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Abstract
In this work, we present an unsupervised long short-term mem-
ory (LSTM) layer normalization technique that we call adapta-
tion by speaker aware offsets (ASAO). These offsets are learned
using an auxiliary network attached to the main senone classi-
fier. The auxiliary network takes main network LSTM activa-
tions as input and tries to reconstruct speaker, (speaker,phone)
and (speaker,senone)-level averages of the activations by mini-
mizing the mean-squared error. Once the auxiliary network is
jointly trained with the main network, during test time we do
not need additional information for the test data as the network
will generate the offset itself. Unlike many speaker adaptation
studies which only adapt fully connected layers, our method is
applicable to LSTM layers in addition to fully-connected lay-
ers. In our experiments, we investigate the effect of ASAO
of LSTM layers at different depths. We also show its perfor-
mance when the inputs are already speaker adapted by feature
space maximum likelihood linear regression (fMLLR). In ad-
dition, we compare ASAO with a speaker adversarial training
framework. ASAO achieves higher senone classification accu-
racy and lower word error rate (WER) than both the unadapted
models and the adversarial model on the HUB4 dataset, with an
absolute WER reduction of up to 2%.
Index Terms: speaker adaptation, speech recognition, neural
networks

1. Introduction
Although deep neural networks (DNNs) are successfully used
in automatic speech recognition, their performance is still af-
fected by the variability inherent in speech. One of the main
sources of variability is the mismatch between speakers. Tech-
niques proposed to alleviate this problem include using speaker-
informed input features to the DNNs [1, 2], adapting the model
structure [3, 4] and using auxiliary adaptation models or fea-
tures [5, 6, 7, 8, 9, 10, 11, 12]. From a different perspective,
adaptation methods can also be classified as supervised and un-
supervised based on whether they use additional text or labels
for the test data in addition to audio.

In input feature adaptation systems, features are normal-
ized using a transform such as feature-space maximum likeli-
hood linear regression (fMLLR) [13, 1] or the features are aug-
mented with speaker specific features such as i-vectors [14, 2].
Other methods modify the speaker independent DNN model by
introducing speaker adaptive layers [15]. For example, [16] in-
vestigates the use of learning an affine transform after LSTM
activations at different layers of the network. Alternatively, the
network structure is kept the same but the weights are adapted
based on speakers [3]. Recently, auxiliary feature or auxil-
iary network based adaptation methods have become more pop-
ular as these methods usually require little or no adaptation
data [10]. Such approaches extract speaker invariant intermedi-

ate features by adversarial training [8, 9]. In these systems, the
auxiliary network performs speaker classification whereas the
main network performs phone/senone classification. Auxiliary
feature based systems are usually based on sequence summary
vectors [17] and they are often applied only to the fully con-
nected layers. However, recently some methods are extended
for the adaptation of the LSTM layers. For example, in [10],
the sequence summary idea is applied in an encoder-decoder
based end-to-end framework.

This work is an extension of our previous work [12] on
auxiliary network based speaker adaptation. The proposed sys-
tem is based on an auxiliary network and it is an unsupervised
speaker adaptation method for hidden layers of the neural net-
work based acoustic models. The auxiliary network takes the
hidden layer activation from the unadapted main senone classi-
fier and tries to reconstruct speaker level mean of the activations
at the output. Similar to [18, 19] where it has been shown that
mean normalization can improve classification performance, in
this paper, we perform normalization at the speaker level. Un-
like training, we do not have access to the speaker labels and
hidden layer activations to compute the means during testing.
Therefore, we propose to use the auxiliary network to predict
these means which do not require additional information from
the test data other than the acoustic input. Instead of predicting
the means directly, we aim at predicting the shift of the aver-
age activation from the global average. This allows us to extract
the speaker specific component within the activation explicitly
using the auxiliary network.

In the joint training of the main and auxiliary networks, bot-
tleneck features from the auxiliary network are projected back
into the hidden activation space and these vectors are used as
offsets for the main network activations. Since the auxiliary
network targets are speaker specific, we hypothesize that the
auxiliary network will explicitly learn the speaker specific part
of the activations. We therefore refer to our method as “adapta-
tion with speaker aware offsets” (ASAO).

