, IL-ho Yang, Hye-jin Shim and Ha-jin Yu
School of Computer Science, University of Seoul, South Korea
Thu-P-2-1-5, Time: 14:30-16:30
In this research, we propose a novel raw waveform end-to-end DNNs for text-independent speaker verification. For speaker verification, many studies utilize the speaker embedding scheme, which trains deep neural networks as speaker identifiers to extract speaker features. However, this scheme has an intrinsic limitation in which the speaker feature, trained to classify only known speakers, is required to represent the identity of unknown speakers. Owing to this mismatch, speaker embedding systems tend to well generalize towards unseen utterances from known speakers, but are overfitted to known speakers. This phenomenon is referred to as speaker overfitting. In this paper, we investigated regularization techniques, a multi-step training scheme and a residual connection with pooling layers in the perspective of mitigating speaker overfitting which lead to considerable performance improvements. Technique effectiveness is evaluated using the VoxCeleb dataset, which comprises over 1,200 speakers from various uncontrolled environments. To the best of our knowledge, we are the first to verify the success of end-to-end DNNs directly using raw waveforms in text-independent scenario. It shows an equal error rate of 7.4%, which is lower than i-vector/probabilistic linear discriminant analysis and end-to-end DNNs that use spectrograms.

Deeply Fused Speaker Embeddings for Text-Independent Speaker Verification
Gautam Bhattacharyya1, 2, Md Jahangir Alam2, Vishwa Gupta1 and Patrick Kenny1
1McGill University
2Computer Research Institute of Montreal (CRIM)
Thu-P-2-1-6, Time: 14:30-16:30
Recently there has been a surge of interest in learning speaker embeddings using deep neural networks. These models ingest time-frequency representations of speech and can be trained to discriminate between a known set speakers. While embeddings learned in this way perform well, they typically require a large number of training data points for learning. In this work we propose deeply fused speaker embeddings - speaker representations that combine neural speaker embeddings with i-vectors. We show that by combining the two speaker representations we are able to learn robust speaker embeddings in a computationally efficient manner. We compare several different fusion strategies and find that the resulting speaker embeddings show significantly different verification performance. To this end we propose a novel fusion approach that uses an attention model to combine i-vectors with neural speaker embeddings. Our best performing embedding achieves an error rate of 3.17% using a simple cosine distance classifier. Combining our embeddings with a powerful Joint Bayesian classifier, we are able to further improve the performance of our speaker embeddings to 2.22%, which gave a 7.8% relative improvement over the baseline i-vector system.

Employing Phonetic Information in DNN Speaker Embeddings to Improve Speaker Recognition Performance
Md Hafizur Rahman1, Ivan Himawan2, Mitchell McLaren1, Clinton Fookes1 and Sridha Sridharan1
1Speech and Audio Research Laboratory, Queensland University of Technology, Australia
2Speech Technology and Research Laboratory, SRI International, California, USA
Thu-P-2-1-7, Time: 14:30-16:30
The recent speaker embeddings framework has been shown to provide excellent performance on the task of text-independent speaker recognition. The framework is based on a deep neural network (DNN) trained to directly discriminate between speakers from traditional acoustic features such as Mel frequency cepstral coefficients. Prior studies on speaker recognition have found that phonetic information is valuable in the task of speaker identification, with systems being based on either bottleneck features (BFs) or tied-triphone state posteriors from a DNN trained for the task of speech recognition. In this paper, we analyze the role of phonetic BFs for DNN embeddings and explore methods to enhance the BFs further. Experimental results show that exploiting phonetic information encoded in BFs is very valuable for DNN speaker embeddings. Enriching the BFs using a cascaded DNN multi-task architecture is also shown to provide further improvements to the speaker embedding system.

End-to-End Text-dependent Speaker Verification Using Novel Distance Measures
Subhadeep Dey1, 2, Srikanth Madikeri1 and Petr Motlicek2
1Idiap Research Institute, Martigny, Switzerland
2Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
Thu-P-2-1-8, Time: 14:30-16:30
This paper explores novel ideas in building end-to-end deep neural network (DNN) based text-dependent speaker verification (TSV) system. The baseline approach consists of mapping a variable length speech segment to a fixed dimensional speaker vector by estimating the mean of hidden
representations in DNN structure. The distance between two utterances is obtained by computing L2 norm between the vectors. This approach performs worse than the conventional Gaussian Mixture Model-Universal Background Model (GMM-UBM) based system in publicly available corpora. We believe that poor performance is due to the employed averaging operation, which may not capture the phonetic information of an utterance. Past studies indicate that techniques exploiting phonetic information in addition to speaker information is beneficial for this task. This paper therefore proposes to incorporate content information of the speech signal by computing distance function with linguistic units co-occurring between enrollment and test data. The whole network is optimized by employing a triplet-loss objective in an end-to-end fashion to output SV scores. Experiments on the RSR2015 dataset show that the proposed approach outperforms GMM-UBM system by 68% and 36% relative equal error rate for fixed-phrase and Random-digit conditions respectively.

Robust Speaker Clustering using Mixtures of von Mises-Fisher Distributions for Naturalistic Audio Streams
Harishchandra Dubey, Abhijeet Sangwan and John H.L. Hansen
Robust Speech Technologies Lab, Center for Robust Speech Systems, The University of Texas at Dallas, Richardson, TX-75080, USA
Thu-P-2-1-9, Time: 14:30-16:30
Speaker Diarization (i.e. determining who spoke and when?) for multi-speaker naturalistic interactions such as Peer-Led Team Learning (PLTL) sessions is a challenging task. In this study, we propose robust speaker clustering based on mixture of multivariate von Mises-Fisher distributions. Our diarization pipeline has two stages: (i) ground-truth segmentation; (ii) proposed speaker clustering. The ground-truth speech activity information is used for extracting i-Vectors from each speechsegment. We post-process the i-Vectors with principal component analysis for dimension reduction followed by lengthnormalization. Normalized i-Vectors are high-dimensional unit vectors possessing discriminative directional characteristics. We model the normalized i-Vectors with a mixture model consisting of multivariate von Mises-Fisher distributions. K-means clustering with cosine distance is chosen as baseline approach. The evaluation data is derived from: (i) CRSS-PLTL corpus; and (ii) three-meetings subset of AMI corpus. The CRSSPLTL data contain audio recordings of PLTL sessions which is student-led STEM education paradigm. Proposed approach is consistently better than baseline leading to upto 44.48% and 53.68% relative improvements for PLTL and AMI corpus, respectively.

Triplet Network with Attention for Speaker Diarization
Huan Song1, Megan Will2, Jayaraman J. Thigaranajan3, Visar Berisha12 and Andreas Spanias1
1SenSIP Center, School of ECEE, Arizona State University, Tempe, AZ
2Department of Speech and Hearing Science, Arizona State University, Tempe, AZ
3Lawrence Livermore National Labs, 7000 East Avenue, Livermore, CA
Thu-P-2-1-10, Time: 14:30-16:30
We present our research on continuous speech recognition based on Surface Electromyography (EMG), where speech information is captured by electrodes attached to the speaker’s face. This method allows speech processing without requiring that an acoustic signal is present; however, reattachment of the EMG electrodes causes subtle changes in the recorded signal, which degrades the recognition accuracy and thus poses a major challenge for practical application of the system. Based on the growing body of recent work in domain-adversarial training of neural networks, we present a system which adapts the neural network frontend of our recognizer to data from a new reh automatic speech processing systems, speaker diarization is a crucial front-end component to separate segments from different speakers. Inspired by the recent success of deep neural networks (DNNs) in semantic inferencing, triplet loss-based architectures have been successfully used for this problem. However, existing work utilizes conventional i-vectors as the input representation and builds simple fully connected networks for metric learning, thus not fully leveraging the modeling power of DNN architectures. This paper investigates the importance of learning effective representations from the sequences directly in metric learning pipelines for speaker diarization. More specifically, we propose to employ attention models to learn embeddings and the metric jointly in an end-to-end fashion. Experiments are conducted on the CALLHOME conversational speech corpus. The diarization results demonstrate that, besides providing a unified model, the proposed approach achieves improved performance when compared against existing approaches.cording session, without requiring supervised enrollment.

I-vector Transformation Using Conditional Generative Adversarial Networks for Short Utterance Speaker Verification
Jiacen Zhang, Nakamasa Inoue and Koichi Shinoda
Tokyo Institute of Technology
Thu-P-2-1-11, Time: 14:30-16:30
I-vector based text-independent speaker verification (SV) systems often have poor performance with short utterances, as the biased phonetic distribution in a short utterance makes the extracted i-vector unreliable. This paper proposes an i-vector compensation method using a generative adversarial network (GAN), where its generator network is trained to generate a compensated i-vector from a short-utterance i-vector and its discriminator network is trained to determine whether an i-vector is generated by the generator or the one extracted from a long utterance. Additionally, we assign two other learning tasks to the GAN to stabilize its training and to make the generated i-vector more speaker-specific. Speaker verification experiments on the NIST SRE 2008 “10sec-10sec” condition show that after applying our method, the equal error rate reduced by 11.3% from the conventional i-vector and PLDA system.

