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Abstract
This work presents a scalable solution to continuous visual
speech recognition. To achieve this, we constructed the largest
existing visual speech recognition dataset, consisting of pairs
of transcriptions and video clips of faces speaking (3,886 hours
of video). In tandem, we designed and trained an integrated
lipreading system, consisting of a video processing pipeline
that maps raw video to stable videos of lips and sequences of
phonemes, a scalable deep neural network that maps the lip
videos to sequences of phoneme distributions, and a phoneme-
to-word speech decoder that outputs sequences of words. The
proposed system achieves a word error rate (WER) of 40.9%
as measured on a held-out set. In comparison, professional
lipreaders achieve either 86.4% or 92.9% WER on the same
dataset when having access to additional types of contextual
information. Our approach significantly improves on previ-
ous lipreading approaches, including variants of LipNet and of
Watch, Attend, and Spell (WAS), which are only capable of
89.8% and 76.8% WER respectively.
Index Terms: visual speech recognition, lipreading.

1. Introduction and motivation
Visual speech recognition could positively impact the lives of
hundreds of thousands of patients with speech impairments
worldwide. For example, in the U.S. alone 103,925 tra-
cheostomies were performed in 2014 1, a procedure that can
result in a difficulty to speak (disphonia) or an inability to pro-
duce voiced sound (aphonia). Assisting people with speech im-
pairments is a key motivating factor behind this work. Deep
learning techniques have allowed for significant advances in
lipreading over the last few years [1–6]. However, these ap-
proaches have often been limited to narrow vocabularies, and
relatively small datasets [1, 4, 6]. Often the approaches focus
on single-word classification [7–20] and do not attack the con-
tinuous recognition setting. In this paper, we contribute a novel
method for large-vocabulary continuous visual speech recog-
nition and we report substantial reductions in word error rate
(WER) over the state-of-the-art approaches.

We propose a novel lipreading system (Figure 1), which
transforms raw video into a word sequence. The first compo-
nent of this system is a data processing pipeline used to create
the Large-Scale Visual Speech Recognition (LSVSR) dataset
used in this work, distilled from YouTube videos and consist-
ing of transcriptions, and their phoneme sequences, paired with
video clips of faces speaking (3,886 hours). The creation of the
dataset alone required a non-trivial combination of computer vi-
sion and machine learning techniques. At a high level this pro-

∗These authors contributed equally to this work.
1 Health Care Utilization Project Network, “Hospital inpatient na-

tional statistics”, http://hcupnet.ahrq.gov, 2014.

cess takes as input raw video and annotated audio segments, fil-
ters and preprocesses them, and produces a collection of aligned
phoneme and lip frame sequences. In contrast to previous work,
our pipeline uses landmark smoothing, a blurriness filter, an im-
proved speaking classifier network and outputs phonemes.

Next, this work introduces a new neural network architec-
ture for lipreading, which we call Vision to Phoneme (V2P),
trained to produce a sequence of phoneme distributions given
a sequence of video frames. In light of the large scale of our
dataset, the network design has been highly tuned to maxi-
mize predictive performance subject to the strong computa-
tional and memory limits of modern GPUs in a distributed set-
ting, where we found that techniques such as group normaliza-
tion [21] were key. Our approach is the first to combine a deep
learning phoneme-based visual speech recognition model with
phoneme-to-word decoding techniques.

Finally, this entire lipreading system results in an unprece-
dented WER of 40.9% as measured on our dataset’s held-out
set. In comparison, professional lipreaders achieve 86.4% or
92.9% WER on this dataset, depending on the amount of con-
text given. Similarly, previous state-of-the-art approaches such
as variants of LipNet [1] and of Watch, Attend, and Spell (WAS)
[2] demonstrated WERs of only 89.8% and 76.8% respectively.

2. Related work
While there is a large body of literature on automated lipread-
ing, much of the early work focused on single-word classifi-
cation and relied on substantial prior knowledge [22]. For ex-
ample, [23] predicted continuous sequences of tri-visemes us-
ing a traditional HMM model with visual features extracted
from a codebook of clustered mouth region images. The pre-
dicted visemes were used to distinguish sentences from a set
of 150 possible sentences. Furthermore, [24] predict words
and sequences digits using HMMs, [25] introduce multi-stream
HMMs, and [26] improve the performance by using visual fea-
tures in addition to the lip contours. Later, [27] used coupled
HMMs to jointly model audio and visual streams to predict se-
quences of digits. [28] used HMMs for sentence-level speech
recognition in noisy environments of the IBM ViaVoice dataset
by fusing handcrafted visual and audio features. For further de-
tails, we refer the reader to the survey material of [22, 29, 30].