Compared to [12], here we demonstrate the flexibility of
ASAO approach by showing that it is applicable to LSTM lay-
ers in addition to fully connected layers. The main difference is
that we have whole utterances as input to the main network and
LSTM layers produce a sequence of activations to be adapted.
These allow us to make use of better context modeling capabil-
ities of LSTM in the main network. We also perform our exper-
iments on a different dataset and provide comparisons with an
adversarial training approach. We show that we can get up to
2% absolute reduction in word error rate (WER).

Similar to our approach, Miao et al. [6] also use an auxil-
iary network but they apply the offset only to the input features
rather than the hidden layers of the main network. And they
use i-vectors as input to the auxiliary network rather than hid-
den layer activations. In [9], an adversarial multitask objective
is used to extract speaker-invariant deep features. Here, we also
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Figure 1: Flowchart of the ASAO system with its auxiliary net-
work

use a multitask objective but our aim is to learn speaker de-
pendent information explicitly through our adaptation network
which is then used as an offset to get speaker invariant features.
Veselỳ et al. [17] use summary vectors computed over the utter-
ance as additional input features to their main network. In our
study, we use speaker or phonetic level averages to summarize
speaker and phonetic content but we use them as training targets
for our auxiliary network instead of using them as input.

In Section 2 of the paper, we describe the method to extract
speaker-aware offsets. We present the experimental setup and
the results in Section 3. In Section 3.3, we compare our method
to a previous work and we conclude the paper in Section 4.

2. Adaptation with Speaker-Aware Offset
The proposed ASAO system consists of two major components.
The main network performs senone classification and the aux-
iliary network tries to reconstruct speaker and phonetic level
averages of the hidden layer activations of the main network
which is to be adapted. As shown in Fig. 1, there is also another
component T which acts as a bridge between the auxiliary and
the main networks by transforming the auxiliary network output
and generating the offset for the main network. The main and
auxiliary networks are described in detail below.

2.1. Main Network

For a duration N , let the input speech features to the network
be denoted by X = {x1, x2, . . . , xN} and their correspond-
ing senone labels by Y = {y1, y2, . . . , yN}. A main senone
classifier is trained first with inputs X and outputs Y . We then
choose an adaptation layer l and divide the network into lower
(ML) and upper (MU ) parts. The main network outputs can
hence be written as MU (ML(xn)). The hidden layer activa-
tions hl at layer l are then used as input to the auxiliary network
which tries to learn the speaker dependent component of hl. In
this study, the main network consists of several LSTM layers
followed by fully-connected layers. However, this does not re-
strict the choice of l because given an utterance of length N ,
we can compute the LSTM output for each time step n which is
a vector that can be adapted as in adapting the fully connected
layers.

2.2. Auxiliary Network

The aim of the auxiliary network is to extract speaker dependent
information of the hidden layer activations hl. Let the hidden
layer activation at layer l for input at time n be denoted by hl

n.
Also let sn, pn and qn denote the speaker, phone and senone

label of input xn, respectively. Average activations are then
computed as in Eqs. 1-4. In these equations, 1[.] is the indica-
tor function that evaluates to 1 when its argument holds. The
averages are computed over time instances which have the par-
ticular label or label pair. Similar to µs, we also define µp and
µq .

µg =
1

N

∑
n

hl
n (1)

µs =
1∑

n 1[sn = s]

∑
n

1[sn = s]hl
n (2)

µsp =
1∑

n 1[sn = s, pn = p]

∑
n

1[sn = s, pn = p]hl
n (3)

µsq =
1∑

n 1[sn = s, qn = q]

∑
n

1[sn = s, qn = q]hl
n (4)

In order to extract speaker specific component of h, we use
the deviation of the speaker dependent mean activations from
the global averages. Using the above definitions, the three lin-
ear output layers of the auxiliary network can be written as,
(µs − µg) that captures the deviation in the speaker mean from
the global mean, (µsp − µp) that captures speaker and phone
level variation, and (µsq−µq) that captures speaker and senone
level variation. These three output layers share the auxiliary net-
work parameters at the lower layers and differ only in their final
layers. By parameter sharing and joint training of these outputs,
we extract speaker dependent information from the network.