Analysis of Length Normalization in End-to-End Speaker Verification System
Weicheng Cai1, Jinkun Chen2 and Ming Li3
1Data Science Research Center, Duke Kunshan University, Kunshan, China
2School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
Thu-P-2-1-12, Time: 14:30-16:30
The classical i-vectors and the latest end-to-end deep speaker embeddings are the two representative categories of utterance-level representations in automatic speaker verification systems. Traditionally, once i-vectors or deep speaker embeddings are extracted, we rely on an extra length normalization step to normalize the representations into unit-length hyperspace before back-end modeling. In this paper, we explore how the neural network learns length-normalized deep speaker embeddings in an end-to-end manner. To this end, we add a length normalization layer followed by a scale layer before the output layer of the common classification network. We conducted experiments on the verification task of the Voxceleb1 dataset. The results show that integrating this simple step in the end-to-end training pipeline significantly boosts the performance of speaker verification. In the testing stage of our L2-normalized end-to-end system, a simple inner-product can achieve the state-of-the-art.

Angular Softmax for Short-Duration Text-independent Speaker Verification
Zili Huang, Shuai Wang and Kai Yu
Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering
SpeechLab, Department of Computer Science and Engineering
Brain Science and Technology Research Center
Shanghai Jiao Tong University, Shanghai, China
Thu-P-2-1-13, Time: 14:30-16:30
Recently, researchers propose to build deep learning based end-to-end speaker verification (SV) systems and achieve competitive results.
In this paper, we propose an enhanced triplet method that improves the aspect of expressing the high-level speaker identity subspace loss further brings 7.22% relative reduction compared to softmax loss.

MTGAN: Speaker Verification through Multitasking Triplet Generative Adversarial Networks

Wenhao Ding and Liang He

Department of Electronic Engineering, Tsinghua University, China
Thu-P-2-1-15, Time: 14:30-16:30

In this paper, we propose an enhanced triplet method that improves the robustness and discriminative power in short duration conditions. We extend our triplet encoder encoding process of embeddings by jointly utilizing generative adversarial mechanism and multitasking optimization. We extend our triplet encoder with Generative Adversarial Networks (GANs) and softmax loss function. GAN is introduced for increasing the generality and diversity of samples, while softmax is for reinforcing features about speakers. For simplification, MTGAN is introduced for increasing the generality and diversity of samples, with Generative Adversarial Networks (GANs) and softmax loss function. Experiment on short utterances demonstrates that MTGAN outperforms triplet methods in the aspect of expressing the high-level feature of speaker information.

An End-to-End Text-Independent Speaker Identification System on Short Utterances

Ruiyang Ji1,2, Xinyuan Cai1 and Xu Bo1

1Institute of Automation, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China
Thu-P-2-1-14, Time: 14:30-16:30

In the field of speaker recognition, text-independent speaker identification on short utterances is still a challenging task, since it is rather tough to extract a robust and discriminative speaker feature in short duration condition. This paper explores an end-to-end speaker identification system, which maps utterances to a speaker identity subspace where the similarity of speakers can be measured by Euclidean distance. To be specific, we apply GRU architectures to extract utterance-level feature. Then it is assumed that one’s various utterances can be viewed as transformations of a single object in an ideal speaker identity subspace. Based on this assumption, the ResCNN architecture is utilized to model the transformation and the whole system is jointly optimized by speaker identity subspace loss. Experimental results demonstrate the effectiveness of our proposed system and superiority over previous methods. For example, the GRU learned feature reduces the equal error rate by 27.53% relatively and the speaker identity subspace loss further brings 7.22% relative reduction compared to softmax loss.

A Three-Layer Emotion Perception Model for Valence and Arousal-Based Detection from Multilingual Speech

Xingfeng Li and Masato Akagi

Japan Advanced Institute of Science and Technology
Thu-P-2-2-2, Time: 14:30-16:30

Automated emotion detection from speech has recently shifted from monolingual to multilingual tasks for human-like interaction in real-life systems. A system can handle more than a single input language because of the optimal feature sets of the work differ from one language to another. Our study proposes a framework to design, implement and validate an emotion detection system using multiple corpora. A continuous dimensional space of valence and arousal is first used to describe the emotions. A three-layer model incorporated with fuzzy inference systems is then used to estimate two dimensions. Speech features derived from prosodic, spectral and glottal waveform are examined and selected to capture emotional cues. The results of this new system outperformed the existing state-of-the-art system by yielding a smaller mean absolute error and higher correlation between estimates and human evaluators. Moreover, results for speaker independent validation are comparable to human evaluators.

Cross-lingual Speech Emotion Recognition through Factor Analysis

Brecht Desplanches and Kris Demuynck

Ghent University - imec, IDLab, Department of Electronics and Information Systems, Belgium
Thu-P-2-2-3, Time: 14:30-16:30

Conventional speech emotion recognition based on the extraction of high level descriptors emerging from low level descriptors seldom delivers promising results in cross-corpus experiments. Therefore it might not perform well in real-life applications. Factor analysis, proven in the fields of language identification and speaker verification, could clear a path towards more robust emotion recognition. This paper proposes an Vector-based approach operating on acoustic MFCC features with a separate modeling of the speaker and emotion variables respectively. The speech analysis extracts two fixed-length low-dimensional feature vectors corresponding to the two mentioned sources of variation. To model the speaker-related nuisance variability speaker factors are extracted using an eigenvoice matrix. After compensating for this speaker variability in the supervector space, the emotion factors (one per targeted emotion) are extracted using an emotion variability matrix. The emotion factors are then fed to a basic
Modeling Self-Reported and Observed Affect from Speech
Jian Cheng, Jared Bernstein, Elizabeth Rosenfeld, Peter W. Foltz, Alex S. Cohen, Terje B. Holmlund and Brita Elvevåg
1 Analytic Measures Inc., Palo Alto, CA, U.S.A.
1 Institute of Cognitive Science, University of Colorado & Pearson, CO, U.S.A.
1 Department of Psychology, Louisiana State University, LA, U.S.A.
1 Department of Clinical Medicine, University of Tromsø – the Arctic University of Norway, Norway
1 Norwegian Centre for eHealth Research, University Hospital of North Norway, Tromsø, Norway

Thu-P-2-2-4, Time: 14:30-16:30
Listeners hear joy/sadness and engagement/indifference in speech, even when linguistic content is neutral. We measured audible emotion in spontaneous speech and related it to self-reports of affect in response to questions, such as “Are you hopeful?” Spontaneous speech and self-reports were both collected in sessions with an interactive mobile app and used to compare three affect measures: self-report; listener judgement; and machine score. The app adapted a widely-used measure of affective state to collect self-reported positive/negative affect and it engaged users in spoken interactions. Each session elicited 11 affect self-reports and captured about 9 minutes of speech; with 118 sessions by psychiatric patients and 227 sessions by non-clinical users. Speech recordings were evaluated for arousal and valence by clinical experts and by computer analysis of acoustic (non-linguistic) variables. The affect self-reports were reasonably reliable (α = 0.73 to 0.84); Combined affect ratings from clinical-expert listeners produced reliable ratings per session (α = 0.75 to 0.99) and acoustic feature analysis matched the expert ratings fairly well (0.36 < r < 0.72, mean 0.57), but neither human nor computed scores had high correlation with standard affect self-reported values. These results are discussed in relation to common methods of developing and evaluating affect analysis.

Stochastic Shake-Shake Regularization for Affective Learning from Speech
Che-Wei Huang and Shrikanth Narayanan
Signal Analysis and Interpretation Laboratory (SAIL), University of Southern California
Thu-P-2-2-5, Time: 14:30-16:30
We propose stochastic Shake-Shake regularization based on multi-branch residual architectures to mitigate over-fitting in affective learning from speech. Inspired by recent Shake-Shake [1] and ShakeDrop [2] regularization techniques, we introduce negative scaling into the Shake-Shake regularization algorithm while still maintain a consistent stochastic convex combination of branches to encourage diversity among branches whether they are scaled by positive or negative coefficients. In addition, we also employ the idea of stochastic depth to randomly relax the shaking mechanism during training as a method to control the strength of regularization.

Through experiments on speech emotion recognition with various levels of regularization strength, we discover that the shaking mechanism alone constrains much more to the optimization of network parameters than to boosting the generalization power. However, stochastically relaxing the shaking regularization serves to conveniently strike a balance between them. With a flexible configuration of hybrid layers, promising experimental results demonstrate a higher unweighted accuracy and a smaller gap between training and validation, i.e. reduced over-fitting and shed light on the future direction for pattern recognition tasks with low resource.

Investigating Speech Enhancement and Perceptual Quality for Speech Emotion Recognition
Anderson R. Avila1, Md Jahangir Alam2, Douglas O’Shaughnessy1 and Tiago Falcão1
1 INRS-EMT, University of Quebec, Canada
2 Computer Research Institute of Montreal (CRIM)

Thu-P-2-2-6, Time: 14:30-16:30
In this study, the performance of two enhancement algorithms is investigated in terms of perceptual quality as well as in respect to their impact on speech emotion recognition (SER). The SER system adopted is based on the same benchmark system provided for the AVEC Challenge 2016. The three objective measures adopted are the speech-to-reverberation modulation energy ratio (SMR), the perceptual evaluation of quality (PSNR) and the perceptual objective listening quality assessment (POLQA). Evaluations are conducted on speech files from the RECOLA dataset, which provides spontaneous interactions in French of 27 subjects. Clean speech files are corrupted with different levels of background noise and reverberation. Results show that applying enhancement prior to the SER task can improve SER performance in more degraded scenarios. We also show that quality measures can be an important asset as indicator of enhancement algorithms performance towards SER, with SMR and POLQA providing the most reliable results.

