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Abstract

Acoustics-based automatic assessment is a highly desirable ap-

proach to detecting speech sound disorder (SSD) in children.

The performance of an automatic speech assessment system de-

pends greatly on the availability of a good amount of properly

annotated disordered speech, which is a critical problem par-

ticularly for child speech. This paper presents a novel design

of child speech disorder detection system that requires only

normal speech for model training. The system is based on a

Siamese recurrent network, which is trained to learn the similar-

ity and discrepancy of pronunciations between a pair of phones

in the embedding space. For detection of speech sound disor-

der, the trained network measures a distance that contrasts the

test phone to the desired phone and the distance is used to train

a binary classifier. Speech attribute features are incorporated to

measure the pronunciation quality and provide diagnostic feed-

back. Experimental results show that Siamese recurrent net-

work with a combination of speech attribute features and phone

posterior features could attain an optimal detection accuracy of

0.941.

Index Terms: child speech, speech disorder detection, Siamese

network, speech attribute features

1. Introduction

Speech sound disorder (SSD) is a communication disorder in

which children have persistent difficulties in articulating speech

sounds correctly. Untreated child speech difficulties can lead

to a limited ability to effectively participate in social, educa-

tional, or occupational activities. To identify individuals who

are in need of relevant intervention, speech assessment is re-

quired at an early age [1]. Conventional clinical assessment for

SSD, typically carried out by a qualified speech therapist (ST),

is to perceptually evaluate the production of phonemes in the

child’s primary language (L1). However, the manpower short-

age of experienced STs causes significant delay of assessment

and treatment. Acoustics-based assessment systems for auto-

matic detection of speech sound errors has a great potential in

reducing the burdens of professional STs and enabling timely

assessment for children in need.

The basic idea of child speech disorder detection is to iden-

tify inconsistent speech sound production via pronunciation

verification. In recent years, there have been extensive studies

on pronunciation verification, most commonly in the problem

context of second language acquisition [2]. The approaches are

generally divided into two categories. One of them is based on

automatic speech recognition (ASR) while the other is to di-

rectly predict the production of speech sound as correct or not

by using a binary classifier.

State-of-the-art ASR systems have demonstrated a high per-

formance level that can be exploited for use in automatic speech

assessment. Confidence scores derived based on ASR posterior

probabilities provide a way of quantitatively measuring the de-

viation of mispronounced phonemes from correct ones. The

goodness of pronunciation (GOP) score has been widely used

to evaluate the pronunciation quality. It is defined as the poste-

rior probability ratio between a canonical phone and a compet-

ing phone [3], The effectiveness of GOP score depends highly

on the ASR performance. Also, the numerical scores do not

provide useful educational feedback about the mispronuncia-

tions detected. The lattice-based approaches were proposed to

alleviate this problem [4]. The basic idea is to create an ex-

tended search lattice for acoustic model decoding, by including

the expected error patterns. [5] compares use of extended search

lattices with GMM-HMM and DNN-HMM acoustic models in

the assessment of childhood apraxia of speech (CAS). This ap-

proach can provide diagnostic information related to error pat-

terns. Nonetheless, its performance would be degraded signifi-

cantly if many unexpected mispronunciations occur.

Detection of mispronunciation has also been achieved by

training a binary classifier to learn the decision boundary be-

tween correct and erroneous pronunciations. In [6, 7], deep neu-

ral network (DNN) models have been applied to improve mis-

pronunciation detection. Despite the high performance demon-

strated, the training of DNN classifiers requires a large amount

of disordered speech. In practical applications, collection and

annotation of disordered speech is a challenging task and par-

ticularly difficult for child subjects as children have poor con-

centration and may not be able to follow instructions [8].

