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Abstract
In this paper, we analyze and assess the impact of critical meta-
data factors on the calibration performance of speaker recog-
nition systems. In particular, we study the effect of duration,
distance, language, and gender by using a variety of datasets
and systematically varying the conditions in the evaluation and
calibration sets. For all experiments, the system is based on i-
vectors and a probabilistic linear discriminant analysis (PLDA)
back-end and linear calibration. We measure system perfor-
mance in terms of calibration loss. Our experiments reveal (i) a
large degradation when the duration used for calibration is sig-
nificantly different from that in the evaluation set; (ii) no signif-
icant degradation when a different gender is used for calibration
than for evaluation; (iii) a large degradation when microphone
distance is significantly different between the sets; and (iv) a
small loss for closely related languages and languages with
shared vocabulary. This analysis will be beneficial in the de-
velopment of speaker recognition systems for use in unseen en-
vironments and for forensic speaker recognition analysts when
selecting relevant population data.
Index Terms: speaker recognition, calibration, metadata, cali-
bration loss.

1. Introduction
A speaker identification (SID) system produces an output score
when comparing the voice similarity of an unknown speaker
sample to a speech sample from a claimed identity. A more
positive score indicates stronger support for the voices being
from the same individual [1]. Unfortunately, these scores con-
tain bias due to condition mismatch between the data that the
system or speaker model was trained on and the conditions of
the verification speech. Unless accounted for, this bias results
in an inaccurate assessment of voice similarity; the similarity
appears either stronger or weaker than it should. Bias is com-
monly corrected with a technique termed calibration, in which
a calibration model, typically consisting of shift and scale pa-
rameters, is trained using a calibration dataset that reflects the
expected end-use conditions. The calibration step converts the
system scores into meaningful output, known as log-likelihood
ratios (LLRs). The LLRs have a clear probabilistic interpreta-
tion and can be either used directly in some applications, like
forensic voice comparison, or converted to binary decisions by
applying a score threshold for other applications, such as user
authentication [2, 3].

In this scientific study, rather than focusing on improving
the performance of the speaker recognition system, we focus
on gaining a deeper understanding of the impact of different
metadata factors and their effect on calibration performance.
The motivation comes from the fact that different factors in-
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Figure 1: Score distribution bias is evident across two seem-
ingly similar datasets. An decision threshold tuned on one
dataset, would not be applicable to the other.

fluence calibration (or mis-calibration) to varying degrees and
understanding and attending to the most critical factors dur-
ing calibration of a system will reduce the potential of mis-
calibration in a deployed system. To exemplify the importance
of these factors, Figure 1 shows the distinct difference between
score distributions of two datasets despite both consisting of
English, close-talking microphone samples. Using one set to
calibrate a system for the evaluation of the other would result
in mis-calibrated LLRs. The main objectives of this analysis
are two fold. First, this analysis will be beneficial for devel-
oping speaker recognition systems intended for use in unseen
environments. Second, this analysis will assist forensic ana-
lysts when selecting relevant populations for their casework in
forensic speaker recognition.

A speaker recognition system can be used in various oper-
ating conditions. These conditions vary in terms of language,
distance, noise levels, vocal efforts, duration, compression etc.
However, knowing a priori the precise operating conditions
once deployed is very difficult, thereby reducing the ability of a
pre-trained calibration model to generalize to such conditions.
Similarly, in forensic casework, forensic analysts consider the
degree of voice similarity between the samples and their typical-
ity with respect to the relevant population. The relevant popula-
tion is the population of speakers from which the target speaker
could have conceivably come from. The selection of a relevant
population in forensics is of critical importance and its choice
is conducted on a case-by-case basis. The factors affecting the
choice of the relevant population can be extrinsic or intrinsic in
nature [4, 5, 6, 7].

In this work, we analyze how various known conditions im-
pact system calibration performance. Once we assess the im-
pact of each condition, this knowledge can be folded into the
training of the calibration model for speaker recognition sys-
tems intended for use in operational environments or in the se-
lection of relevant population data for forensic casework. In
the past, a limited number of studies have focused on analyz-
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ing critical metadata factors, and include the impact of dura-
tion [8], aging [9], vocal effort [10], Lombard effect [11], and
whisper [12]. Here, we analyze four critical metadata factors
including gender, duration, distance, and language in a large
cross-dataset study.