Demonstrating and Modelling Systematic Time-varying Annotator Disagreement in Continuous Emotion Annotation
Mia Atcheson, Vidhyasaharan Sethu and Julien Epps
University of New South Wales
Thu-P-2-2-7, Time: 14:30-16:30
Continuous emotion recognition (CER) is the task of determining the emotional content of speech from audio or multimedia recordings. Training targets for machine learning must be generated by human annotation, generally as a time series of emotional parameter values. In typical contemporary CER systems and challenges, the mean over a pool of annotators is taken to represent this ground truth, but is this an appropriate model for the emotional content of speech? Using the RECOLA dataset, the primary contribution of this research is to show that a correlation exists between the time-varying disagreement from independent groups of annotators. Because this noise can be isolated except via the speech signal, this agreement-about-disagreement demonstrates that there is a component of annotator disagreement which arises systematically from the signal itself, which qualitatively implies that the perceived emotional content of speech can exhibit some degree of inherent ambiguity. Additionally, we show that these human annotations exhibit a degree of temporal smoothness. Neither of these characteristics is represented by the standard series-of-means ground-truth model, so we propose two alternative ground-truth models: a mean-variance model that incorporates ambiguity and a more general Gaussian process model that incorporates ambiguity and temporal smoothness in a well-defined probability distribution.

Speech Emotion Recognition from Variable-Length Inputs with Triplet Loss Function
Jian Huang1,2, Ya Li1, Jianhua Tao2,3 and Zhen Lian1,2
1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3 CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China
Thu-P-2-2-8, Time: 14:30-16:30
Automatic emotion recognition is a crucial element on understanding human behavior and interaction. Prior works on speech emotion recognition focus on exploring various feature sets and models. Compared with these methods, we propose a triplet framework based on Long Short-Term Memory Neural Network (LSTM) for speech emotion recognition. The system learns...
a mapping from acoustic features to discriminative embedding features, which are regarded as basis of testing with SVM. The proposed model is trained with triplet loss and supervised loss simultaneously. The triplet loss makes intra-class distance shorter and inter-class distance longer and supervised loss incorporates class label information. In view of variable-length inputs, we explore three different strategies to handle this problem and meanwhile make better use of temporal dynamic process information. Our experimental results on the Interactive Emotional Motion Capture (IEMOCAP) database reveal that the proposed methods are beneficial to performance improvement. We demonstrate promise of triplet framework for speech emotion recognition and present our analysis.

Imbalance Learning-based Framework for Fear Recognition in the MediaEval Emotional Impact of Movies Task
Xiaotong Zhang, Xingliang Cheng, Mingxing Xu and Thomas Fang Zheng
Department of Computer Science and Technology, Center for Speech and Language Technologies, Research Institute of Information Technology
Tsinghua University, Beijing, China
Thu-P-2-2-9, Time: 14:30-16:30
Fear recognition, which aims at predicting whether a movie segment can induce fear or not, is a promising area in movie emotion recognition. Research in this area, however, has reached a bottleneck. Difficulties may partly result from the imbalanced database. In this paper, we propose an imbalance learning-based framework for movie fear recognition. A data rebalance module is adopted before classification. Several sampling methods, including the proposed soft-sampling and hard-sampling which combine the merits of both undersampling and oversampling, are explored in this module. Experiments are conducted on the MediaEval 2017 Emotional Impact of Movies Task. Compared with the current state-of-the-art, we achieve an improvement of 8.94% on F1, proving the effectiveness of proposed framework.

Emotion Recognition from Variable-Length Speech Segments Using Deep Learning on Spectrograms
Xi Ma1, Zhiyong Wu1,2, Jia Jia1, Mingxing Xu1, Helen Meng1,2 and Lianhong Cai1
1TSinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
2Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
Thu-P-2-2-10, Time: 14:30-16:30
Deep neural network (DNN) dereverberation preprocessing has been shown to be a viable strategy for speech enhancement and increasing the accuracy of automatic speech recognition and automatic speaker verification. In this paper, an improved DNN technique based on convolutional neural networks is presented and compared to existing methods for speech enhancement and speaker verification in the presence of reverberation. This new technique is first shown to enhance speech quality as compared to other existing methods. Then, a more thorough set of experiments is presented that assesses cross-corpora speaker verification performance on data that contains real reverberation and noise. A discussion of the applicability in this work, an approach of emotion recognition is proposed for variable-length speech segments by applying deep neural network to spectrograms directly. The spectrogram carries comprehensive para-lingual information that are useful for emotion recognition. We tried to extract such information from spectrograms and accomplish the emotion recognition task by combining Convolutional Neural Networks (CNNs) with Recurrent Neural Networks (RNNs). To handle the variable-length speech segments, we proposed a specially designed neural network structure that accepts variable-length speech sentences directly as input. Compared to the traditional methods that split the sentence into smaller fixed-length segments, our method can solve the problem of accuracy degradation introduced in the speech segmentation process. We evaluated the emotion recognition model on the IEMOCAP dataset over four emotions. Experimental results demonstrate that the proposed method outperforms the fixed-length neural network on both weighted accuracy (WA) and unweighted accuracy (UA) and generalizability of such techniques is given.

Speech Emotion Recognition Using Spectrogram & Phoneme Embedding
Promod Yenigalla, Abhay Kumar, Suraj Tripathi, Chirag Singh, Sibsambhu Kar and Jithendra Vepa
Samsung R&D Institute India - Bangalore
Thu-P-2-2-11, Time: 14:30-16:30
This paper proposes a speech emotion recognition method based on phoneme sequence and spectrogram. Both phoneme sequence and spectrogram retain emotion contents of speech which is missed if the speech is converted into text. We performed various experiments with different kinds of deep neural networks with phoneme and spectrogram as inputs. Three of those network architectures are presented here that helped to achieve better accuracy when compared to the state-of-the-art methods on benchmark dataset. A phoneme and spectrogram combined DNN model proved to be most accurate in recognizing emotions on IEMOCAP data. We achieved more than 4% increase in overall accuracy and average class accuracy as compared to the existing state-of-the-art methods.

On Enhancing Speech Emotion Recognition Using Generative Adversarial Networks
Saurabh Sahu1, Rahul Gupta2 and Carol Espy-Wilson2
1Speech Communication Laboratory, University of Maryland, College Park, MD, USA
2Amazon.com, USA
Thu-P-2-2-12, Time: 14:30-16:30
Generative Adversarial Networks (GANs) have gained a lot of attention from machine learning community due to their ability to learn and mimic an input data distribution. GANs consist of a discriminator and a generator working in tandem playing a min-max game to learn the complex underlying data distribution when fed with data-points sampled from a simpler distribution like Uniform or Gaussian. Once trained, they allow synthetic generation of examples sampled from the learned distribution. We investigate the application of GANs to generate synthetic feature vectors used for spe​ech emotion recognition. Specifically, we investigate two set-ups: (i) a vanilla GAN that learns the distribution of a lower dimensional representation of the actual higher dimensional feature vector and (ii) a conditional GAN that learns the distribution of the higher dimensional feature vectors conditioned on the labels or the emotional class to which it belongs. As a potential practical application of these synthetically generated samples, we measure any improvement in a classifier’s performance when the synthetic data was used along with real for training it. We perform cross validation analyses followed by a cross-corpus study.

Ladder Networks for Emotion Recognition: Using Unsupervised Auxiliary Tasks to Improve Predictions of Emotional Attributes
Srinivas Parthasarathy and Carlos Busso
Multimodal Signal Processing(MSP) lab, Department of Electrical and Computer Engineering The University of Texas at Dallas, Richardson TX 75080, USA
Thu-P-2-2-13, Time: 14:30-16:30
Recognizing emotions using few attribute dimensions such as arousal, valence and dominance provides the flexibility to effectively represent complex range of emotional behaviors. Conventional methods to learn these emotional descriptors primarily focus on separate models to recognize each of these attributes. Recent work has shown that learning these attributes together regularizes the models, leading to better feature representations. This study explores new forms of regularization by adding
unsupervised auxiliary tasks to reconstruct hidden layer representations. This auxiliary task requires the denoising of hidden representations at every layer of an auto-encoder. The framework relies on ladder networks that utilize skip connections between encoder and decoder layers to learn powerful representations of emotional dimensions. The results show that ladder networks improve the performance of the system compared to baselines that individually learn each attribute and conventional denoising autoencoders. Furthermore, the unsupervised auxiliary tasks have promising potential to be used in a semi-supervised setting, where few labeled sentences are available.

Thu-P-2-3: Acoustic Modelling

Hall 4-6: Poster-3, 14:30-16:30, Thursday, 6 September, 2018
Chair: Rohit Prabhavalkar

Knowledge Distillation for Sequence Model

Mingkun Huang¹, Yongbin You¹, Zhehuai Chen¹, Yanmin Qian¹ and Kai Yu¹

¹Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

²AISpeech Ltd.