Until recently generalization across speakers and extrac-
tion of motion features have been considered open problems
[22, 7, 1]. Advances in deep learning have made it possible to
overcome these limitations, but most works still focus on single-
word classification [7–20]. LipNet [1] was the first end-to-end
model to tackle sentence-level lipreading by predicting charac-
ter sequences. The model combined spatiotemporal convolu-
tions with gated recurrent units (GRUs) and was trained using
the connectionist temporal classification (CTC) [31] loss func-
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Figure 1: The full visual speech recognition system introduced consists of a data processing pipeline that generates lip and phoneme
clips from YouTube videos, and a phoneme recognition model combined with a phoneme-to-word decoding module used for inference.

tion. LipNet was evaluated on the GRID corpus [32], a limited
grammar and vocabulary dataset, where it achieved 4.8% and
11.4% WER in overlapping and unseen speaker evaluations re-
spectively. By comparison, the performance of competent hu-
man lipreaders was 47.7%. LipNet is the closest model to our
neural network. Similar architectures were subsequently intro-
duced by [4–6]. [2] were the first to use sequence-to-sequence
models with attention to tackle audio-visual speech recognition
with a real-world dataset. The model “Watch, Listen, Attend
and Spell” (WLAS), consists of a visual (WAS) and an au-
dio (LAS) module. To evaluate WLAS, the authors created
LRS, the largest dataset at that point with 246 hours of clips
from BBC news broadcasts. The authors introduced an effi-
cient video processing pipeline, and reported 50.2%WER, with
the performance of professional lipreaders being 87.6% WER.
[3] extended the work to multi-view sentence-level lipreading,
but both [2, 3] pre-learn features with the audio-video synchro-
nization classifier of [33], and fix these features to compensate
for the large memory requirements of their attention networks.
Contemporaneously with our work, [34] presented LRS3-TED,
a dataset generated from English language talks available on-
line. Using pre-learned features [30] presented sequence-to-
sequence and CTC, character-level self-attention transformer
models achieving a WER of 57.9% and 61.8% respectively.

Table 1: Continuous visual speech recognition datasets.

Dataset Utter. Hours Vocab

GRID 33,000 28 51
IBM ViaVoice 17,111 35 10,400
MV-LRS 74,564 ∼155 14,960
LRS 118,116 ∼246 17,428
LRS3-TED ∼165,000 ∼475 ∼57,000

LSVSR 2,934,899 3,886 127,055

In contrast to these, V2P predicts a sequence of phoneme
distributions which are then fed into a decoder to produce a se-
quence of words. This flexible design enables us to easily ac-
commodate very large vocabularies, that can be extended with-
out retraining. Unlike previous work [2, 3, 30], V2P is memory
and computationally efficient removing the need for pre-trained
features. Finally, our dataset, LSVSR, is an order of magni-
tude larger than existing sentence-level visual speech recogni-
tion datasets ([2, 3, 28]; Table 1), and the content is more diverse
and varied as it consists of general YouTube videos rather than
solely news broadcasts, conference talks, or recording studios.

3. Dataset collection
Our dataset is extracted from public YouTube videos using
large-scale parallel processing. Our pipeline builds on [35]
which extracts audio clips paired with the relevant transcripts,
yielding 140,000 hours of segments. We fetch the corre-
sponding video, apply various filtering stages, after which
2% of the clips remain. After processing we obtain pairs of
video and phoneme sequences, where videos are represented as
identically-sized frames (128×128) stacked in the time dimen-
sion. Here, we describe the components of the pipeline.

Length filter, language filter. The duration of each clip
is limited to 1-12 seconds, and non-English transcripts are fil-
tered out using a language classifier. For evaluation, we further
remove the utterances containing < 6 words. Sequences of X-
SAMPA phonemes (40 plus silence) are obtained converting the
transcripts to phonemes and then using forced alignment [35].

Raw videos, shot boundary detection, face detection.
Constant spatial padding in each video segment is eliminated
before a standard thresholding color histogram classifier identi-
fies and removes segments containing shot boundaries. FaceNet
[36] is used to detect and track face landmark locations.