The hidden speaker dependent information for the n-th
frame, zn is computed from the last common hidden layer in
the auxiliary network. Once zn is computed, an affine transfor-
mation T is applied to the speaker dependent features zn. We
call these transformed features as speaker aware offsets and sub-
tract them from the hidden layer activations of the main network
as in Eq. (5). Thus, we aim at obtaining a speaker independent
component of hl such that better senone classification accuracy
can be achieved in this speaker invariant space.

ĥl
n = hl

n − T(zn), n ∈ {1, 2, . . . , N} (5)

Once the main network is augmented with this auxiliary
network, the outputs of the main network can be written as
MU (ĥ

l
n).

2.3. Training Procedure

Initially, the main senone classifier is trained using the cross
entropy objective. After choosing a layer l, we compute the av-
erage activations for different units as shown in Eqs. 1-4. These
serve as training targets for the auxiliary network. Finally, the
auxiliary network and the transform T are attached to the main
network and joint training is performed. The overall training
objective L is a linear combination of the cross entropy loss
from the main network and the total mean squared error (MSE)
from the three output layers of the auxiliary network.

L = Lxent(ŷ, y) + LMSE(s) + LMSE(sp) + LMSE(sq) (6)

In the above equation, ŷ and y denote the estimated and true
senone sequences. The MSE terms can be described using the
three auxiliary network outputs (ms,msp,msq) at time n. For
example, for (speaker, phone)-level output, we write

LMSE(sp) =
1

N

∑
n

||msp,n − (µsp,n − µp,n)||2. (7)
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Table 1: Training and heldout data settings

# Train
Spk Utt/Spk Train

Dur.
# Heldout

Spk
Heldout

Dur.
150 40 21.5hr 1241 6.7 hr
600 10 21.9hr 1336 6.7 hr

3. Experiments
We performed our experiments on the Hub4 Broadcast News
dataset [20, 21]. As the number of speakers in this dataset is
large, it is likely that using all the speakers in training will lead
to a speaker independent model that conceals the effect of adap-
tation. Therefore, we performed training under two conditions
shown in Table 1. In the experiments, the total number of ut-
terances was kept the same while the number of speakers and
the number of utterances per speaker were adjusted. In all set-
tings, training and heldout sets were disjoint in terms of speak-
ers. We did not perform larger experiments with higher num-
ber of speakers for two reasons: 1) Having about 2000 speak-
ers would inherently lead to a speaker independent model that
would not necessarily require adaptation. 2) In our framework,
since we computed all (speaker,senone)-level means to get the
training targets for the auxiliary network, it would become com-
putationally expensive to compute all the averages.

3.1. Architectures

The input features in our experiments are 40-dimensional log-
mel features along with their deltas and delta-deltas, resulting
in 120-dimensional input. The main network consists of three
LSTM layers followed by two fully-connected layers with 256
and 512 nodes. LSTM layers are unidirectional and contain 128
cells. The number of output units is 2000 corresponding to each
senone. The auxiliary network has three fully connected layers
with 512, 256 and 128 units. Therefore, z has a dimension of
128. When we adapt the LSTM layers, each of the three output
layers have a dimension of 128 as the LSTMs have 128 cells.
All fully-connected layers except the one generating z have rec-
tified linear unit nonlinearity.

The networks are trained using PyTorch [22] with Adam
optimization using learning rate of 0.001. In the first stage,
the main senone classifier is randomly initialized by Xavier
method [23] and trained for 20 epochs. Then, the hidden fea-
tures h and their speaker, (speaker, phone) and (speaker,senone)
level averages are computed. In joint network training, the main
network is initialized from the senone classifier and the aux-
iliary network targets are taken to be the average activations.
Joint training is performed for 15 epochs. Feature extraction,
HMM training and decoding are performed using the Attila
toolkit [24].