The remainder of this paper is organized as follows: First,
the speaker recognition system used in this study is detailed in
Section 2. This is followed by a description of the datasets used
in this study in Section 3. Section 4 describes the experimental
results of the impact of critical metadata factors on the calibra-
tion performance of the speaker recognition. Finally, conclu-
sions and directions for future work are presented in Section 5.

2. Speaker Recognition System
For this work, we used a speaker recognition system based on
the i-vector framework [13] with a probabilistic linear discrim-
inant analysis (PLDA) back-end. We select the i-vector frame-
work over the more recent and powerful deep neural network
(DNN) speaker-embedding architecture [14, 15] due to the cur-
rent widespread use of i-vectors, the fact that Gaussian assump-
tions of the framework align better with forensic case work that
may be presented in court, as well as our need to limit system
training data in order to provide sufficient cases for our analysis.
More specifically, we used a number of datasets for our analy-
sis (detailed later in Section 3) that are more commonly used in
the training of SID systems. However, we had to exclude them
from the training of the system in this work to avoid overlap be-
tween training and evaluation data. For training of the speaker
recognition system components, we used the NIST SRE 2008
corpora, which consists of more than 19,000 samples.

The main components of our system are speech activity
detection (SAD), front-end feature extractor, i-vector extractor
and a PLDA back-end. SAD is similar to the model used in [16]
with a threshold of 0.5 to obtain the speech regions.

2.1. MFCC and i-Vector Extraction

The MFCC acoustic features were based on 20-dimensional
MFCCs, including C0, spanning the frequency range of 200–
3300 Hz using 24 filter banks, a window of 25 ms, and a
step size of 10 ms. MFCCs were contextualized with deltas
and double deltas prior to filtering out non-speech frames,
as determined by the SAD system, and the application of
utterance-level mean and variance normalization over the result-
ing speech frames. We trained a gender-independent universal
background model (UBM) with 2048 Gaussians followed by a
400-dimensional i-vector extractor [13].

2.2. Probabilistic Linear Discriminant Analysis (PLDA)

We used gender-independent PLDA [17] for all our experi-
ments described herein. Before training the PLDA classifier,
the dimensions of the i-vectors were reduced to 200 by using
linear discriminant analysis (LDA), followed by mean center-
ing to Gaussianize the distribution of the i-vectors, and finally,
length normalization. The PLDA classifier used the normalized
i-vectors to compute similarity scores between enrolled speaker
models and test samples of each data set. These scores served
as the input to the calibration stage.

2.3. Score Calibration

Although PLDA outputs LLRs, they are typically not inter-
pretable as calibrated LLRs because of a mismatch between the

conditions of the system training data and trial conditions. It is
commonplace, therefore, to apply calibration to transform these
raw scores into interpretable LLRs. We use a linear calibration
transformation in which raw scores s are transformed into cali-
brated scores sc, given scaling and offset parameters α and β:

sc = αs+ β (1)

where α and β are obtained by logistic regression optimization
on a calibration dataset.

We measure the calibration performance of the speaker
recognition system in terms of the cost of likelihood ratio (Cllr).
The Cllr provides an indication of discrimination performance
of the system as well as how well calibrated scores are across all
operating points on the detection error tradeoff (DET) curve [2].
If the value ofCllr is above 1, this indicates the information ob-
tained from the system is worse than random.

For each acoustic condition, we would like the Cllr to be
close to the Cllr that would be achieved on that condition if
perfectly matched data were available for calibration. Hence,
we show results in terms of Closs, defined as the relative dif-
ference between CllrT , which is the actual Cllr on a certain set
of trials, and CllrM obtained when calibrating with a perfectly
matched calibration set for that test set.

Closs = (CllrT − CllrM )/CllrM (2)

In this study, CllrT is calculated using a calibration model
trained on scores from a held-out calibration set (development
set), whereas CllrM is obtained by calibrating using a model
trained on the evaluation scores directly. We report our results
in terms of calibration loss percentage. The values above 20%
may be considered a large calibration loss.

3. Datasets
A large effort was made to design datasets consisting of vari-
ous homogeneous sets of trials, each of them divided into eval-
uation and calibration sets with disjoint speakers. The homo-
geneous sets enabled us to obtain a target calibration perfor-
mance CllrM for each test set by training the calibration model
on the matched calibration set. The scores obtained with this
calibration model were used to compute the Closs for each test
set. Further, using homogeneous sets enabled our analysis into
which specific kinds of variation significantly affect calibration.
The homogeneous sets for analysis of metadata factors used
were benchmarked on our speaker recognition system with re-
sults reported in Table 1 to serve as a reference. With the ex-
ception of the SWPH2 and SWCELLP1 datasets, samples con-
sisted of taking from each original file, a single cut of audio that
contained 20 seconds of speech content.