Thu-P-2-3-1, Time: 14:30-16:30

Knowledge distillation, or teacher-student training, has been effectively used to improve the performance of a relatively simpler deep learning model (the student) using a more complex model (the teacher). It is usually done by minimizing the Kullback-Leibler divergence (KLD) between the output distributions of the student and the teacher at each frame. However, the gain from frame-level knowledge distillation is limited for sequence models such as Connectionist Temporal Classification (CTC), due to the mismatch between the sequence-level criterion used in teacher model training and the frame-level criterion used in distillation. In this paper, sequence-level knowledge distillation is proposed to achieve better distillation performance. Instead of calculating a teacher posterior distribution given the feature vector of the current frame, sequence training criterion is employed to calculate the posterior distribution given the whole utterance and the teacher model. Experiments are conducted on both English Switchboard corpus and a large Chinese corpus. The proposed approach achieves significant and consistent improvements over the traditional frame-level knowledge distillation using both labeled and unlabeled data.

Improving CTC-based Acoustic Model with Very Deep Residual Time-delay Neural Networks

Sheng Li¹, Xugang Lu¹, Ryoichi Takashima¹, Peng Shen¹, Tatsuya Kawahara¹² and Hisashi Kawai¹

¹National Institute of Information and Communications Technology, Kyoto, Japan

²Kyoto University, Kyoto, Japan

Thu-P-2-3-2, Time: 14:30-16:30

Connectionist temporal classification (CTC) has shown great potential in end-to-end (E2E) acoustic modeling. The current state-of-the-art architecture for a CTC-based E2E model is based on a deep bidirectional long short-term memory (BLSTM) network that provides frame-wise outputs estimated from both forward and backward directions (BLSTM-CTC). Since this architecture can lead to a serious time latency problem in decoding, it cannot be applied to real-time speech recognition tasks. Considering that the CTC label of one current frame can only be affected by a few neighboring frames, we argue that using BLSTM traversing on a whole utterance from both directions is not necessary. In this paper, we use a very deep residual time-delay (VResTD) network for CTC-based E2E acoustic modeling (VResTD-CTC). The VResTD network provides frame-wise outputs with local bidirectional information without needing to wait for the whole utterance. Speech recognition experiments on Corpus of Spontaneous Japanese were carried out to test our proposed VResTD-CTC and the state-of-the-art BLSTM-CTC model. Comparable performance was obtained while the proposed VResTD-CTC does not suffer from the decoding time latency problem.

Filter Sampling and Combination CNN (FSC-CNN): A Compact CNN Model for Small-footprint ASR

Jinxu Guo¹, Ning Xu¹, Xin Chen¹, Yang Shi¹, Kaiyuan Xu¹ and Abeer Alwani²

¹Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA

²Snap Inc., Venice, CA, USA

Thu-P-2-3-3, Time: 14:30-16:30

Learning an ASR acoustic model directly from raw waveforms using CNNs has proved to be effective, where convolutional layers with learnable filters are able to automatically extract useful features. However, these filters, with independent parameters, can be highly redundant resulting in inefficient systems. In this paper, we propose a novel method to generate CNN filter parameters by first sampling from a low-dimensional parameter space and then using a trainable scalar vector to perform a linear combination. This filter sampling and combination method (denoted as FSC) not only naturally enforces parameter sharing in the low-dimensional sampling space but also adds to the learning capacity of filters. The FSC-CNN model has a significantly smaller number of parameters and is more efficient compared to conventional CNN models, which makes it feasible for small-footprint ASR. Experimental results on the WSJ LVCSR task show that FSC-CNNs are able to achieve a WER of 3.67 with a standard decoder set-up with only 1.19M nonlinear-layer parameters (better than a strong baseline CNN model with 3.2x more parameters). It also outperforms a CNN model with a similar number of parameters by a relative improvement of 10.26%.

Twin Regularization for Online Speech Recognition

Mirco Ravanelli, Dmitriy Serdyuk and Yoshua Bengio
Montreal Institute for Learning Algorithms (MILA) Université de Montréal, Canada

Thu-P-2-3-4, Time: 14:30-16:30

Online speech recognition is crucial for developing natural human-machine interfaces. This modality, however, is significantly more challenging than off-line ASR, since real-time/low-latency constraints inevitably hinder the use of future information, that is known to be very helpful to perform robust predictions.

A popular solution to mitigate this issue consists of feeding neural acoustic models with context windows that gather some future frames. This introduces a latency which depends on the number of employed look-ahead features.

This paper explores a different approach, based on estimating the future rather than waiting for it. Our technique encourages the hidden representations of a unidirectional recurrent network to embed some useful information about the future. Inspired by a recently proposed technique called Twin Networks, we add a regularization term that forces forward hidden states to be as close as possible to cotemporal backward ones, computed by a “twin” neural network running backwards in time.

The experiments, conducted on a number of datasets, recurrent architectures, input features and acoustic conditions, have shown the effectiveness of this approach. One important advantage is that our method does not introduce any additional computation at test time if compared to standard unidirectional recurrent networks.

Self-Attentional Acoustic Models

Matthias Sperber¹, Jan Niehues¹, Graham Neubig², Sebastian Stüker¹ and Alex Waibel²

¹Karlruhe Institute of Technology

¹Montreal Institute for Learning Algorithms (MILA) Université de Montréal, Canada

²Snap Inc., Venice, CA, USA
Self-attention is a method of encoding sequences of vectors by relating these vectors to each other based on pairwise similarities. These models have recently shown promising results for modeling discrete sequences, but they are non-trivial to apply to acoustic modeling due to computational and modeling issues.

In this paper, we apply self-attention to acoustic modeling, proposing several improvements to mitigate these issues.

First, self-attention memory grows quadratically in the sequence length, which we address through a downsampling technique.

Second, we find that previous approaches to incorporate position information into the model are unsuitable and explore other representations and hybrid models to this end.

Third, to stress the importance of local context in the acoustic signal, we propose a Gaussian biasing approach that allows explicit control over the context range.

Experiments find that our model approaches a strong baseline based on LSTMs with network-in-network connections while being much faster to compute.

Besides speed, we find that interpretability is a strength of self-attentional acoustic models and demonstrate that self-attention heads learn a linguistically plausible division of labor.

Hierarchical Recurrent Neural Networks for Acoustic Modeling
Jinhwan Park, Iksoo Choi, Yoonho Boo and Wonyong Sung
Department of Electrical and Computer Engineering, Seoul National University
Thu-P-2-3-6, Time: 14:30-16:30

Recurrent neural network (RNN)-based acoustic models are widely used in speech recognition and end-to-end training with CTC (connectionist temporal classification) shows good performance. In order to improve the ability to keep temporarily distant information, we employ hierarchical recurrent neural networks (HRNNs) to the acoustic modeling in speech recognition. HRNN consists of multiple RNN layers that operate on different time-scales and the frequency of operation at each layer is controlled by learned gates from training data. We employ gate activation regularization techniques to control the operation of the hierarchical layers. When tested with the WSJ eval92, our best model obtained the word error rate of 5.19% with beam search decoding using RNN based character-level language models. Compared to an LSTM based acoustic model with a similar parameter size, we achieved a relative word error rate improvement of 10.5%. Even though this model employs uni-directional RNN models, it showed the performance improvements over the previous bi-directional RNN based acoustic models.

Dictionary Augmented Sequence-to-Sequence Neural Network for Grapheme to Phoime Prediction
Antoine Bruguier1, Anton Bakhtin2 and Dravyansh Sharma3
1Google LLC, Mountain View, CA
2Facebook AI Research, New York, NY
Thu-P-2-3-7, Time: 14:30-16:30

Both automatic speech recognition and text to speech systems need accurate pronunciations, typically obtained by using both a lexicon dictionary and a grapheme to phoneme (G2P) model. G2P typically struggle with predicting pronunciations for tail words and we hypothesized that one reason is because they try to discover general pronunciation rules without using prior knowledge of the pronunciation of related words. Our new approach expands a sequence-to-sequence G2P model by injecting prior knowledge. In addition, our model can be updated without having to retrain a system. We show that our new model has significantly better performance for German, both on a tightly controlled task and on our real-world system. Finally, the simplification of the system allows for faster and easier scaling to other languages.

Leveraging Second-Order Log-Linear Model for Improved Deep Learning Based ASR Performance
Ankit Raj, Shakti P Rath and Jithendra Vepa
Samsung Research Institute India - Bangalore
Thu-P-2-3-8, Time: 14:30-16:30

Gaussian generative models have been shown to be equivalent to discriminative log-linear models under weak assumptions for acoustic modeling in speech recognition systems. In this paper, we note that the output layer of deep learning model consists of a first-order log-linear model, also known as logistic regression, which induces a set of homoscedastic distributions in the generative model space, resulting in linear decision boundaries. We leverage the above equivalence to make the deep learning models more expressive by replacing the first order log-linear model with a second-order model, which leads to heteroscedastic distributions, as a result, the linear decision boundaries are replaced with quadratic ones. We observe that the proposed architecture yields a significant improvement in speech recognition accuracy compared to the conventional model having a comparable number of parameters. Relative improvement of 8.37% and 3.92% in word error rate (WER) is obtained for shallow and deep feed-forward networks respectively. Moreover, with Long Short-Term Memory (LSTM) networks with projection matrix, we obtain significant relative improvement in WER over the standard architecture.