To address the lack of training data for disordered speech,

we develop a novel approach to detecting child speech sound

disorder based on only normal speech training data. This is

achieved with a Siamese network, which measures the similar-

ity between a pair of phones, one being regarded as the canon-

ical phone and the other as a test phone. With the pairwise

comparison architecture, a single system can be trained to cover

all possible phone-level mispronunciations, instead of handling

each error pattern individually. On the other hand, numerous re-

cent studies have shown that articulatory-phonetic features are

robust in compensating for acoustic variations related to speak-

ers and speaking style [9, 10]. In our work, a speech attribute-

based ASR system is developed to generate articulation-relation

speech attribute features. These features are concatenated with

phone posterior features to enhance the performance of pro-

posed system. Comprehensive diagnostic feedback can also be

retrieved in the aspects of manner, aspiration and place of artic-

ulation.

2. Background

2.1. Problem statement

Cantonese is a major Chinese dialect widely spoken in Guang-

dong and Guangxi Provinces of Mainland China, Hong Kong,
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Macau and many overseas Chinese communities. It is a mono-

syllabic language. Each Chinese character is associated to one

spoken syllable, which is composed of an Initial unit and a Final

unit. The Initial is typically a consonant and the Final comprises

a vowel nucleus, followed by optional nasal and stop coda. For

subword acoustic modeling in Cantonese ASR, we use a phone

set that consists of 19 consonants and 13 vowels.

Clinical assessment of SSD is based on subjective evalu-

ation of the production of specific speech sounds. A child is

considered to have SSD, if he/she is not able to pronounce cer-

tain speech sounds correctly beyond the expected age. Based on

previous research of child speech development, a child should

be able to master all vowel sounds by the age of 3, and the con-

sonants should be correctly pronounced by the age of 6 [11].

For children aged from 2 − 6, speech sound errors occur more

frequently in the initial consonants than vowels. In this work,

we focus on the sound disorder related to the initial consonants.

The most common error patterns, as suggested by clinical ob-

servation, include fronting, backing and deaffrication, which are

caused by incorrect place and/or manner of articulation. This

clinical knowledge is incorporated into the proposed design of

SSD detection system. As shown in Table 1, each Cantonese

initial consonant can be characterized by a set of speech at-

tributes that describe the manner, place of articulation and the

aspiration status [12].

2.2. Speech corpus

This work is carried out on CUChild127, which is a newly col-

lected large-scale database of child speech. The database is de-

veloped to support research on automatic assessment of SSD

in Cantonese-speaking pre-school children [8]. It contains the

speech collected from 1, 500 children (aged 3 − 6) in Hong

Kong. Among them, 310 children were found to have SSD

based on subjective assessment with the Hong Kong Cantonese

Articulation Test (HKCAT) [13]. During data collection, each

child subject was asked to read a list of 127 Cantonese words (1
to 4 syllables in length), which cover all of the 19 consonants

and 13 vowels in Cantonese.

3. ASR-based posterior features

3.1. Phone posterior features

Phone posterior features are generated using an ASR system

with a phone-based acoustic model. The modeling units cover

the 19 consonants and 13 vowels. The audio recordings of 150
speakers selected from CUChild127 are used as training data.

For each speaker, there are 127 word utterances, accompanied

by their syllable-level transcriptions. A pronunciation lexicon

that contains 689 syllables is used to convert the syllable tran-

scription into a phone sequence. For example, the Cantonese

syllable /tau/ is decomposed into three phones, “t”, “a”, “u:”.

The acoustic features used for acoustic model train-

ing are 40-dimensional MFCCs. The acoustic model

is built based on a time-delay neural network (TDNN),

which contains 6 hidden layers with 1024 neurons per

layer. The context configuration for each layer of TDNN is

{[−2, 2], {0}, {−1, 2}, {−3, 3}, {−3, 3}, {−7, 2}}. Rectified

linear unit (ReLU) followed by re-normalization is applied to

each hidden layer. The softmax activation function is applied in

the output layer. 1408 neurons of the output layer correspond to

the tied tri-phone states (senones). Time alignment of the state-

level senones are obtained from a context-dependent GMM-

HMM (CD-GMM-HMM) acoustic model. For the TDNN

Table 1: Speech attributes and their corresponding Cantonese

initial consonants labeled with the Jyut-Ping scheme

Category Attribute Phone Set

Plosive [b] [p] [g] [k] [d] [t] [gw] [kw]

