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Abstract
Recent studies have shown that Deep Learning based single-
channel speech separation systems perform worse for same-
gender mixtures than for different-gender mixtures. In this
work, we provide for a more detailed analysis of the respec-
tive impact of the fundamental frequency and the vocal tract
length on the system performance. While both parameters are
correlated with gender, the vocal tract length is a fixed speaker-
specific parameter, whereas the fundamental frequency can vary
for different speaking styles. We show that the difference of the
fundamental frequency medians of two speakers in a mixture
is highly correlated with the SDR performance while the dif-
ference of the vocal tract lengths is not. Our analysis allows us
to do performance predictions for given speakers based on mea-
surements of their fundamental frequency. Furthermore we con-
clude that current systems separate (short-term) speaking styles
rather than (long-term) speaker characteristics.
Index Terms: Chimera++, Speech Separation, Deep Cluster-
ing, Permutation Invariant Training, Fundamental Frequency,
Vocal Tract Length

1. Introduction
Since the upcoming of Deep Learning techniques, speech sep-
aration systems have improved significantly such that they are
now useful for real-world scenarios. A multitude of approaches
have been proposed, such as Deep Clustering [1], Permutation
Invariant Training (PIT) [2, 3], Deep Attractor Networks [4, 5]
and End-to-End systems [6, 7]. While the average separation
performance for a mixture of two speakers has risen to quite
impressive levels, we see a large variance of the performance
for different mixture examples. For instance, publications on
speech separation have reported a performance gap between
same-gender and different-gender mixtures [8]. For a pair of
same-gender speakers, we know that systems will perform sta-
tistically below average and this constellation is not a rare cor-
ner case but instead something that will definitely occur fre-
quently in the real-world.

For a speech separation system to be accepted in real-world
speech communication systems, only optimizing for the aver-
age performance is thus not sufficient. Instead, it is of utmost
importance to avoid constellations where the system fails, as
indicated e.g. by low or even negative Source-to-Distortion Ra-
tio (SDR)-improvement scores. To be able to improve systems
to avoid such negative outliers, we need to understand which pa-
rameters of the competing speakers are dominant to predict the
system performance. Thus, the goal of this paper is to provide
for a deeper understanding of these limiting factors of state-of-
the-art speech separation systems. In particular, we investigate
if the dominant factor is the time-invariant speaker-specific Vo-
cal Tract Length (VTL), or if it is rather the time-variant fun-
damental frequency. Note that this is an important difference,
as the fundamental frequency changes (1) within a sentence (in-
tonation), (2) in different environments (Lombard effect), but

(3) can also voluntarily be changed and imitated. Thus, if the
VTL were the dominant parameter for system performance, we
would be able to conclude that the performance of the system
is truly speaker dependent. However, if the fundamental fre-
quency is dominant for performance, the system performance
also strongly depends on the speaking-style. As both parameters
can be estimated from signals, the results of this work also pro-
vide interesting insights to develop algorithms that predict the
performance of a speech separation system in real-time. Such a
prediction can for instance allow to turn the speech separation
system off, if negative performance is likely.

We start our analysis with an overview of state-of-the art
speech separation systems (Section 2) and the introduction to
the considered speaker-specific parameters (Section 3). In Sec-
tion 4, we analyze the influence of the VTL and the fundamen-
tal frequency on the performance of speech separation systems.
We will then present and discuss results (Section 5) and draw
conclusions in Section 6.

2. Deep Learning based Speech Separation
Our speech separation experiments are based on the Chimera++
network proposed in [9] which was introduced with slight varia-
tions under the name Chimera in [10] and separates speech mix-
tures via time-frequency masking [11]. We choose Chimera++,
as it combines the strengths of Deep Clustering and PIT.

For both Deep Clustering and PIT, an additive mixture of
sources in the Short-Time Fourier Transform (STFT) domain is
assumed, i.e.

X(k, l) =

C∑
c=1

Sc(k, l) (1)

where X(k, l) and Sc(k, l) denote the complex STFT values at
frequency bin k and time index l for the mixture and C source
signals. The goal is then to find so called STFT masks Mc for
each source signal such that we have

Ŝc(k, l) = X(k, l) Mc(k, l), (2)

where Ŝc(k, l) is an estimation of the original source signal
Sc(k, l). The estimated time-domain signal of speaker c is re-
constructed by applying the inverse STFT to Ŝc.

To obtain the speaker masks, in PIT a Deep Neural network
is trained which uses the mixture magnitudes |X(k, l)| as the
input and the ground truth STFT data of the source signals as
targets to compute the training loss as

LPIT =

min
π∈P

C∑
c=1

K∑
k=1

L∑
l=1

∣∣|X(k, l)|Mc(k, l)− |Sπ(c)(k, l)|
∣∣2 , (3)

where P is the set of permutations on {1, ..., C}, |Sc| the mag-
nitude of the c-th reference source, K is the total number of
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Figure 1: SDR improvement comparison for same-gender mix-
tures vs. different-gender mixtures for the WSJ0-MIX2-0dB test
set. Performance is significantly worse for same-gender mix-
tures.

frequency bins and L is the number of time frames. The ba-
sic principle of this loss function is to minimize the error that
the output masks produce independent of the permutation of the
generated masks.

Deep Clustering uses a Deep Neural Network to map each
STFT bin to an embedding space of dimensionality D. The
loss function drives the network to map STFT bins of different
speakers to orthogonal regions of the embedding space. Separa-
tion could now be done using a simple k-means clustering. In-
stead, the Chimera++ network, as proposed in [9], uses the PIT
objective to obtain the speaker masks directly from the Neural
Network while using the Deep Clustering training objective as a
second target at training time. In this setup, the Deep Clustering
objective works as a regularizer and improves the quality of the
masks generated at the PIT output.

