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Abstract
Recently, direct modeling of raw waveforms using deep neu-
ral networks has been widely studied for a number of tasks in
audio domains. In speaker verification, however, utilization of
raw waveforms is in its preliminary phase, requiring further in-
vestigation. In this study, we explore end-to-end deep neural
networks that input raw waveforms to improve various aspects:
front-end speaker embedding extraction including model archi-
tecture, pre-training scheme, additional objective functions, and
back-end classification. Adjustment of model architecture using
a pre-training scheme can extract speaker embeddings, giving
a significant improvement in performance. Additional objec-
tive functions simplify the process of extracting speaker embed-
dings by merging conventional two-phase processes: extracting
utterance-level features such as i-vectors or x-vectors and the
feature enhancement phase, e.g., linear discriminant analysis.
Effective back-end classification models that suit the proposed
speaker embedding are also explored. We propose an end-to-
end system that comprises two deep neural networks, one front-
end for utterance-level speaker embedding extraction and the
other for back-end classification. Experiments conducted on
the VoxCeleb1 dataset demonstrate that the proposed model
achieves state-of-the-art performance among systems without
data augmentation. The proposed system is also comparable to
the state-of-the-art x-vector system that adopts heavy data aug-
mentation.
Index Terms: raw waveform, deep neural network, end-to-end,
speaker embedding

1. Introduction
Direct modeling of raw waveforms using deep neural networks
(DNNs) is increasingly prevalent in a number of tasks due to
advances in deep learning [1–8]. In speech recognition, studies
such as those of Palaz et al., Sainath et al., and Hoshen et al.
deal with raw waveforms as input [1–3]. In speaker recogni-
tion, studies by Jung et al. and Muckenhirn et al. were the first
to comprise systems that input raw waveforms [5–7]. Other do-
mains such as spoofing detection and automatic music tagging
are also adopting raw waveform inputs [4, 8].

DNNs that directly input raw waveforms have a number
of advantages over conventional acoustic feature-based DNNs.
First, minimization of pre-processing removes the need for ex-
ploration of various hyper-parameters such as the type of acous-
tic feature to use, window size, shift length, and feature dimen-
sion. This is expected to lower entry barriers to conducting
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studies and lessen the burden of follow-up studies. Addition-
ally, with recent trends of DNN replacing more sub-processes
in various tasks, a raw waveform DNN is well positioned to
benefit from future advances in deep learning.

Studies across various tasks have shown that an assembly
of multiple frequency responses can be extracted when raw
waveforms are processed by each kernel of convolutional lay-
ers [6, 9]. Spectrograms, compared to raw waveform DNNs,
have linearly positioned frequency bands, meaning the first con-
volutional layer sees only adjacent frequency bands (although
repetition of convolutions can aggregate various frequency re-
sponses at deeper layers). In other words, spectrogram-based
CNN can see fixed frequency regions depending on the inter-
nal pooling rule. This difference is hypothesized to increase the
potential of the directly modeling raw waveforms; as increas-
ing amounts of data become available, this data-driven approach
can extract an aggregation of informative frequency responses
appropriate to the target task.

In this study, we improve various aspects of the raw wave-
form DNN proposed by Jung et al., which was the first end-to-
end model in speaker verification using raw waveforms [5, 7].
This model extracts frame-level embeddings using residual
blocks with convolutional neural networks (CNN) [10, 11], and
then aggregates features into utterance level using long short-
term memory (LSTM) [12, 13]. Key improvements made by
our study include the following:

1. Model architecture: adjustments to various network con-
figurations

2. CNN pre-training scheme: removal of inefficient aspects
of the multi-step training scheme in [7, 14]

3. Objective function: additional objective functions to in-
corporate speaker embedding extraction and feature en-
hancement phase

4. Back-end classification models: comparison of various
DNN-based back-end classifiers and proposal of a sim-
ple, effective back-end DNN classifier

Through changing these aspects, performance is significantly
enhanced. The equal error rate (EER) of utterance-level speaker
embedding DNN with cosine similarity on the VoxCeleb1
dataset is 4.8 %, showing 44.8 % relative error rate reduction
(RER) compared to the baseline [7]. An EER of 4.0 % was
achieved for the end-to-end model using two DNNs, showing
an RER of 46.0 %.