Clip quality filter. We further remove blurry clips, clips
including faces with an eye-to-eye width of less than 80 pixels,
and clips with frame rates lower than 23fps. Frame rates above
30fps are downsampled. We allow a range of input frame rates
as the effect is similar to different speaking paces.

Face landmark smoothing. The segments are processed
by a face landmark tracker and the resulting landmark positions
are smoothed using a temporal Gaussian kernel. Intuitively, this
simplifies learning filters for the 3D convolution layers by re-
ducing spatiotemporal noise. Empirically, our preliminary stud-
ies showed smoothing was crucial for achieving optimal perfor-
mance. Next, following previous literature [2], we keep seg-
ments where the face yaw and pitch remain within ±30°.

View canonicalization. We obtain canonical faces using
a reference face model, apply an affine transformation on the
landmarks, and isolate the area around the lips.

Speaking filter. Using the smoothed landmarks, minor lip
movements and non-speaking faces are discarded by threshold-
ing the standard deviation of the upper-lower lip distance, a
computationally cheap filter with high recall.

Speaking classifier. As a final step, we build V2P-Sync,
a neural network architecture to verify the alignment of audio
and video inspired by [33, 37]. However, V2P-Sync takes ad-
vantage of face landmark smoothing and processes longer time
segments. Furthermore, spatiotemporal convolutions instead of
spatial-only convolutions [33], and view canonicalization and
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higher resolution inputs (128×128 vs 100×60) as compared
to [37], prove useful. V2P-Sync takes a log mel-spectrogram
and 9 grayscale video frames and separately produces an em-
bedding for each, and is trained with a max-margin loss [33],
resulting in a per-sample test accuracy of 81.2%. By applying
V2P-Sync over 100 segments using a sliding window and ag-
gregating scores, our per-video effective accuracy is increased.

4. V2P architecture
This work introduces the V2P model, which consists of a
3d convolutional module for extracting spatiotemporal features
from a given video clip, and a temporal module which aggre-
gates them over time and outputs a sequence of phoneme distri-
butions. Given input videos and target phoneme sequences the
model is trained using the CTC loss. Finally, at test-time, a de-
coder based on finite state transducers (FSTs) is used to produce
a word sequence given a sequence of phoneme distributions.

Neural network architecture. To explicitly address mo-
tion feature extraction, we designed a vision module based
on VGG and made it volumetric, which proved crucial in our
preliminary empirical evaluation and has been established in
previous literature [1]. One of the main challenges in train-
ing a large vision module is finding an effective balance be-
tween performance and the imposed constraints of GPU mem-
ory. Our vision module consists of 5 convolutional layers with
[64, 128, 256, 512, 512] filters. A 2×2 max pooling was ap-
plied on the spatial dimensions of all layers but the fourth. To
further reduce the memory footprint we limit the number of con-
volutional filters in these layers, and since the frame is centered
around the lips, we omit spatial padding. As we can only fit 2
batch elements per GPU, we distribute training across 64 work-
ers, for a total batch size of 128. To alleviate the communica-
tion cost of between-worker batch normalization statistics col-
lection, and avoid the noisy alternative of within-worker statis-
tics, we instead use group normalization [21].

The outputs of the convolutional stack are then fed into a
temporal module which performs longer-scale aggregation of
the extracted features over time. In constructing this compo-
nent we evaluated a number of recurrent neural network and
dilated convolutional architectures, as shown in in Section 5.
The best architecture presented performs temporal aggregation
using a stack of 3 bidirectional LSTMs with a hidden state
of 768, interleaved with group normalization. The output of
these LSTM layers is then fed through a final two-layer MLP
(1568→ 768→ 42) to produce a sequence of conditionally in-
dependent phoneme distributions in addition to the CTC blank
symbol, upon which we apply the CTC loss.

This model architecture is similar to LipNet [1], but differs
in some crucial ways. In comparison to our work, LipNet used
GRU and dropout, both of which we found to perform poorly in
preliminary experiments. We instead use LSTM, group normal-
ization, and a larger network with distributed training. Finally,
while both models use CTC for training, crucially, V2P predicts
phonemes rather than characters.