Semi-Orthogonal Low-Rank Matrix Factorization for Deep Neural Networks
Daniel Povey1,2, Gaofeng Cheng1,4, Yiming Wang1, Ke Li1, Hainan Xu1, Mahsa Yarmohammadi3 and Sanjeev Khudanpur2,4
1Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
2Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, MD, USA
3University of Chinese Academy of Sciences, Beijing, China
4Key Laboratory of Speech Acoustics and Content Understanding, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
Thu-P-2-3-9, Time: 14:30-16:30

Time Delay Neural Networks (TDNNs), also known as one-dimensional Convolutional Neural Networks (1-d CNNs), are an efficient and well-performing neural network architecture for speech recognition. We introduce a factored form of TDNNs (TDNN-F) which is structurally the same as a TDNN whose layers have been compressed via SVD, but is trained from a random start with one of the two factors of each matrix constrained to be semi-orthogonal. This gives substantial improvements over TDNNs and performs about as well as TDNN-LSTM hybrids.

Completely Unsupervised Phoneme Recognition by Adversarially Learning Mapping Relationships from Audio Embeddings
Da-Rong Liu, Kuan-Yu Chen, Hung-yi Lee and Lin-shan Lee
National Taiwan University
Thu-P-2-3-10, Time: 14:30-16:30

Unsupervised discovery of acoustic tokens from audio corpora without annotation and learning vector representations for these tokens have been widely studied. Although these techniques have been shown successful in some applications such as query-by-example Spoken Term Detection (STD), the lack of mapping relationships between these discovered tokens and real phonemes has limited the down-stream applications. This paper represents probably the first attempt towards the goal of completely unsupervised phoneme recognition, or mapping audio signals to phoneme sequences without phoneme-labeled audio data. The basic idea is to cluster the embedded acoustic tokens and learn the mapping between the cluster sequences and the unknown phoneme sequences with a Generative
Adversarial Network (GAN). An unsupervised phoneme recognition accuracy of 36% was achieved in the preliminary experiments.

Phone Recognition Using a Non-Linear Manifold with Broad Phone Class Dependent DNNs

Mengjie Qian, Linxue Bai, Peter Jančovič and Martin Russell

Department of Electronic, Electrical & Systems Engineering, The University of Birmingham, UK

Thu-P-2-3-11, Time: 14:30–16:30

Although it is generally accepted that different broad phone classes (BPCs) have different production mechanisms and are better described by different types of features, most automatic speech recognition (ASR) systems use the same features and decision criteria for all phones. Motivated by this observation, this paper proposes a two-level DNN structure, referred to as a BPC-DNN, inspired by the notion of a topological manifold. In the first level, several small separate BPC-dependent DNNs are applied to different broad phonetic classes and in the second level the outputs of these DNNs are fused to obtain a non-contingent posterior probability, which can be used for frame-level classification or integrated into Viterbi decoding for phone recognition. In a previous paper using this approach we reported improved frame classification accuracy on the TIMIT corpus compared with a conventional DNN. The contribution of the present paper is to demonstrate that this advantage extends to phoneme recognition. Our most recent results show that the BPC-DNN achieves reductions in error rate relative to a conventional DNN of 16% and 8% for frame classification and phoneme recognition, respectively.

A Multi-Discriminator CycleGAN for Unsupervised Non-Parallel Speech Domain Adaptation

Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong and Richard Socher

Salesforce Research

Thu-P-2-3-12, Time: 14:30–16:30

Domain adaptation plays an important role for speech recognition models, in particular, for domains that have low resources. We propose a novel generative model based on cyclic-consistent generative adversarial network (CycleGAN) for unsupervised non-parallel speech domain adaptation. The proposed model employs multiple independent discriminators on the power spectrogram, each in charge of different frequency bands. As a result, we have 1) better discriminators that focus on fine-grained details of the frequency features and 2) a generator that is capable of generating more realistic domain-adapted spectrograms. We demonstrate the effectiveness of our method on speech recognition with gender adaptation, where the model only has access to supervised data from one gender during training, but is evaluated on the other at test time. Our model is able to achieve an average of 7.41% on phoneme error rate and 11.10% word error rate relative performance improvement as compared to the baseline, on TIMIT and WSJ dataset, respectively. Qualitatively, our model also generates more natural sounding speech, when conditioned on data from the other domain.

Thu-P-2-4: Speech and Speaker Perception

Hall 4-6: Poster-4, 14:30–16:30, Thursday, 6 September, 2018

Chair: Chris Davis

Interactions between Vowels and Nasal Codas in Mandarin Speakers’ Perception of Nasal Finals

Chong Cao, Wei Wei, Wei Wang, Yanlu Xie and Jinsong Zhang

Beijing Advanced Innovation Center for Language Resources

Beijing Language and Culture University, Beijing, China

Implementing DIANA to Model Isolated Auditory Word Recognition in English

Filip Nenadíc1, Louis ten Bosch2 and Benjamin V. Tucker1

1University of Alberta

2Radboud University Nijmegen

Thu-P-2-4-3, Time: 14:30–16:30

DIANA, an end-to-end computational model of spoken word recognition, was previously used to simulate auditory lexical decision experiments in Dutch. A single test conducted for North American English showed promising results as well. However, this simulation used a relatively small amount of data collected in the pilot phase of the Massive Auditory Lexical Decision (MALDI) project. Additionally, already existing acoustic models were implemented. In this paper, we expand the analysis of MALD data by including a larger sample of both stimuli and participants. Acknowledging that most speech humans hear is conversational speech, we also test new acoustic models created using spontaneous speech corpora. Simulations successfully replicate expected trends in word competition and show
The present study investigated whether the effects of homophone density on spoken word recognition are facilitatory or inhibitory or complex. The findings suggest that visual timing information could be a specific cue for audiovisual lexical and dipping tones attenuated such visual benefit. The finding suggested discrimination in the maximum pair whereas the similar lengths of rising 100ms) and minimum contrastive pair (rising vs. falling tones, the difference in one pair of tones under auditory only (AO) and audiovisual (AV) condition. Eighteen Chinese speakers were asked to identify a Mandarin lexical tone to improve intelligibility of lexical pitch contours under noisy condition. The present study investigated whether duration of lip movement could increase the effects of homophone density on spoken word recognition. Using mixed modeling, a significant inhibitory effect of homophone density ($\beta = 0.0098, t = 2.10$) on reaction time was found. Participants were slower in naming words with high homophone density, possibly due to competition posed by more number of homophones, as compared to the words with low homophone density. Further, an interaction between homophone density and syllable frequency was found i.e., for high syllable frequency, homophone density effects were inhibitory but for low syllable frequency, the inhibitory effect was reduced. Taken together, the effects of homophone density are not straightforward but complex.

Visual Timing Information in Audiovisual Speech Perception: Evidence from Lexical Tone Contour

Hui Xie1,2, Biao Zeng1 and Rui Wang1

1Faculty of Architecture and Urban Planning, Chongqing University, China.
2Key Laboratory of New Technology for Construction of Cities in Mountain Areas, Ministry of Education, Chongqing University, China.
3School of Psychology and Therapeutic Studies, University of South Wales, UK
4Department of Psychology, Bournemouth University, UK.

Thu-P-2-4-5, Time: 14:30-16:30

The present study investigated whether duration of lip movement could improve intelligibility of lexical pitch contours under noisy condition. Eighteen Chinese speakers were asked to identify a Mandarin lexical tone in one pair of tones under auditory only (AO) and audiovisual (AV) condition. Two types of tone pairs were used in the study: maximum contrastive pair (falling vs. dipping tones, the durational difference of lip movement was 100ms) and minimum contrastive pair (rising vs. falling tones, the difference was 33ms). The results showed that duration of lip movement enhanced discrimination in the maximum pair whereas the similar lengths of rising and dipping tones attenuated such visual benefit. The finding suggested that visual timing information could be a specific cue for audiovisual lexical tone perception.

COSMO SylPhon: A Bayesian Perceptuo-motor Model to Assess Phonological Learning

Marie-Lou Barnaud1,2, Juien Diiard3, Pierre Bessière1 and Jean-Luc Schwartz1

1Univ Grenoble Alpes, CNRS, Grenoble INP*, GIPSA-lab, 38000 Grenoble, France
2Univ Grenoble Alpes, CNRS, LPNC, 38000 Grenoble, France
3CNRS - Sorbonne Université - ISIR, Paris, France

Thu-P-2-4-6, Time: 14:30-16:30

During speech development, babies learn to perceive and produce speech units, especially syllables and phonemes. However, the mechanisms underlying the acquisition of speech units still remain unclear. We propose a Bayesian model of speech communication, named "COSMO SylPhon", for studying the acquisition of both syllables and phonemes. In this model, speech development involves a sensory learning phase mainly related to perception development and a motor learning phase mainly related to production development. We analyze how an agent can learn speech units during these two phases through an unsupervised learning process based on syllable stimuli. We show that the learning process enables to efficiently learn the distribution of syllabic stimuli provided in the environment. Importantly, we show that if agents are equipped with a bootstrap process inspired by the Frame-Content Theory of speech development, they learn to associate consonants to specific articulatory gestures, providing the basis for consonantal articulatory invariance.