The rest of this paper is organized as follows. Section 2
describes the front-end speaker embedding extraction model.
Section 3 addresses various back-end classification models. Ex-
periments and results are in Sections 4 and 5 and the paper is
concluded in Section 6.
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2. Front-end: RawNet
We propose a model (referred to as “RawNet” for convenience)
that is an improvement of the CNN-LSTM model in [5, 7] by
changing architectural details (Section 2.1.), proposing a new
pre-training scheme (Section 2.2.), and incorporating a speaker
embedding enhancement phase (Section 2.3.).

2.1. Model architecture

The DNN used in this study comprises residual blocks, a gated
recurrent unit (GRU) layer [15, 16], a fully-connected layer
(used for extraction of speaker embedding), and an output
layer. In this architecture, input features are first processed us-
ing the residual blocks [10] to extract frame-level embeddings.
The residual blocks comprise convolutional layers with iden-
tity mapping [11] to facilitate the training of deep architectures.
A GRU is then employed to aggregate the frame-level features
into a single utterance-level embedding. Utterance-level em-
bedding is then fed into one fully-connected layer. The output
of the fully-connected layer is used as the speaker embedding
and is connected to the output layer, where the number of nodes
is identical to the number of speakers in the training set. The
proposed RawNet architecture is depicted in Table 1.

It includes a number of modifications to the CNN-LSTM
model in [5, 7], allowing for further improvement. First, acti-
vation functions are changed from rectified linear units (ReLU)
to leaky ReLU. Second, the LSTM layer is changed to a GRU
layer. Third, the number of parameters is significantly de-
creased, including lower dimensionality of speaker embedding
(from 1024 to 128).

2.2. CNN pre-train scheme

Extracting utterance-level speaker embeddings directly from
raw waveforms often leads to overfitting toward the training
set [7]. In [7], multi-step training proposed in [14] was used
to avoid such phenomenon. This training scheme first trains a
CNN (for frame-level training), and then expands to a CNN-
LSTM (for utterance level). This scheme demonstrates signifi-
cant improvement compared to training a CNN-LSTM with ran-
dom initialization.

However, the multi-step training approach in [7] is ineffi-
cient because after training 9 residual blocks, 3 residual blocks
which contains a number of layers are removed when expand-
ing the trained CNN model to a CNN-LSTM model. In our
study, a new approach of interpreting the CNN training phase
as pre-training is applied. This approach adopts fewer residual
convolutional blocks, i.e. 6, connected to a global average pool-
ing layer. After training the CNN, only the global average pool-
ing layer is removed. The objective is to consider the number
of convolutional blocks appropriate for training with the recur-
rent layer and not remove any parameters. This modification
enables more efficient and faster training. Application of model
architecture modifications detailed in Section 2.1, and the CNN
pre-training scheme exhibited an RER of 26.4 % (see Table 2).

2.3. Additional objective functions for speaker embedding
enhancement

For speaker verification, a number of studies enhance extracted
utterance-level features through an additional process before
back-end classification. Linear discriminant analysis (LDA) in
i-vector/PLDA systems is one example [17, 18]. Well-known
methods such as LDA or recent DNN-based deep embedding
enhancement, including discriminative auto-encoder (DCAE),

Table 1: RawNet architecture. For convolutional layers, num-
bers inside parentheses refer to filter length, stride size, and
number of filters. For gated recurrent unit (GRU) and fully-
connected layers, numbers inside the parentheses indicate the
number of nodes. An input sequence of 59,049 is based on the
training mini-batch configuration. At the evaluation phase, in-
put sequence length differs. Center loss and between-speaker
loss is omitted for simplicity. For residual blocks, layers under
the dotted line are conducted after residual connection.