3.1. Switchboard Datasets

Switchboard datasets consist of English telephony conversa-
tions. We used two Switchboard sets for our impact assessment
of duration and gender.

Switchboard-2 (SWPH2) consists of landline telephone
conversations. For this set, we included six different subsets
produced by cutting each signal to 5, 10, 20, 40, 80, and 160
seconds of speech content for only male speakers. For the fe-
male speakers, we created only the 20-second cuts.

Switchboard Cellular (SWCELLP1) consists of cell-
phone conversations prepared in the same way as SWPH2.
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Table 1: Speaker recognition performance of datasets used in
this study. The held-out calibration subset of each dataset was
used to calibrate the system prior to benchmarking the eval set.

Dataset Target/Imposter EER (%) Cllr

SWPH2 2.2k/359.1k 9.80 0.363
SWCELLP1 549/34k 8.53 0.388

SRI-Dist 2.3k/133.3k 9.83 0.372
FVC-int 326/54.2k 2.45 0.115
FVC-cod 326/54.2k 5.53 0.211
FVC-rev 326/54.2k 8.28 0.290
FVC-noi 978/162.6k 11.04 0.374
RATS-G 1k/38.1k 18.36 0.615
SRE10 440/57.4k 5.45 0.340

RATS-clean (Alv) 276/3588 12.76 0.469
RATS-clean (Urd) 540/13.5k 12.82 0.475
RATS-clean (Fas) 198/1584 22.22 0.642
RATS-clean (Prs) 294/4116 25.89 0.752
RATS-clean (Pus) 858/34.5k 24.84 0.724

3.2. SRI Distant Speech Collect Dataset (SRI-Dist)

The SRI distant speech corpora, which was generated in-house
at SRI by transmitting original Forensic Voice Comparison
(FVC) [18] audio files from a loudspeaker and capturing it by
using two different microphones (a studio mic and a lapel mic)
at a number of distances. The microphones were placed at 76,
94, 140, 150, 155, 178, and 259 centimeters from the speaker.
For this dataset, only the conversation speaking style from FVC
was used [16]. We only used Room 1 for our experiments.

3.3. Forensic Voice Comparison Dataset (FVC)

The FVC dataset consists of 544 Australian English speak-
ers [18]. The speakers were recorded in three different speaking
styles – interview, conversation, and fax (read) – with multiple
sessions available for each speaker. For this work, we only used
interview speaking style perturbed with noise, reverberation and
compression, and only the test segments were perturbed and the
enrollment samples left unaltered.

FVC-int was formed from the interview signals of 417
male speakers without any degradation applied.

FVC-cod was prepared by transcoding the test segments of
FVC-int using the GSM codec.

FVC-rev was prepared by adding reverberation to the test
segments of FVC-int.

FVC-noi was generated by adding three different signal-
to-noise ratio (SNR) levels (8 dB, 15 dB, and 20 dB) from a
cafeteria type of noise to the segments of FVC-int.

3.4. NIST SRE 2010 (SRE10)

The SRE10 set in this study was formed using the close-talking
microphone samples of the NIST SRE’10 dataset (channel 02)
from 178 male speakers.

3.5. DARPA RATS

From the DARPA Robust Automatic Transcription of Speech
(RATS) dataset [19], conversational telephone speech (CTS)
data was re-transmitted through eight different radio commu-
nication channels. The RATS data represents five different lan-
guages: English, Pashto, Farsi, Urdu, and Arabic. We created
two subsets from the RATS for our experiments.

RATS-G for our study included only the Pashto language
and re-transmitted channel G. We cut the audio into 20-second

speech snippets and included only male speakers.
RATS-telephone was used to study the effect of language.

To produce this set, we used the original telephone signals with
speech from males, and exclude any cross-language trials.

4. Analysis of Critical Metadata Factors
In this section, we analyze the effect that each type of varia-
tion has on calibration performance. The following tables show
the Closs when calibrating on a specific portion (for example,
one language of five) of a pre-defined calibration set and test-
ing on a specific subsets of evaluation set. When the calibration
and the evaluation sets are matched, the Closs is 0 by definition
(since we compute the Closs with respect to matched calibra-
tion performance). Note that we could also, in fact, get negative
Closs values. This would mean that the corresponding calibra-
tion set produced a better calibration model than the matched
calibration model for that test set. As we will see, this occurs in
several conditions to only a small degree.