Experience-dependent Influence of Music and Language on Lexical Pitch Learning Is Not Additive

Akshay Raj Maggu1, Patrick C. M. Wong1, Hanjun Liu1 and Francis C. K. Wong3

1The Chinese University of Hong Kong, Hong Kong SAR
2Sun Yat-sen University, China
3Nanyang Technological University, Singapore

Thu-P-2-4-7, Time: 14:30-16:30

Research studies provide evidence for the facilitative effects of musical and linguistic experience on lexical pitch learning. However, the effect of interaction of linguistic and musical pitch experience on lexical pitch processing is a matter of ongoing research. In the current study, we sought to examine the effect of combination of musical and linguistic pitch experience on learning of novel lexical pitch. Using a 10-session pseudoword-picture association training paradigm, we compared the learning performance of musicians and non-musicians who either spoke a non-tone language, spoke one tone language, or spoke two tone languages. Among the non-tone language speakers, we found that musicians showed enhanced learning of novel lexical pitch as compared to non-musicians. In comparison, among the tone-language speakers, we found no significant difference in the learning performance of musicians and non-musicians no matter they spoke one or more tone languages. We conclude that though musical experience facilitates linguistic pitch learning, the effects of combination of musical and linguistic pitch experience are not additive i.e. possessing both types of pitch experience is no better than possessing either one of them and knowing two tone languages does not facilitate the learning of a new tone language beyond the knowledge of one.

Influences of Fundamental Oscillation on Speaker Identification in Vocalic Utterances by Humans and Computers

Volker Deluwo1, Thayabarant Kathiresan2, Elisa Pellegrino1, Lei He1, Sandra Schwab2 and Dieter Maurer2

1Department of Computational Linguistics, University of Zurich
2Department of the Performing Arts, Zurich University of the Arts

Thu-P-2-4-8, Time: 14:30-16:30

We tested the influence of fundamental oscillation (fo) on human and machine speaker recognition in vocalic test utterances. In experiment I, we trained a Gaussian-Mixture model on 15 speakers (80 multi-word utterances each) and tested it with sustained vowel utterances (/l4/ and /u4/) under six fo conditions, three changing (fall, rise, fall-rise) and three steady-state (high, mid, low). Results revealed better performance for the steady-state compared to the changing conditions and within the steady-state condition, performance was poorest for high fo. In experiment II, we tested 9 human listeners on a subset of 4 speakers from experiment I. They went through two training tasks (training 1: multi-word utterances; training 2: words). In the test, they recognized speakers based on the same vocalic utterances as in experiment I (for these 4 speakers). Results showed that performance was about equally high for the changing and steady-state vowels, however, in the steady-state condition performance was best for high fo vowels. The experiments suggest that (a) fo has an influence on the strength of speaker specific characteristics in vowels and (b) humans - compared to machines - pay attention to different acoustic information in vocalic utterances for speaker recognition.
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abraham, Ajish</td>
<td>122</td>
</tr>
<tr>
<td>Akku, Paavo</td>
<td>177</td>
</tr>
<tr>
<td>Anguera, Xavier</td>
<td>186</td>
</tr>
<tr>
<td>Backstrom, Tom</td>
<td>160</td>
</tr>
<tr>
<td>Bali, Kalika</td>
<td>158</td>
</tr>
<tr>
<td>Barker, Jon</td>
<td>248</td>
</tr>
<tr>
<td>Batliner, Anton</td>
<td>109</td>
</tr>
<tr>
<td>Baumeister, Harald</td>
<td>109</td>
</tr>
<tr>
<td>Bhat, Chitralekha</td>
<td>203</td>
</tr>
<tr>
<td>Bilgi, Raghavendra</td>
<td>246</td>
</tr>
<tr>
<td>Biyani, Pravesh</td>
<td>247</td>
</tr>
<tr>
<td>Blanco, Noelia do Carmo</td>
<td>203</td>
</tr>
<tr>
<td>Bonastre, Jean-Francois</td>
<td>106</td>
</tr>
<tr>
<td>Boril, Hynek</td>
<td>178</td>
</tr>
<tr>
<td>Boves, Lou</td>
<td>164</td>
</tr>
<tr>
<td>Breen, Andrew</td>
<td>141</td>
</tr>
<tr>
<td>Busso, Carloso</td>
<td>142</td>
</tr>
<tr>
<td>Cahill, Peter</td>
<td>230</td>
</tr>
<tr>
<td>Cernocky, Jan</td>
<td>197</td>
</tr>
<tr>
<td>Church, Kenneth</td>
<td>219</td>
</tr>
<tr>
<td>Cieri, Christopher</td>
<td>219</td>
</tr>
<tr>
<td>Compernolle, Dirk Van</td>
<td>199</td>
</tr>
<tr>
<td>Cristia, Alejandrina</td>
<td>209</td>
</tr>
<tr>
<td>Cui, Xiaodong</td>
<td>107</td>
</tr>
<tr>
<td>Cummins, Nicholas</td>
<td>231</td>
</tr>
<tr>
<td>D, Dileep A</td>
<td>158</td>
</tr>
<tr>
<td>Davis, Chris</td>
<td>259</td>
</tr>
<tr>
<td>Deepak, K T</td>
<td>195</td>
</tr>
<tr>
<td>Delgado, Héctor</td>
<td>197</td>
</tr>
<tr>
<td>Dellwo, Volker</td>
<td>161</td>
</tr>
<tr>
<td>Deshpande, Gauri</td>
<td>158</td>
</tr>
<tr>
<td>Diab, Mona</td>
<td>193</td>
</tr>
<tr>
<td>Dier, Lorenz</td>
<td>183</td>
</tr>
<tr>
<td>Dong, Pengquan</td>
<td>233</td>
</tr>
<tr>
<td>Du, Jun</td>
<td>125</td>
</tr>
<tr>
<td>Earnshaw, Katherine</td>
<td>217</td>
</tr>
<tr>
<td>Epps, Julien</td>
<td>231</td>
</tr>
<tr>
<td>Esch, Daan van</td>
<td>146</td>
</tr>
<tr>
<td>Evans, Nicholas</td>
<td>106</td>
</tr>
<tr>
<td>Ganapathy, Siram</td>
<td>148</td>
</tr>
<tr>
<td>Garimella, Sri</td>
<td>160</td>
</tr>
<tr>
<td>Garlach, Johanna</td>
<td>197</td>
</tr>
<tr>
<td>Gobl, Christor</td>
<td>161</td>
</tr>
<tr>
<td>Gowda, Dhananjaya N</td>
<td>158</td>
</tr>
<tr>
<td>Green, Phil</td>
<td>182</td>
</tr>
<tr>
<td>Hagedorn, Christina</td>
<td>173</td>
</tr>
<tr>
<td>Hagnmuller, Martin</td>
<td>229</td>
</tr>
<tr>
<td>Hain, Thomas</td>
<td>140</td>
</tr>
<tr>
<td>Hasegawa-Johnson, Mark</td>
<td>159</td>
</tr>
<tr>
<td>Hermansky, Hynek</td>
<td>214</td>
</tr>
<tr>
<td>Hirschberg, Julia</td>
<td>183</td>
</tr>
<tr>
<td>Hoffmeister, Bjorn</td>
<td>249</td>
</tr>
<tr>
<td>Ishikawa, Haruko</td>
<td>146</td>
</tr>
<tr>
<td>Jayagopi, Dinesh</td>
<td>249</td>
</tr>
<tr>
<td>Jayaraman, Rajagopal</td>
<td>165</td>
</tr>
<tr>
<td>Jyothi, Preethi</td>
<td>146</td>
</tr>
<tr>
<td>K, Samudrajiya</td>
<td>198</td>
</tr>
<tr>
<td>Karafiat, Martin</td>
<td>223</td>
</tr>
<tr>
<td>Karpov, Prof Alexey</td>
<td>218</td>
</tr>
<tr>
<td>Kim, Jeessen</td>
<td>198</td>
</tr>
<tr>
<td>Knill, Kate</td>
<td>136</td>
</tr>
<tr>
<td>Koti, Margarita</td>
<td>178</td>
</tr>
<tr>
<td>Kubin, Gernot</td>
<td>250</td>
</tr>
<tr>
<td>Kurimo, Mikko</td>
<td>241</td>
</tr>
<tr>
<td>Lee, Chi-Chun</td>
<td>254</td>
</tr>
<tr>
<td>Liberman, Mark</td>
<td>163</td>
</tr>
<tr>
<td>Lin, Giguang</td>
<td>199</td>
</tr>
<tr>
<td>L, Mahesh</td>
<td>236</td>
</tr>
<tr>
<td>Madikeri, Srikanth</td>
<td>246</td>
</tr>
<tr>
<td>Magimal Doss, Mathew</td>
<td>117</td>
</tr>
<tr>
<td>Mandel, Michael</td>
<td>247</td>
</tr>
<tr>
<td>Mariani, Joseph</td>
<td>218</td>
</tr>
<tr>
<td>Mehta, Rupesh Kumar</td>
<td>235</td>
</tr>
<tr>
<td>Meng, Helen</td>
<td>145</td>
</tr>
<tr>
<td>Metze, Florian</td>
<td>214</td>
</tr>
<tr>
<td>Meyer, Bernd T</td>
<td>143</td>
</tr>
<tr>
<td>Mitra, Vikramjit</td>
<td>119</td>
</tr>
<tr>
<td>Mixdorff, Hansjörg</td>
<td>180</td>
</tr>
<tr>
<td>Mohan, C. Krishna</td>
<td>127</td>
</tr>
<tr>
<td>Mohan, Krishna Doss</td>
<td>235</td>
</tr>
<tr>
<td>Moniz, Helena</td>
<td>128</td>
</tr>
<tr>
<td>Moogi, Pratibha</td>
<td>195</td>
</tr>
<tr>
<td>Moreno, Pedro</td>
<td>146</td>
</tr>
<tr>
<td>Murthy, Hema</td>
<td>140</td>
</tr>
<tr>
<td>Namboodiri, Vinay</td>
<td>239</td>
</tr>
<tr>
<td>Narayanam, Shrikanth</td>
<td>173</td>
</tr>
<tr>
<td>Nayak, Niranjani</td>
<td>148</td>
</tr>
<tr>
<td>Nguyen, Patrick</td>
<td>195</td>
</tr>
<tr>
<td>Ni Chasaide, Aibhe</td>
<td>121</td>
</tr>
<tr>
<td>Nixon, Jessie</td>
<td>163</td>
</tr>
<tr>
<td>Noeth, Elmar</td>
<td>142</td>
</tr>
<tr>
<td>P, Laximiranaraya</td>
<td>148</td>
</tr>
<tr>
<td>P, Narendra N</td>
<td>112</td>
</tr>
<tr>
<td>Padmanabhan, R</td>
<td>111</td>
</tr>
<tr>
<td>Pandey, P.C.</td>
<td>232</td>
</tr>
<tr>
<td>Patil, Hemant</td>
<td>158</td>
</tr>
<tr>
<td>Payne, Elinor</td>
<td>217</td>
</tr>
<tr>
<td>Prabhavalkar, Rohit</td>
<td>168</td>
</tr>
<tr>
<td>Prasanna, S R Mahadeva</td>
<td>195</td>
</tr>
<tr>
<td>Ramasubramanian, V...</td>
<td>191</td>
</tr>
<tr>
<td>Rao, K. Sreenivasa</td>
<td>185</td>
</tr>
<tr>
<td>Rao, Preeti</td>
<td>228</td>
</tr>
<tr>
<td>Rastrow, Ariya</td>
<td>120</td>
</tr>
<tr>
<td>Rayner, Manny</td>
<td>201</td>
</tr>
<tr>
<td>Riccardi, Giuseppe</td>
<td>246</td>
</tr>
<tr>
<td>Riley, Michael</td>
<td>195</td>
</tr>
<tr>
<td>Russell, Martin</td>
<td>201</td>
</tr>
<tr>
<td>Ryant, Neville</td>
<td>219</td>
</tr>
<tr>
<td>Sainath, Tara</td>
<td>177</td>
</tr>
<tr>
<td>Sankar, Ananth</td>
<td>158</td>
</tr>
<tr>
<td>Sarma, Priyankod</td>
<td>246</td>
</tr>
<tr>
<td>Schütler, Ralf</td>
<td>177</td>
</tr>
<tr>
<td>Schuller, Bjorn</td>
<td>109</td>
</tr>
<tr>
<td>Schultz, Tanja</td>
<td>200</td>
</tr>
<tr>
<td>Schwartz, Rich</td>
<td>233</td>
</tr>
<tr>
<td>Seelamantula, Chandra Sekhar</td>
<td>195</td>
</tr>
<tr>
<td>Sherkh, Sarah Abu</td>
<td>146</td>
</tr>
<tr>
<td>Shinoda, Kiochi</td>
<td>251</td>
</tr>
<tr>
<td>Silva, Thiago Fraga da</td>
<td>107</td>
</tr>
<tr>
<td>Simko, Juraj</td>
<td>180</td>
</tr>
<tr>
<td>Singh, Miltu</td>
<td>120</td>
</tr>
<tr>
<td>Singh, Rita</td>
<td>146</td>
</tr>
<tr>
<td>Sinha, Rohit</td>
<td>158</td>
</tr>
<tr>
<td>Sinha, Uttam</td>
<td>173</td>
</tr>
<tr>
<td>Sitaram, Sunayana</td>
<td>183</td>
</tr>
<tr>
<td>Solorio, Thamar</td>
<td>235</td>
</tr>
<tr>
<td>Sreenivas, T V</td>
<td>166</td>
</tr>
<tr>
<td>Srikant, Radhakrishnan</td>
<td>235</td>
</tr>
<tr>
<td>Srinivasaumurthy, Ajay</td>
<td>153</td>
</tr>
<tr>
<td>Steidl, Stefan</td>
<td>109</td>
</tr>
<tr>
<td>Strik, Helmer</td>
<td>125</td>
</tr>
<tr>
<td>Stylianou, Yannis</td>
<td>201</td>
</tr>
<tr>
<td>T, Balamurari B</td>
<td>199</td>
</tr>
<tr>
<td>T, Veena</td>
<td>127</td>
</tr>
<tr>
<td>Toda, Tomok</td>
<td>124</td>
</tr>
<tr>
<td>Trancoso, Isabel</td>
<td>250</td>
</tr>
<tr>
<td>van Son, Rob</td>
<td>122</td>
</tr>
<tr>
<td>Velmurugan, Rajabu</td>
<td>151</td>
</tr>
<tr>
<td>Vijaikasen, Deepu</td>
<td>246</td>
</tr>
<tr>
<td>Vuppala, Anil</td>
<td>195</td>
</tr>
<tr>
<td>Wang, Weiran</td>
<td>159</td>
</tr>
<tr>
<td>Watanabe, Shinji</td>
<td>237</td>
</tr>
<tr>
<td>Watts, Oliver</td>
<td>105</td>
</tr>
<tr>
<td>Weinstein, Eugene</td>
<td>146</td>
</tr>
<tr>
<td>Wu, Chung-Hsien</td>
<td>175</td>
</tr>
<tr>
<td>Ye, Wang</td>
<td>156</td>
</tr>
<tr>
<td>Yegnarayana, Bayya</td>
<td>104</td>
</tr>
<tr>
<td>Yu, Dong</td>
<td>104</td>
</tr>
<tr>
<td>Zhang, Zixing</td>
<td>121</td>
</tr>
<tr>
<td>Name</td>
<td>Mon-P-2-5-12</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Liu, Liquan</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Liu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Mon</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Tue</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Wed</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Meng</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Mon-P-2-5-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Tue-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Wed-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Mon</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Tue</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Wed</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Shansong</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Shih-Chi</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Songxiang</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-1-3-12</td>
<td>163</td>
</tr>
<tr>
<td>Liu, Thu-P-2-3-12</td>
<td>163</td>
</tr>
</tbody>
</table>
Venue Maps
Daily Schedule