Nasal [m] [n] [ng]

Affricate [z] [c]

Fricative [s] [f] [h]

Glide [j] [w]

Manner

Liquid [l]

Aspirated [p] [t] [k] [kw] [c]

Unaspirated [b] [d] [g] [gw] [z]Aspiration

N/A [s] [f] [h] [j] [w] [l] [m] [n] [ng]

Alveolar [d] [t] [z][c] [s] [j]

Lateral [l]

Labial [b] [p] [w] [m]

Velar [g] [k] [ng]

Velar-labial [gw] [kw]

Dental-labial [f]

Place

Vocal [h]

acoustic model, a syllable error rate of 16.43% was attained in

the syllable recognition task assuming all Cantonese syllables

have equal probability.

With this ASR system, we extract frame-level phone poste-

rior features. Each of modeled phones is associated with a set

of senones in the softmax layer. Phone posterior probability can

be calculated by summing up the senone posteriors associated

to the same phone from the softmax layer. As a result, a 33-

dimensional (including the silence model) frame-level phone

posterior feature vector is obtained from the 1408 senones.

3.2. Speech attribute features

To obtain speech attribute features, we train three different

acoustic models that model the variation of articulation manner,

articulation place and aspiration respectively. The three acoustic

models have the same architecture as the phone-based acoustic

model. The training data are also the same. The only differ-

ence is that the phone sequence representation is changed to

speech attribute sequence. For consonants, the phone-attribute

mapping is based on Table 1. All vowels are grouped together,

being represented by a single modeling unit. For example, the

syllable /tau/ is represented by the model sequence of “plosive”-

“vowel” in terms of articulation manner.

Similar to the phone-based model, frame-level speech at-

tribute posterior feature vectors are obtained by summing up

the neuron outputs corresponding to the same speech attribute.

The dimensions of speech attribute posterior feature vectors are

14, 16 and 8 for articulation manner, articulation place and as-

piration respectively.

4. SSD detection with Siamese network

In [14], the Siamese network was successfully applied to assess

semantic similarity between sentences. Motivated by this work,

we propose a child SSD detection system, which measures the

similarity between a pair of phones using a Siamese network.

Specifically, a sound disorder is detected if the claimed phone

is classified as being distinct from the canonical phone (pro-

nounced correctly) according to the measured similarity. Figure

1 illustrates the proposed system design. The system takes two

phone segments as input and computes frame-level ASR pos-

terior features for each of them as described above. A binary
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classifier based on Siamese network is used to compare the two

resulted feature sequences and decide on whether they are the

same phone or not.

4.1. Feature representation

Each utterance in our speech corpus contains a spoken word

(one of the 127 test words). As mentioned earlier, child SSD

typically concerns a specific initial consonant in each test word.

Phone-level forced alignment is performed using a GMM-

HMM acoustic model to locate and extract the designated phone

segment. Subsequently frame-level posterior features are com-

puted from the segment, as described in Section 3. As a result, a

variable-length sequence of feature vectors is obtained. Each of

the feature vectors is formed by appending four types of poste-

rior features, namely phone posteriors, articulation manner pos-

teriors, articulation place posteriors and aspiration posteriors.

4.2. Siamese network classifier

As shown in Figure 1, the Siamese network classifier takes in

two input feature sequences, which may have different lengths.

The classifier gives a positive output if the two input segments

are from the same phone category and negative output if they

are different phones. A detailed architecture of the classifier is

shown as Figure 2. The network contains two identical neural

networks with shared parameters [15].

GRU Encoder: Recurrent neural network (RNN) is commonly

adopted to deal with sequence classification problem. Similar

to long short-term memory (LSTM), the gated recurrent unit

(GRU) is an extension of conventional RNN to alleviate the gra-

dient vanishing problem. As a modification of LSTM, GRU can

speed up training with simpler structure [16]. In our work, GRU

is used to embed a sequence of input data into a new feature rep-

resentation of fixed size. With the feature transformation, it is

expected that a positive pair of phones (same phone category)

are pulled closer and a negative pair of phones are pushed far-

ther away from each other. The GRU has 2 hidden layers with

200 memory cells per layer. Bi-directional GRU (BiGRU) is

attempted for further improvement of the performance.