4.1. Duration Analysis

Figure 2 shows the results when varying the duration of the
evaluation dataset compared to the calibration set for the two
Switchboard datasets.

Cal\Test 5s 10s 20s 40s 80s 160s
5s 0.0 5.1 39.7 56.0 50.9 71.1
10s 2.9 0.0 22.3 27.2 19.0 32.0
20s 47.0 34.5 0.0 5.4 7.0 15.3
40s 60.1 33.0 1.4 0.0 0.4 4.4
80s 74.2 35.0 8.5 1.4 0.0 1.0
160s 72.4 33.4 0.0 0.7 -1.0 0.0

(a) Switchboard Cellular (SWCELLP1)

Cal\Test 5s 10s 20s 40s 80s 160s
5s 0.0 2.0 34.1 80.5 117.3 139.1
10s 27.5 0.0 1.5 28.6 56.2 69.9
20s 95.8 35.6 0.0 1.1 15.5 22.2
40s 175.6 92.8 25.4 0.0 0.9 3.0
80s 221.0 133.7 52.3 9.1 0.0 -0.1
160s 221.2 133.8 0.0 9.1 0.1 0.0

(b) Switchboard-2 (SWPH2)

Figure 2: Closs(%) for duration variation when calibrating on
one duration and applying it to the evaluation of another dura-
tion of the Switchboard datasets.

We see a large degradation (more than 20 points) when the
durations used for calibration are significantly different from
those in the evaluation set, supporting the conclusions of [8]
and highlighting the requirement for a speaker recognition sys-
tem to take into account duration information to be robust to
mis-calibration. Note that while the enrollment and test dura-
tion were the same in Figure 2, the mismatch of enrollment and
test sample durations would be expected to contribute a sim-
ilar impact on calibration performance, and therefore a good
system design would ensure calibration parameters account for
such mismatch. Fortunately, this can be taken into account
in an automatic speaker recognition system by having a pre-
trained set of calibration models on hand that represent a range
of enrollment-test duration pairs and selecting the closest cali-
bration model dynamically at test time based on the duration of
speech detected via SAD [3].

4327



4.2. Gender Analysis

Figure 3 shows the results for calibrating on the same or differ-
ent gender trials for the two Switchboard datasets. In this case,
no significant degradation (fewer than five points) was observed
when a different gender was used for calibration with respect
to the gender being evaluated. This implies that the gender-
independent training of our system provided gender-dependent
score distributions that were closely aligned and therefore re-
sulted in similar calibration model parameters.

Cal\Test Female Male Female Male
Female 0.0 0.7 0.0 -0.6
Male -0.6 0.0 1.5 0.0

SWCELLP1 SWPH2

Figure 3: Closs(%) when calibrating with matched or mis-
matched gender scores with respect to the evaluation set. Re-
sults are for both of the Switchboard datasets.

4.3. Distance Analysis

Figure 4 shows the results when varying the distance to the mi-
crophone, for the SRI Distant Speech Collect Dataset for two
microphone types: lapel (top) and studio (bottom). In this case,
we see a large degradation when the distance to the micro-
phone is significantly different between calibration and evalu-
ation conditions. For this analysis, we kept the room acoustics
constant by varying distance in the same room.

Cal\Test 76 cm 94 cm 140 cm 150 cm 155 cm 178 cm 259 cm
76 cm 0.0 17.4 -10.4 12.3 29.7 44.3 228.8
94 cm 2.6 0.0 7.0 -1.5 2.1 6.4 97.1
140 cm 20.3 37.7 0.0 32.4 58.1 72.3 299.9
150 cm -4.9 3.4 -5.6 0.0 8.5 17.9 144.0
155 cm -3.9 0.7 4.0 -2.2 0.0 7.9 103.0
178 cm 19.0 4.4 34.9 4.6 -0.4 0.0 49.0
259 cm 122.9 74.5 181.9 77.2 46.6 37.6 0.0

(a) Lapel microphone

Cal\Test 76 cm 140 cm 178 cm 259 cm
76 cm 0.0 11.5 154.2 225.5
140 cm 0.3 0.0 90.4 141.2
178 cm 73.3 13.4 0.0 0.7
259 cm 72.2 11.7 1.3 0.0

(b) Studio microphone
Figure 4: Closs(%) for distance variation between calibration
and evaluation sets on the SRI Distant Speech Collect Dataset.