Layer Input:59,049 samples Output shape

Strided
Conv(3,3,128)

(19683, 128)
-conv

BN
LeakyReLU

Res block

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Conv(3,1,128)
BN

LeakyReLU
Conv(3,1,128)

BN

LeakyReLU
MaxPool(3)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

×2 (2187, 128)

Res block

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Conv(3,1,256)
BN

LeakyReLU
Conv(3,1,256)

BN

LeakyReLU
MaxPool(3)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

×4 (27, 256)

GRU GRU(1024) (1024,)

Speaker
FC(128) (128,)

embedding

Output FC(1211) (1211,)

have been applied for this purpose in feature enhancement. In
such approaches, one of the main objectives is to minimize
intra-class covariance and maximize inter-class covariance of
utterance-level features. In this study, we aim to incorporate
two phases of speaker embedding extraction and feature en-
hancement into a single phase, using two additional objective
functions.

To consider both inter-class and intra-class covariance, we
utilize center loss [19] and speaker basis loss [20] in addition
to categorical cross-entropy loss for DNN training. We adopt
center loss [19] to minimize intra-class covariance while the
embedding in the last hidden layer remains discriminative. To
achieve this goal, center loss function was proposed as

LC =
1

2

N∑
i=1

||xi − cyi ||22, (1)

where xi refers to embedding of the ith utterance, cyi refers to
the center of class yi, and N refers to the size of a mini-batch.

Speaker basis loss [20], aims to further maximize inter-
class covariance. This loss function considers a weight vector
between the last hidden layer and a node of the softmax out-
put layer as a basis vector for the corresponding speaker and is
formulated as:

LBS =

M∑
i=1

M∑
j=1,j �=i

cos(wi, wj), (2)
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Table 2: Experimental results showing the effectiveness of the
RawNet system. Intermediate refers to results of application of
the modifications proposed in Sections 2.1. and 2.2. The back-
end classifier is fixed to cosine similarity.

System Loss Enhance EER %
Baseline [7] Soft None 8.7

Inter-
Soft

None 6.8

mediate LDA 6.5
DCAE 6.4

RawNet Soft+Center+BS
None 4.8
LDA 7.6

DCAE 4.9

Table 3: Comparison of equal error rate (EER) of various front-
end speaker embedding extraction systems. The back-end clas-
sifier is fixed to cosine similarity.

System EER %
i-vector 13.8
i-vector/LDA 7.25

x-vector(w/o augment) [21] 11.3
x-vector(w augment) [21] 9.9

RawNet 4.8

where wi is the basis vector of speaker i and M is the number
of speakers within the training set. Hence, the final objective
function used in this study is

L = LCE + λLC + LBS , (3)

where LCE refers to categorical cross-entropy loss and λ refers
to the weight of LC .

3. DNN-based back-end classification
In speaker verification, cosine similarity and PLDA are widely
used for back-end classification to determine whether two
speaker embeddings belong to the same speaker [18]. Although
PLDA has shown competitive results in a number of studies,
DNN-based classifiers have also shown potential in previous
researches [5]. A number of DNN-based back-end classifiers
have been explored: concatenation of speaker embeddings, and
b-vector and rb-vector systems [22,23]. A novel back-end clas-
sifier using DNN is introduced based on analysis of a b-vector
system.

The b-vector proposed by Lee et al. exploits element-wise
binary operation of speaker embeddings to represent relation-
ships [22]. Operations include addition, subtraction, and mul-
tiplication. The results are concatenated, composing a b-vector
that has three times the dimensions of a single speaker embed-
ding. Although the technique itself is simple, results demon-
strate that binary operations effectively represent the relation-
ship between the speaker embeddings.

The rb-vector is an expansion of the b-vector, where an ad-
ditional r-vector is used with the b-vector [23]. The main pur-
pose of the r-vector approach is to represent the relationship
of the speaker embeddings to the training set. To compose r-
vectors, a fixed number of representative vectors are derived us-
ing k-means on the speaker embeddings of the training set. For
every trial, b-vectors are composed by conducting binary oper-
ations between representative vectors and the speaker embed-

Table 4: Comparison of various back-end classifiers. Speaker
embeddings extracted from RawNet are used. Results are re-
ported in terms of equal error rate (EER, %)

Classifier EER %
Cosine similarity 4.8

PLDA 4.8
LDA/PLDA 4.8

b-vector 4.1
rb-vector 4.1
concat&mul 4.0

ding. These b-vectors are dimensionally reduced using princi-
pal component analysis (PCA) and then concatenated, produc-
ing r-vectors.