Tutorials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30-09:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00-09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30-10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td></td>
<td></td>
<td></td>
<td>Refreshment Break (First Floor Foyer)</td>
</tr>
<tr>
<td>11:00-11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td></td>
<td></td>
<td></td>
<td>Lunch Break</td>
</tr>
<tr>
<td>13:00-13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-15:00</td>
<td></td>
<td></td>
<td></td>
<td>Tutorial 8: Multimodal Speech and Audio Processing in Audio-Visual Human-Robot Interaction</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
<td></td>
<td>Refreshment Break (First Floor Foyer)</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Day 1 (Monday)

<table>
<thead>
<tr>
<th>Time</th>
<th>Hall 1 / Hall 2 / Hall 3 / MR G.01-G.02 / MR G.03-G.04 / MR G.05-G.06 / MR 1.01-1.02 / Hall 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td>Welcome Refreshment (Hall 5-6)</td>
</tr>
<tr>
<td>08:30-09:00</td>
<td>Open Ceremony</td>
</tr>
<tr>
<td>09:00-11:30</td>
<td>ISCA Medal Talk: Bishnu S. Atal</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>12:30-13:30</td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td>O-1-2: Prosody Modeling and Generation</td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>O-1-3: Speaker Verification I</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td>O-1-1: End-to-End Speech Recognition</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>O-1-4: Spoken Term Detection</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Refreshment Break (Hall 5-6)</td>
</tr>
<tr>
<td>16:30-17:00</td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td></td>
</tr>
<tr>
<td>18:00-18:30</td>
<td></td>
</tr>
<tr>
<td>18:30-19:00</td>
<td>Cultural Programme</td>
</tr>
<tr>
<td>19:00-19:30</td>
<td></td>
</tr>
<tr>
<td>19:30-20:00</td>
<td></td>
</tr>
<tr>
<td>20:00-20:30</td>
<td></td>
</tr>
<tr>
<td>20:30-21:00</td>
<td></td>
</tr>
<tr>
<td>21:00-21:30</td>
<td></td>
</tr>
</tbody>
</table>

P-1-1: Speech Segments and Voice Quality
P-1-2: Speaker State and Trait
P-1-3: Deep Learning for Source Separation and Pitch Tracking
P-1-4: Acoustic Analysis-Synthesis of Speech Disorders
P-2-1: Spoken Dialogue Systems and Conversational Analysis
P-2-2: Spoofing Detection
P-2-3: Speech Analysis and Representation
P-2-4: Sequence Models for ASR
P-2-5: Source Separation and Spatial Analysis
Day 2 (Tuesday)