Similarity Computation Layer: The similarity is measured by

the element-wise absolute difference between the embedding

features, i.e., |v1 − v2|, which is a 200 dimensional feature vec-

tor. It is used as the input for subsequent binary classification.

Fully-Connected Layer: At the top of the architecture there

are two fully connected layers. ReLU is used as the activation

function in these layers. The Sigmoid function is used in the
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Figure 1: The framework of child speech disorder detection sys-

tem
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Figure 2: The structure of the binary classifier based on Siamese

network

output layer, which generates a binary decision. The Sigmoid

output value approaching 1 represents the segments in a pair

are more likely to be in the same phone category. Otherwise the

Sigmoid output value is approaching 0.

4.3. Classifier training

Training the Siamese network classifier in Figure 2 requires

pairs of phone segments. In our work, the training segments

are obtained by applying forced alignment on the spoken word

utterances from 150 normal child speakers in the CUChild127

database (see Section 2). Each segment of initial consonant

is paired with one segment of the same phone and four seg-

ments of other phones. This arrangement leads to a total of

67, 800 positive training pairs and 271, 200 negative training

pairs. For better generalization in learning, vowel segments are

also included in the negative pairs. In supervised training of the

Siamese network, the positive training pairs are labeled with

target output 1 while the negative pairs are labeled with 0. The

GRU is first initialized by orthogonal initialization. The binary

cross entropy is used as loss function which is optimized by the

stochastic gradient descent (SGD) algorithm. We fix the mini-

batch size of 128 with learning rate of 10−2.

5. Experiments

5.1. Preparation for test data

The proposed system is tested on the task of detecting typi-

cal initial consonant production errors. Similar to the process-

ing of training data, the test consonant segments are obtained

by forced alignment with the same acoustic model. The test

data comprises word utterances of normal speech from 50 child

speakers and word utterances of disordered speech from another

35 speakers in CUChild127. However, the number of correctly

produced initial consonants is much higher than that of mis-

pronounced initial consonants. In order to augment disordered

speech, artificial errors are created from normal speech by re-

placing the claimed initial consonant with another one. The

replacement rule is a random process. As a result, there are

totally 2, 630 correctly produced initial consonants, 2, 630 arti-

ficial consonant errors and 640 real consonant errors.

5.2. Experimental setup

Experiments are carried out separately in detecting artificial er-

rors and real errors as described in Section 5.1. Each test seg-
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Table 2: Classification performance on detecting artificial consonant errors of two Siamese models, using filter-bank features, phone

posterior features and Phone + Attribute posterior features

Model
Filter-bank Phone posterior Phone+Attribute

Accuracy AUC Precision/Recall Accuracy AUC Precision/Recall Accuracy AUC Precision/Recall

Siamese-GRU 64.4% 0.697 0.613/0.768 91.3% 0.961 0.941/0.856 93.3% 0.962 0.937/0.900

Siamese-BiGRU 80.7% 0.918 0.889/0.702 92.7% 0.963 0.940/0.883 94.1% 0.965 0.942/0.910

ment is labeled with a claimed phone category. The Siamese

network determines whether the real production of the test seg-

ment matches the claimed phone category. This is implemented

by pairwise comparison of the test segment to all canonically

pronounced training segments corresponding to this claimed

phone category. A set of Sigmoid outputs are thus obtained.