The b-vector approach uses various element-wise binary
operations to derive the relationship between the speaker em-
beddings. However, because weighted summation operations
in a DNN can replace (or even find better combinations of)
addition and subtraction, we hypothesized that the core term
contributing to the success of the b-vector is the multiplication
operation. Therefore, we propose an approach using the con-
catenation of the speaker embedding, test utterance, and their
element-wise multiplication. Experimental results show that by
only adding element-wise multiplication, performance exceeds
that of the b-vector (see Table 4, ‘concat&mul’).

4. Experimental settings
Experiments in this study were conducted using Keras,
a deep learning library in Python with Tensorflow back-
end [27–29]. Code used for experiments is available at
https://github.com/Jungjee/RawNet.

4.1. Dataset

We use VoxCeleb1 dataset which comprises approximately
330 hours of recordings from 1251 speakers in text-independent
scenarios and has a number of comparable recent studies in the
literature. All utterances are encoded at a 16 kHz sampling rate
with 16-bit resolution. As the dataset comprises various utter-
ances of celebrities from YouTube, it includes diverse back-
ground noise and varied durations. We followed the official
guidelines which divide the dataset into training and evaluation
sets of 1211 and 40 speakers respectively.

4.2. Experimental configurations

We didn’t apply any pre-processing, such as normalization, ex-
cept pre-emphasis [30] to raw waveforms which were exper-
imentally shown effective in our internal comparison exper-
iments. For mini-batch construction, utterances were either
cropped or duplicated (concatenated until the length reach) into
59049 samples (≈ 3.59s) in the training phase, following [5,7].
In the evaluation phase, no adjustments were made to length;
the whole utterance was used.

RawNet comprises one strided convolutional layer, six
residual blocks, one GRU layer, one fully-connected layer, and
an output layer (see Table 1). Residual block comprises two
convolutional layers, two batch normalization (BN) layers [31],
two leaky ReLU layers, and a max pooling layer as shown in Ta-
ble 1. Residual connection adds the input of each residual block
to the output of the second BN layer. A GRU layer with 1024
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Table 5: Overall results of speaker verification system application to the VoxCeleb 1 dataset.

Input Feature Front-end Back-end Loss Dims Augment EER (%)

Shon et al. [21] MFCC x-vector PLDA Softmax 600 Light 6.0
Shon et al. [21] MFCC 1D-CNN PLDA Softmax 512 Light 5.3
Hajibabaei et al. [24] Spectrogram ResNet-20 N/A A-Softmax 128 Heavy 4.4
Hajibabaei et al. [24] Spectrogram ResNet-20 N/A AM-Softmax 128 Heavy 4.3
Okabe et al. [25] MFCC x-vector PLDA Softmax 1500 Heavy 3.8
Nagrani et al. [26] MFCC i-vector PLDA - - - 8.8
Ours MFCC i-vector PLDA - 250 - 5.1

Nagrani et al. [26] Spectrogram VGG-M Cosine Metric learning 256 - 7.8
Jung et al. [7] Raw waveform CNN-LSTM Cosine Softmax 1024 - 8.7
Jung et al. [7] Raw waveform CNN-LSTM b-vector Softmax 1024 - 7.7
Shon et al. [21] MFCC x-vector PLDA Softmax 512 - 7.1
Shon et al. [21] MFCC 1D-CNN PLDA Softmax 600 - 5.9

Ours Raw waveform RawNet cosine Softmax+Center+BS 128 - 4.8
Ours Raw waveform RawNet concat&mul Softmax+Center+BS 128 - 4.0

nodes aggregates frame-level embeddings into an utterance-
level embedding. One fully-connected layer is used to extract
speaker embeddings. The output layer has 1211 nodes, which
represents the number of speakers in the training set. Back-end
classifiers including b-vector, rb-vector, concat&mul comprise
four fully-connected layers with 1024 nodes.