Connectionist temporal classification (CTC). CTC is a
loss function for the parameterization of distributions over se-
quences of label tokens, without requiring alignments of the in-
put sequence to the label tokens [31]. CTC models the proba-
bility of a label sequence by marginalizing over alignments of
the label sequence to the output of the RNN, inserting a special
blank symbol and collapsing consecutive identical labels.

Uncertainty in speech recognition arises mainly from two
sources: uncertainty in perceived audio or visual input, and un-

certainty in the words representing the sounds. Much previous
work uses CTC to model characters given audio or visual input
directly [1, 38], but this is problematic and exacerbated by the
higher uncertainty for what is being spoken in lipreading. Thus,
we take the conventional approach of using phonemes instead.
Uncertainty in perception of the input is further increased for
visual speech recognition since the information required to dis-
ambiguate some phonemes is not visible (e.g. the position of
the tongue). The resulting visually similar phonemes are called
visemes. Viseme groupings may differ per speaker [39] how-
ever, making it difficult to incorporate this knowledge in the
design. Using phonemes allows the model to directly encode
this uncertainty in its output, rather than implicitly inside the
model. Word uncertainty is handled separately by the decoder.

Alternatively to using phonemes with CTC, some previ-
ous work solves this problem using RNN transducers [40] or
sequence-to-sequence with attention [2], which jointly model
all sources of uncertainty. However, the results of [41] suggest
these models achieve similar performance to CTC; thus their
advantage mainly lies in their size.

Decoding. As described earlier, our model produces a se-
quence of phoneme distribution followed by standard decoding
using finite state transducers (FSTs) to arrive at word sequences
[42, 43]. In our work we make use of a combination of three in-
dividual weighted FSTs: a CTC postprocessing FST removes
duplicate symbols and CTC blanks, a lexicon FST maps in-
put phonemes to output words, then a 5-gram language model
(Katz backoff, 50 million n-grams, vocabulary size of 1 mil-
lion) reweighs the resulting word sequences. Beam search is
then performed on the CTC output distribution using this FST.

5. Evaluation
We examine the performance of V2P trained on LSVSR with
hyperparameters tuned on a validation set. We evaluate it on a
held-out test set roughly 37 minutes long, containing approxi-
mately 63,000 video frames and 7100 words. We also describe
and compare against a number of alternative methods from pre-
vious work, and show that V2P gives significant performance
improvements. Except for V2P-NoLM, all models used the
same 5-gram word-level language model during decoding. To
construct the validation and test sets we removed blurry videos
by thresholding the variance of the Laplacian of each frame; we
kept them in the training set as a form of data augmentation.

Professional lipreaders. We consulted a professional
lipreading company to measure the difficulty of LSVSR and
hence the impact V2P could have. We regenerated clips from
a subset of our test set and cropped the whole head instead of
the mouth region. Each video could be replayed 10× at half or
normal speed. Since the inherent ambiguity in lipreading neces-
sitates relying on context, we conducted experiments both with
and without context. For the former, we used clips with tran-
scripts that had at least 6 words. For the latter, we used clips
with at least 12 words, and presented to the lipreader the first 6
words, the title, and the category of the video, then asked them
to transcribe the rest of the clip.

Audio-Ph. For an approximate bound on performance, we
train a speech recognition model on the audio of the utterances.
The architecture is based on Deep Speech 2 [38], but trained to
predict phonemes rather than characters.

LipNet-Ch. We replicate the character-level CTC architec-
ture of LipNet [1] and we use the FST decoding pipeline with a
character-level language model as described in [42].

LipNet-Ph. We train LipNet to predict phonemes and use

4137



Table 2: Phoneme and word error rates on LSVSR test set.

Method Param. PER WER

Prof. w/o context − − 92.9± 0.9
Prof. w/ context − − 86.4± 1.4
Audio-Ph 58M 12.5± 0.5 18.3± 0.9

LipNet-Ch 7M − 93.0± 0.6
LipNet-Ph 7M 65.8± 0.4 89.8± 0.5
Seq2seq-Ch 15M − 76.8± 0.8
LipNet-Large-Ph 40M 53.0± 0.5 72.7± 1.0

V2P-FullyConv 29M 41.3± 0.6 51.6± 1.2
V2P-NoLM 49M 33.6± 0.6 53.6± 1.0
V2P 49M 33.6± 0.6 40.9± 1.2

the same FST-based decoding pipeline and language model.
LipNet-Large-Ph. Recall from the earlier discussion that

LipNet uses dropout, whereas V2P makes heavy use of group
normalization, crucial for our small batches per worker. For a
fair size-wise comparison, we introduce a replica of V2P, that
uses GRUs, dropout, and no normalization.