The binary decision on whether the test segment of initial con-

sonant is disordered depends on the average of these Sigmoid

outputs. If the average value is lower than the pre-defined

threshold, the test segment is classified as a disorder, otherwise

it is classified as a correct pronunciation. In this work, threshold

is tuned to obtain the highest accuracy. The Siamese network

with uni-directional GRU (Siamese-GRU) and bi-directional

GRU (Siamese-BiGRU) are compared to see the capacity of fea-

ture embedding. Moreover, 40-dimension filter-bank features,

33-dimension phone posterior features and 71-dimension (33 +

14 + 16 + 8) composite posterior features (Phone + Attribute

features) are evaluated with the proposed system.

Four quantitative metrics, namely accuracy, precision, re-

call and Area Under receiver operating characteristics Curve

(AUC) [17] are used for performance evaluation on the pro-

posed system. A good system should optimize all these metrics

simultaneously.

5.3. Experimental results and discussion

Table 2 shows the performance evaluation results of detect-

ing the artificial initial consonant errors. The Siamese-BiGRU

based system and the Siamese-GRU based system are com-

pared. Three different types of input features are adopted,

which are filter-bank features, phone posterior features and

Phone+Attribute features. Test data is composed of 2, 630 cor-

rectly produced initial consonants and 2, 630 artificial conso-

nant errors, which cover all the initial consonant categories ex-

cept the consonant [n]. For each consonant category, the cor-

rectly produced samples and the mispronounced samples are

equal. As shown in Table 2, the Siamese network with Bi-

GRU encoder outperforms that with GRU encoder when us-

ing the same type of input features. It is expected that the

BiGRU encoder has better ability to represent the production

of phones than the GRU encoder. On the other hand, using

Phone+Attribute features makes further improvements to the

detection results compared to filter-bank features and phone

posterior features. This demonstrates that using phone poste-

rior features appended with articulatory-related information is

more robust to detect the consonant errors. Finally, the Siamese-

BiGRU system using Phone+Attribute features achieves the

best results, with the accuracy and the AUC score being 94.1%
and 0.965 respectively. This implies that our proposed system

based on the Siamese network has potential in distinguishing

the disordered speech from the normal speech.

The experimental results of detecting the real consonant er-

rors from child disordered speech are shown in Table 3. The

Siamese-BiGRU based system using Phone+Attribute features

is applied in this experiment. Five common types of error pat-

Table 3: Detection results of real disordered speech: The errors

are described as the form of [claimed phone] - [real production]

Error Patterns
Speech

Attibute
Errors Number AUC

Fronting

Place

[k] - [t] 18 0.972

[t] - [k] 63 0.909

Backing
[g] - [d] 50 0.849

[d] - [g] 59 0.837

Deaspiration Aspiration

[t] - [d] 143 0.971

[k] - [g] 112 0.936

[c] - [z] 83 0.914

Deaffrication Manner +

Aspiration

[c] - [s] 38 0.889

Deaffrication+Stopping [c] - [d] 74 0.977

terns in SSD are summarized from the real consonant errors,

namely fronting, backing, deaspiration, deaffrication and stop-

ping. For each type of error, the number of error samples and

the number of correctly produced samples are identical. From

Table 3, the following observations can be made:

• The highest AUC score is achived by detecting the error

[c] - [d] that is related to two error patterns:deaffrication

and stopping. It is therefore reasonable to assume that

our proposed system performs better in detecting the er-

rors involved more error patterns.

• The detection accuracy of the consonant pairs of [d] -

[g] and [g] - [d] are worse than that of [t] - [k] and [k] -

[t]. This suggests that the system should be improved to

detect the mispronunciation between two voiced conso-

nants.

6. Conclusions

We propose a child speech disorder detection system based on

Siamese recurrent network to detect initial consonant errors.

With help of the pair-based structure of Siamese network, this

work mitigates the lack of properly annotated disordered speech

in three aspects: 1) The system is trained only with normal

speech; 2) Pairwise training naturally augment the amount of

training data; 3) The disorder detection of all the phone cate-

gories can be implemented in one system, without training mul-

tiple systems for each phone category individually. In addition,

speech attribute feature is adopted to provide further improve-

ments and comprehensive diagnostic feedback. The results are

promising since careful selection of positive pairs and negative

pairs could further improve the performance of the system.
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