L2 regularization (weight decay) with a weight factor of
10−4 was applied to all layers. An AMSGrad optimizer with
learning rate 10−3 with decay parameter 10−4 was used [32].
For center loss, λ = 10−3 was used. Training was conducted
using a mini-batch size of 102. Recurrent dropout at a rate of
0.3 was applied to the GRU layer [33].

5. Results and analysis
Table 2 demonstrates the effectiveness of modifications made
to the model architecture (Section 2.1.) and the pre-training
scheme (Section 2.2.). It also shows the effect of additional
objective functions for incorporating explicit feature enhance-
ment phases (Section 2.3.). First, modifications to the model
architecture and the pre-training scheme reduced the EER from
8.7 % to 6.8 %. Application of additional objective functions
further decreased EER to 4.8 %. The proposed RawNet demon-
strates an RER of 44.8 % compared to the baseline [7]. Inter-
mediate, which does not include additional objective functions,
could benefit from explicit feature enhancement techniques. On
the other hand, RawNet, which includes additional objective
functions, exhibits an EER of 4.8 % without explicit feature
enhancement techniques. RawNet also outperforms Intermedi-
ate with feature enhancement showing that it has successfully
incorporated the feature enhancement phase.

Comparison with state-of-the-art front-end embedding ex-
traction systems with cosine similarity back-end is shown in
Table 3. The proposed RawNet demonstrates the lowest EER
compared to both i-vector systems and x-vector systems. For
i-vector systems, we compared two configurations: with and
without LDA feature enhancement. For x-vector systems, we
compared two configurations based on Shon et al. were com-
pared, where the data augmentation scheme introduced in [34]
was conducted using reverberation and various noise.

Table 4 describes the performance of various back-end clas-
sifiers with the proposed RawNet speaker embeddings. In our
experiments, PLDA did not show improved results compared
to the baseline cosine similarity. On the other hand, DNN-
based back-end classifiers demonstrated significant improve-

ment, with an RER of 16 %. The rb-vector system did not show
additional improvements above the b-vector system. Among
DNN-based back-end classifiers, the proposed approach of us-
ing element-wise multiplication of speaker embeddings from
enrol and test utterances performed best, with an EER of 4.0
%.

Recent studies using the VoxCeleb1 dataset are com-
pared in Table 5. The first five rows depict systems that utilize
data augmentation techniques. “Heavy” refers to the augmen-
tation scheme of [24, 25], with various noise from the PRISM
dataset and reverberations from the REVERB challenge dataset.
“Light” refers to the scheme used in [21, 34] that doubles the
size of the dataset using noise and reverberations. The i-vector
system with PLDA back-end in two implementation versions
(one from Nargrani et al. and the other from our implementa-
tion) demonstrates an EER of 8.8 % and 5.1 %, respectively.
The x-vector system with PLDA back-end without data aug-
mentation, as studied by Shon et al., demonstrates an EER of
7.1 %. The proposed RawNet system with concat&mul demon-
strates the best performance among systems without data aug-
mentation, exhibiting an EER of 4.0 %. The x-vector/PLDA
system conducted by Okabe et al. [25] is the only system show-
ing lower EER than our proposed system, but the former is
subjected to intensive data augmentation, which hinders direct
comparison.

6. Conclusion
In this paper, we propose an end-to-end speaker verification sys-
tem using two DNNs, for extracting speaker embedding extrac-
tion and back-end classification. The proposed system has a
simple, yet efficient, process pipeline where speaker embed-
dings are extracted directly from raw waveforms and verifica-
tion results are directly shown using two DNNs. Various tech-
niques that compose the proposed RawNet have been explored
including the pre-training scheme and additional objective func-
tions. RawNet with the concat&mul back-end classifier demon-
strates an EER of 4.0 % on the VoxCeleb1 dataset, which is
state-of-the-art among systems without data augmentation, in-
cluding the x-vector system.

The proposed RawNet with concat&mul inputs raw wave-
forms and outputs verification results. Such a simplified process
pipeline is expected to lower barriers to research and provide
opportunities for many researchers to apply new techniques.
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