INTERSPEECH 2018 - September 4, 2018 - Program at a Glance

<table>
<thead>
<tr>
<th>Time</th>
<th>Hall 1</th>
<th>Hall 2</th>
<th>Hall 3</th>
<th>MR G.01-G.02</th>
<th>MR G.03-G.04</th>
<th>MR G.05-G.06</th>
<th>MR 1.01-1.02</th>
<th>Hall 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30-09:00</td>
<td>Plenary</td>
<td>Plenary</td>
<td>Plenary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00-09:30</td>
<td>Plenary</td>
<td>Plenary</td>
<td>Plenary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Refreshment Break (Hall 4-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>0-1-2: Statistical Parametric Speech Synthesis</td>
<td>0-1-3: Emotion Modeling</td>
<td>0-1-1: Acoustic Model Adaptation</td>
<td>0-1-4: Models of Speech Perception</td>
<td>S&T-1-1: Show and Tell 3</td>
<td>SS-1-1: Speech Recognition for Indian Languages</td>
<td>Posters: P-1-1</td>
<td>P-1-2</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>12:00-12:30: Perspective Talk-1: Dilek Hakkani-Tur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Industry Presentation-2: JD</td>
<td>Industry Presentation-3: Uniphore</td>
<td>Industry Presentation-1: Amazon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Perspective Talk-1: Dilek Hakkani-Tur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td>Refreshment Break (Hall 5-6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00-15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1630-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>Perspective Talk-2: Bhuvana Ramabhadr an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00-18:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30-19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00-19:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30-20:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00-20:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30-21:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00-21:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Posters:
- P-1-1: Speaker Verification II
- P-1-2: Novel Approaches to Enhancement
- P-1-3: Syllabification, Rhythm, and Voice Activity Detection
- P-1-4: Selected Topics in Neural Speech Processing
- P-2-1: Speech and Singing Production
- P-2-2: Robust Speech Recognition
- P-2-3: Applications in Education and Learning
- SS-2-2: Integrating Speech Science and Technology for Clinical Applications
- P-2-5: Speaker Characterization and Analysis

ISCA General Assembly

Students' Reception:
- Club House, Jesmin, Ella Hotel, Gachibowli

Reviewers' Reception:
- Kebab Pavilion, Ella Hotel, Gachibowli
Day 3 (Wednesday)

<table>
<thead>
<tr>
<th>Time</th>
<th>Hall 1</th>
<th>Hall 2</th>
<th>Hall 3</th>
<th>MR G.01-G.02</th>
<th>MR G.03-G.06</th>
<th>MR G.05-G.06</th>
<th>MR 1.01-1.02</th>
<th>Hall 4 - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30-09:00</td>
<td>Plenary Talk-2: Hervé Bourlard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00-09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Refreshment Break (Hall 5-6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>O-1-2: Language Identification</td>
<td>O-1-3: Production of Prosody</td>
<td>O-1-1: Novel Neural Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Architectures for Acoustic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Perspective Talk-3: Nima Mesgarani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td>Industry Presentation-5: Xiaomi</td>
<td>Industry Presentation-6: MeitY</td>
<td>Industry Presentation-4:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microsoft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:30</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>O-2-2: Speaker Verification</td>
<td>O-2-3: Speech Perception in</td>
<td>O-2-1: Recurrent Neural Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Using Neural Network Methods I</td>
<td>Adverse Conditions</td>
<td>for ASR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00-15:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>Refreshment Break (Hall 5-6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>O-3-1: Zero-resource Speech</td>
<td>O-3-2: Spatial and Phase Cues</td>
<td>O-3-1: Zero-resource Speech</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recognition</td>
<td>for Source Separation and</td>
<td>Recognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00-18:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30-19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00-19:30</td>
<td>Cultural Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30-20:00</td>
<td>+ Banquet (Hall 5 - 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00-20:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30-21:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00-21:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Day 4 (Thursday)

<table>
<thead>
<tr>
<th>Time</th>
<th>Hall 1</th>
<th>Hall 2</th>
<th>Hall 3</th>
<th>MR G.01-G.02</th>
<th>MR G.03-G.04</th>
<th>MR G.05-G.06</th>
<th>MR 1.01-1.02</th>
<th>Hall 4-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:30-09:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00-09:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30-10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>0-1-2: Expressive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speech Synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:00</td>
<td>0-1-3: Representation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning for Emotion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>0-1-1: Distant ASR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>0-1-4: Articulatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information, Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Inversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>0-2-2: Source</td>
<td>0-2-3: Multimodal</td>
<td>0-2-1: Spoken</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Separation from</td>
<td>Systems</td>
<td>Language Understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monaural Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00-15:30</td>
<td></td>
<td></td>
<td>0-2-4: Coding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30-16:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30-17:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00-17:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-18:00</td>
<td>Closing Ceremony</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plenary Talk-3: Helen Meng

Refreshment Break (Hall 5-6)

Perspective Talk-4: Sriram Ganapathy

Lunch Break

Refreshment Break (Hall 5-6)

- **P-1-1:** Deep Enhancement
- **P-1-2:** Acoustic Scenes and Rare Events
- **P-1-3:** Language Modeling
- **P-1-4:** Speech Pathology, Depression, and Medical Applications
- **P-2-1:** Speaker Verification Using Neural Network Methods II
- **P-2-2:** Emotion Recognition and Analysis
- **P-2-3:** Acoustic Modelling
- **P-2-4:** Speech and Speaker Perception

Registration at Ground Floor

Schedule Highlight:
- **08:30-09:00:** Plenary Talk-3: Helen Meng
- **10:00-10:30:** O-1-2: Expressive Speech Synthesis
- **10:30-11:00:** O-1-3: Representation Learning for Emotion
- **11:00-11:30:** O-1-1: Distant ASR
- **11:30-12:00:** O-1-4: Articulatory Information, Modeling and Inversion
- **12:00-12:30:** Perspective Talk-4: Sriram Ganapathy
- **12:30-13:00:** Industry Presentation-8: Baidu
- **13:00-13:30:** Industry Presentation-9: Nvidia
- **13:30-14:00:** Industry Presentation-7: Samsung
- **14:00-14:30:** Industry Presentation-6: IBM
- **14:30-15:00:** 0-2-2: Source Separation from Monaural Input
- **15:00-15:30:** 0-2-3: Multimodal Systems
- **15:30-16:00:** 0-2-1: Spoken Language Understanding
- **16:00-16:30:** 0-2-4: Coding
- **16:30-17:00:** Lunch Break
- **17:00-17:30:** Closing Ceremony
- **17:30-18:00:** Refreshment Break (Hall 5-6)
<table>
<thead>
<tr>
<th>Time</th>
<th>Sep. 2, 2018</th>
<th>Sep. 3, 2018</th>
<th>Sep. 4, 2018</th>
<th>Sep. 5, 2018</th>
<th>Sep. 6, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-08:30</td>
<td>Registration</td>
<td>Registration</td>
<td>Registration</td>
<td>Registration</td>
<td>Registration</td>
</tr>
<tr>
<td>08:30-09:00</td>
<td></td>
<td></td>
<td>Plenary Talk-1:</td>
<td>Plenary Talk-2:</td>
<td>Plenary Talk-3:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jacqueline Vaissière</td>
<td>Hervé Bourlard</td>
<td>Helen Meng</td>
</tr>
<tr>
<td>09:00-09:30</td>
<td>Forenoon Tutorial</td>
<td>Welcome</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>09:30-10:00</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>ISCA Medal</td>
<td>Opening Ceremony</td>
<td>Technical Session-3</td>
<td>Technical Session-5</td>
<td>Technical Session-8</td>
</tr>
<tr>
<td></td>
<td>Talk: Bishnu S. Atal</td>
<td></td>
<td>(36 Orals,</td>
<td>(33 Orals,</td>
<td>(38 Orals,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51 Posters and</td>
<td>53 Posters and</td>
<td>45 Posters and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 Show-and-Tell)</td>
<td>5 Show-and-Tell)</td>
<td>4 Show-and-Tell)</td>
</tr>
<tr>
<td>10:30-11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:30</td>
<td>Forenoon Tutorial</td>
<td>Perspective Talk-1:</td>
<td>Perspective Talk-3:</td>
<td>Perspective Talk-4:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dilek Hakkani-Tur</td>
<td>Nima Mesgarani</td>
<td>Sriman Ganapathy</td>
<td></td>
</tr>
<tr>
<td>11:30-12:00</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>12:00-12:30</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-13:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00-13:30</td>
<td>Afternoon Tutorial</td>
<td>Technical Session-1</td>
<td>Technical Session-4</td>
<td>Technical Session-6</td>
<td>Technical Session-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(33 Orals, 42 Posters</td>
<td>(36 Orals, 54 Posters</td>
<td>(36 Orals, 55 Posters</td>
<td>(24 Orals and 48 Posters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and 5 Show-and-Tell)</td>
<td>and 5 Show-and-Tell)</td>
<td>and 5 Show-and-Tell)</td>
<td></td>
</tr>
<tr>
<td>13:30-14:00</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>14:00-14:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30-15:00</td>
<td>Afternoon Tutorial</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>15:00-15:30</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>15:30-16:00</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>16:00-16:30</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>16:30-17:00</td>
<td>Afternoon Tutorial</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>17:00-17:30</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>17:30-18:00</td>
<td>Cultural Programme</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>18:00-18:30</td>
<td>Welcome Reception</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>18:30-19:00</td>
<td>Cultural Programme</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>19:00-19:30</td>
<td>Students’ / Reviewers’</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>19:30-20:00</td>
<td>Cultural Programme +</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>20:00-20:30</td>
<td>Banquet</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
<td>Refreshment Break</td>
</tr>
<tr>
<td>20:30-21:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00-21:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>