The asymmetry in Figure 4 may be attributed to the rever-
beration variation (early and late reflections) in signals captured
by microphones placed at different distances. The calibration
models learned with cleaner data (i.e. mic closer to the source)
are prone to bad generalization since its very hard to estimate
the bias as there is a very little overlap between the tails of the
score distribution. Hence, it is always better to calibrate with
same or farther placed microphone than the evaluation set.

4.4. Language Analysis

Figure 5 shows the Closs for different languages used in cal-
ibration and evaluation. In this case, we see that using very
closely related languages—such as Farsi, Dari, and Pashto—
result in only minimal calibration loss (fewer than five points)
when used to calibrate the other. Languages with significant
shared vocabulary—like Arabic and Urdu—also show a rela-
tively small loss in calibration. The greatest loss in calibration
comes from using distantly related or unrelated languages in the
calibration and evaluation sets, such as Farsi, Dari, or Pashto to
calibrate Arabic or Urdu.

Cal\Test Alv Urd Fas Prs Pus
Alv 0.0 -1.8 33.7 51.5 66.2
Urd 7.5 0.0 5.6 17.0 21.0
Fas 49.7 37.6 0.0 2.3 1.8
Prs 65.7 48.5 -1.6 0.0 0.5
Pus 35.2 21.2 -6.8 -2.8 0.0

Figure 5: Closs(%) for language variation on DARPA RATS
clean data. The languages are Alv=Levantine Arabic;
Urd=Urdu; Fas=Farsi; Prs=Dari; and Pus=Pashto.

4.5. Cross-Set Analysis

Finally, Figure 6 shows the cross-set results for a subset of the
test sets. The sets are sorted by their performance when cali-
brated with the SRE10 close-talking microphone data. Surpris-
ingly, FVC has the highest Closs when the calibration model is
trained with data that is similar by definition. Therefore, the cal-
ibration loss must be a consequence a nuisance factor not typ-
ically considered as part of dataset characteristics. The accent
is not the major contributing factor as the FVC-noi, FVC-cod,
and FVC-rev datasets were derived from the same clean data,
and these sets offer a considerably lower Closs after being per-
turbed from the source audio. While we do not yet understand
why this corpus in its original form is an outlier, our hypothesis
is the mismatch between our system training data and FVC-int
data. In addition, with both enroll and test samples being col-
lected in the same manner, our system is unable to suppress the
condition variation of this dataset and instead treats it as speaker
information. The consequence of this enroll-to-test match and
their mismatch to our training set is that all scores, both the im-
postor and target scores, have a large positive bias, shifting both
distributions to the right (as depicted in Figure 1) resulting in a
large calibration loss.

Cal\Test
SR
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0
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P1
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2

FV
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FV
C-r
ev

FV
C-c
od

RA
TS
-G

FV
C-i
nt

SRE10 0.0 8.5 10.5 19.7 26.9 103.7 107.7 359.4
SWCELLP1 -7.5 0.0 10.6 22.5 36.6 114.5 81.6 353.6
SWPH2 4.2 22.3 0.0 -0.8 0.9 13.9 49.3 138.0
FVC-noi -0.3 14.1 -1.6 0.0 1.7 33.6 64.7 195.3
FVC-rev 8.6 26.5 2.4 1.1 0.0 18.7 65.3 162.8
FVC-cod 24.8 49.9 14.0 9.4 7.8 0.0 56.3 101.6
RATS-G 49.5 70.4 57.1 57.3 101.8 95.2 0.0 113.0
FVC-int 110.9 165.3 103.9 96.4 120.5 25.9 49.0 0.0

Figure 6: Closs(%) when varying calibration and evaluations
sets to invoke condition mismatch.

5. Conclusions
In this work, we assessed the impact of critical metadata factors
that should be considered when calibrating a speaker recogni-
tion system. We observed a large degradation when the duration
used for calibration were significantly different from those in
the evaluation set and, surprisingly, no significant degradation
when a different gender was used for calibration than for evalu-
ation. A large degradation was observed when microphone dis-
tance was significantly different between the sets, and a small
loss was seen for closely-related languages and languages with
a shared vocabulary. We believe this study will provide a ba-
sis for practical speaker recognition system design and will be
beneficial to forensic analysts for relevant population selection.
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