In joint training, the auxiliary network is utilized in two dif-
ferent ways (Fig. 1): The T matrix shares its weights with the
speaker-level output layer of the auxiliary network, and there-
fore auxiliary network output is directly used as the offset or T
is kept to be a general affine transformation of the last hidden
layer of the auxiliary network z. In both cases, the offset will
carry speaker dependent information.

3.2. Results

Fig. 2 shows the frame-level senone classification accuracy
on the heldout data for the networks trained with logmel fea-
tures. We compare the main network trained for 20 epochs
(epoch20), with the two adaptation methods (T is Tied or
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Figure 2: Senone classification accuracy of the main network on
the heldout data before and after adaptation for logmel inputs

Free) for the adaptation of different LSTM layers individually
(l=1,2,3). Since joint training is performed for 15 epochs, we
also compare the performance of the 35th epoch (epoch35) of
the main network training without any adaptation. We present
the results under two training conditions (150 vs 600 speakers).

In all adaptation experiments, we performed better than the
initial unadapted model at epoch20 on the heldout set which re-
sulted in 41.8% and 39.7% accuracy for 150 and 600-speaker
conditions. For both 150 and 600 speaker conditions, the
adapted models performed slightly better than the unadapted
epoch35 model which achieved 43.0% and 41.1% on the held-
out set in 150 and 600 speaker conditions, respectively. If we
compare the performance of the adaptation of different LSTM
layers, we found that the improvements over the unadapted
model decrease as we go deeper in the network (l gets larger).
This might be due to the fact that as we get deeper and there-
fore closer to the output level, the hidden features become less
speaker dependent and more phone dependent. Therefore, the
difference between h and ĥ becomes smaller as we go deeper in
the network and it reduces the effectiveness of adaptation. For
the best performing layer (l=1), we achieved 43.6% and 41.9%
in the 150 and 600-speaker conditions, respectively.

When we compare the performances of two architectures
(T is Tied or Free), i.e. the second and third group of bars
in Figs. 2a and 2b, we see that with the Free setup, a slight
improvement over using Tied is observed. This result supports
the observation made in [12] and suggests that adaptation with
T(z) is better.

If we compare the results of two training conditions (Fig. 2a
vs. 2b), in the 600-speaker case, our unadapted model has lower
accuracy than 150-speaker condition possibly because of higher
numbers of speakers in the heldout set. In the 600-speaker case,
we see that the relative improvement in senone accuracy with
adaptation is larger than that of the 150-speaker condition.

3.3. Comparison

We repeated similar experiments described above for the case
where the inputs are already speaker adapted by fMLLR [13].
Now, the inputs are 40-d fMLLR features concatenated within
±5 context. The main and auxiliary network structures are
kept the same except for the input layer which has 440-d inputs
rather than 120. The goal is to show if the proposed method is
complementary to fMLLR based input adaptation by comparing
the performances of the adapted and unadapted fMLLR models.

Most of the conclusions from logmel features also hold for
this case. As shown in Figs. 3a-3b, adapted models are always
better than epoch20 model. As compared to epoch35, we still
observe increase in accuracy of the adapted models although
the gains are much smaller. For the fMLLR case, we do not ob-
serve a general pattern among adapting different LSTM layers,
in these experiments, adapting l = 2 or 3 can perform better
than adapting l = 1. This might be due to the fact that input
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Figure 3: Senone classification accuracy of the main network on
the heldout data before and after adaptation for fMLLR input

Table 2: Senone classification accuracy comparison of un-
adapted model with adversarial adaptation of [9] and ASAO

150 600

Epoch20 41.8 39.7
Epoch35 43.0 41.1
Adversarial 42.2 40.5
ASAO 43.4 41.5

features are now already speaker normalized so l = 1 is more
speaker independent as compared to the logmel experiments.
Since adaptation in these systems still leads to improvement, it
can be concluded that the fMLLR features retain speaker infor-
mation and the proposed ASAO method provides complemen-
tary speaker normalization.