Seq2seq-Ch. We reimplemented the previous state-of-the-
art sequence-to-sequence character-level architecture, WAS [2].
Although their implementation was followed as closely as pos-
sible, training end-to-end quickly exceeded the memory limi-
tations of modern GPUs. To work around this, Chung et al.
[2] kept the convolutional weights fixed using a pretrained net-
work from [33], which we were unable to use as their network
inputs were processed differently. Instead, we replace the 2D
convolutional network with the improved lightweight 3D visual
processing network of V2P. As shown by [1, 20, 37], spatiotem-
poral aggregation of features benefits performance.

V2P-FullyConv. Identical to V2P, except the LSTMs are
replaced with 6 dilated temporal convolution layers with a ker-
nel size of 3 and dilation rates of [1,1,2,4,8,16].

V2P-NoLM. Identical to V2P, except during decoding the
language model is replaced by a dictionary of 100k words which
are weighted by their smoothed frequency in the training data.

5.1. Results

Table 2 shows the phoneme and word error rates for all of the
models, and the number of parameters of each. The error rates
are computed as the sum of the edit distances of the predicted
and ground-truth sequence pairs divided by total ground-truth
length. Bootstrap sampling is used to compute the standard er-
ror associated with each rate. These results show that the vari-
ant of LipNet tested in this work is approximately able to per-
form on-par with professional lipreaders, when additional con-
text was provided, with WER of 86.4% and 89.8% respectively.
Similarly, we see that the WAS variant provides a substantial re-
duction to this error, resulting in a WER of 76.8%. However,
the full V2P method presented in this work is able to further
halve the WER, obtaining 40.9% at testing time. Interestingly,
we see that although the bi-directional LSTM provides the best
performance, using a fully-convolutional network still results in
performance that is significantly better than all previous meth-
ods. Finally, although we see that the full V2P model performs
best, replacing the 5-gram language model with a unigram one
results only in a drop of approximately 13 WER to 53.6%.

By predicting phonemes directly, we also sidestep the need
to design phoneme-to-viseme mappings [39]. The inherent un-
certainty is instead modelled directly in the predictive distribu-
tion. Finally, by differentiating the likelihood of the phoneme

sequence with respect to the inputs using guided backpropaga-
tion we compute the saliency maps shown in Figure 2.
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Figure 2: Saliency map for “kind of” and the top-3 predictions
of each frame and the entropy of the phoneme predictive distri-
bution. The CTC blank character is represented by ‘ ’.

To demonstrate the generalization power of V2P, we evalu-
ate on LRS3-TED [34] and compare it to the TM-seq2seq model
of [30]. Unlike LSVSR, LRS3-TED includes faces at angles be-
tween±90° instead of±30°, and clips may be shorter than one
second. Thus, we conducted two experiments. First, we evalu-
ate performance on a subset of the LRS3-TED test set filtered
according to the same protocol used to construct LSVSR, by
removing clips with larger face angles and shorter lenght, and
second, on the full unfiltered test set. Despite the fact that we do
not train or fine-tune V2P on LRS3-TED, V2P achieves WERs
of 47.0 ± 1.6 and 55.1 ± 0.9 respectively, outperforming TM-
seq2seq’s 57.9. V2P is able to generalize well, achieving state-
of-the-art performance on datasets with different conditions on
which it was not trained. Due to the difficulty of obtaining a
continually front-on view of a face at a sufficiently high resolu-
tion without an individual’s consent, the model is not suited for
lipreading in scenarios such as surveillance.

6. Conclusions
We presented a novel, large-scale visual speech recognition sys-
tem. Our system consists of a data processing pipeline used to
construct a vast dataset—an order of magnitude greater than all
previous approaches both in terms of vocabulary and the sheer
number of example sequences. We described a scalable model
for producing phoneme and word sequences from processed
video clips that is capable of nearly halving the error rate of the
previous state-of-the-art methods on this dataset, and achiev-
ing a new state-of-the-art in a dataset presented contemporane-
ously with this work. The combination of methods in this work
represents a significant improvement in lipreading performance,
a technology which can enhance automatic speech recognition
systems, and which has enormous potential to improve the lives
of speech-impaired patients worldwide.
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