As mentioned in Section 1, there are various studies that
make use of an auxiliary network. Among those, the one that
is closest to ours is the adversarial training method of [9] which
tries to obtain speaker independent hidden layer activations us-
ing multitasking. In this system, the auxiliary network takes the
hidden layer activation (similar to our h) as input but the outputs
of the auxiliary network are speaker labels rather than speaker
dependent means. Their goal is to maximize the senone clas-
sification accuracy of the main network while minimizing the
speaker classification accuracy by gradient reversal. Compared
to this work, they do not use an additional projection matrix T.

We use the pretrained senone classifier with logmel inputs
and then attach the speaker classifying auxiliary network and
perform joint training. Different from [9] which adapted only a
fully connected network, we tried the same approach on LSTM
layers. In the logmel based system, we adapted l = 2 for which
our system has a disadvantage. Table 2 compares the senone
classification performances of the unadapted model, adversarial
adaptation and ASAO methods. It is shown that the proposed
ASAO method leads to the highest classification accuracy.

According to Table 2, the adversarial training method im-
proves the accuracy over the unadapted method at epoch20. Al-
though the joint training is performed for 15 iterations, it can-
not reach the performance of the epoch35 model of the un-
adapted main network. Therefore, we hypothesize that our
ASAO method might be more effective for speaker normaliza-
tion of the hidden layer activations of the main network.

In Table 3, we present the WER on the heldout datasets
for the unadapted model, adversarial training and best senone
classifiers from the ASAO method. Since we see the largest
gains when there is no explicit input adaptation, we include only
the results for the logmel setup. For this setup, ASAO method
achieves 9.2% and 6.7% relatively lower WER than the un-
adapted model in 150 and 600-speaker conditions, respectively,
which corresponds to up to 2% absolute reduction in WER. It
also performs better than adversarial training.

Table 3: WER for 150 and 600 speaker training conditions un-
der different models

150 600
Unadapted 21.8 Unadapted 26.9
Adversarial [9] 21.1 Adversarial 26.0
ASAO, Free, l=1 19.8 ASAO, Free, l=1 25.1

(a) h (b) ĥ

Figure 4: 2D LDA projection of h and ĥ for the logmel condi-
tion with ASAO, Free, l=1 model for a phone; colors represent
different speakers

In Fig. 4, we visualize the unnormalized (h) and normal-
ized (ĥ) hidden activations of the network. We randomly select
10 heldout speakers and for each phone, we plot the 2D lin-
ear discriminant analysis (LDA) projection of the activations
to separate the speaker classes. For the model with the largest
improvement (150-speaker logmel condition, T Free, l=1 adap-
tation), we get Fig. 4 for a phone. In the figures, each color
represents a different speaker. In the speaker normalized space,
we expect and observe that the ĥ activations related to a certain
phone to be closer. For example, the speaker on top right or
bottom right gets closer to the larger cluster on lower left.

4. Conclusions
In this work, we have presented a neural network based speaker
adaptation scheme using an auxiliary network. This auxil-
iary network which is trained to reconstruct speaker, (speaker,
phone), and (speaker, senone)-level averages, generates a
speaker aware offset that is subtracted from the main network
activations. The main advantage of the auxiliary network is that
once it is trained, we do not need additional data for test speak-
ers as the auxiliary network will automatically generate the
speaker-aware offsets. We show that the proposed model can be
used to adapt LSTM layers in addition to just fully-connected
layers. Experimental results show that if the input features are
speaker independent logmel features, adapting lower layers of
the network is more helpful. Using a free projection (T matrix)
is shown to be better than tying it to the speaker dependent out-
put layer of the auxiliary network. We also show that ASAO
can slightly improve the senone classification accuracy when
the inputs to the main network are already speaker adapted fM-
LLR features showing that the two methods are complemen-
tary. We compare our multitask learning with the adversarial
training method of [9] and show that ASAO is more effective in
speaker normalization by achieving up to 2% absolute reduction
in WER.
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