The performance of speech separation systems is com-
monly measured with the SDR [12] which compares a distorted
source signal with the ground truth source signal. As part of
the measurement, three types of distortion signals (interference,
noise, artifacts) are computed and combined as

SDR := 10 log10

||starget||2

||einterf + enoise + eartif ||2
. (4)

For a processed mixture signal, we measure the separa-
tion performance as the SDR improvement which compares the
SDR of the unprocessed mixture signal to the SDR of the esti-
mated source signal.

3. Considered Speaker-Specific Parameters
[8] reports the average SDR improvements for same-gender
mixtures versus mixtures of opposite genders for Deep Clus-
tering. Results show a significant performance gap for same-
gender mixtures of around 3.1 dB of average SDR improve-
ment. In Figure 1 we plot the histogram of the SDR improve-
ment for same-gender and different-gender mixtures for our im-
plementation of Chimera++ which is described in detail in sec-
tion 4.3. As reported in [8], it shows that the average SDR
improvement differs for same-gender as compared to different-
gender mixtures. It is notable that also the standard deviation is
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Figure 2: Estimated Vocal Tract Length vs. Estimated Median
Fundamental Frequency f0 for 6000 utterances of the WSJ0-
MIX2 test set. Samples are marked differently for male and fe-
male speakers.

much higher for same-gender mixtures and we see more neg-
ative outliers. This observation is the core motivation for a
detailed analysis of speaker-specific influencing factors on the
performance of speech separation systems in this work. For
the analysis on the influence of speaker-specific characteristics,
we introduce two parameters which are correlated to gender,
namely the fundamental frequency f0 and the VTL.

The VTL is a physiological feature of a person and can be
measured via Magnetic Resonance Imaging. It is measured as
the length of the curved tube starting at the vocal chords and
ending at the mouth entrance. A method to estimate the VTL
from a speech signal is described in detail in section 4.4. Note
that the VTL is a fixed time-invariant parameter per speaker.

The fundamental frequency is a time-varying parameter for
a fixed speaker. It can only be measured during voiced frames of
speech which are characterized by a periodic excitation signal
in the source-filter model of speech (compare e.g. [13, p. 10ff]).
In an ideal speech signal, f0 is the inverse of the period in which
the signal repeats itself on a small time scale. In any real-world
speech signal, f0 will show variations within phrases and even
within single vowels. For example, usually at the end of a ques-
tion f0 will increase.

We choose to analyze the impact of VTL and f0 on the SDR
performance for the following reasons: First, the parameters are
highly correlated with gender and we know that gender influ-
ences the SDR performance. In Figure 2 we plot the median
vocal tract length and the fundamental frequency for 6000 ut-
terances of the WSJ0-MIX2 test set [1]. It shows that the distri-
bution of VTL is significantly different for male than for female
speakers and the same is true for f0. Second, within a gen-
der category the two parameters show little correlation which
is illustrated by the distribution of points for a certain color in
Figure 2. Due to this the two parameters may show very dif-
ferent influences on the SDR performance. And thirdly, while
VTL is a static parameter for a fixed speaker, f0 in contrast is
a time-varying parameter, so an influence of either one of them
would have different implications as discussed in sections 1 and
5.
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4. Analysis Framework
Now that we have discussed the theoretical basics and our moti-
vation, in this section we give a detailed description of our setup
for the analysis.

4.1. Chimera++ Setup

As training data, we use the 20 hour training set of the publicly
available WSJ0-MIX2 data set [1] at 8 kHz sample rate which
contains two speaker mixtures mixed at a power ratio uniformly
distributed between 0 to 10 dB. For preprocessing, all utter-
ances of the data set are analyzed with an STFT with a window
size of 32 ms and a hop size of 8 ms using the square root Hann
window. As the last step of preprocessing, we compute the log-
magnitude values of the complex STFT data. The data is then
cut into pieces of 400 frames which equals roughly 3.2 seconds
per meta-frame, where each frame holds 129 frequency bins.

The network architecture is taken from [9] and begins with
4 Bidirectional LSTM (BLSTM) layers with 600 units for each
layer and direction. The last BLSTM layer feeds into two sepa-
rate fully connected layers, namely (1) the Deep Clustering out-
put layer with 40× 129× 400 units where 40 is the embedding
dimension D and (2) the PIT output layer with 2 × 129 × 400
units where 2 is the number of speakers. As the training target
for PIT, we use the truncated phase-sensitive spectrum approx-
imation technique [9]. For the Deep Clustering regularization
objective we use ideal binary masks and a weighting scheme
with magnitude ratio masks as proposed in [9]. The α param-
eter of Chimera++, which weights the two objectives, was de-
termined empirically to weight the Deep Clustering objective
function with α = 0.9975 and the PIT objective function with
1−α = 0.0025. The Deep Clustering output layer is discarded
at test time.

This setup leads to an average SDR improvement of 10.0
dB on the WSJ0-MIX2 test set where, for comparison, [9] re-
ports 11.2 dB improvement for a similar setup. We assume
that this gap comes from minor implementational details and
from [9] using the so-called whitened k-means objective which
we have not utilized. Nonetheless, we strongly believe that the
findings based on our implementation are transferable to other
Chimera++ implementations.

4.2. SDR Evaluation

To evaluate the SDR performance we use a modified version of
the test set of the WSJ0-MIX2 data set. The original set con-
tains mixtures at power ratios from 0 to 10 dB, but this variable
is an influencing factor on the SDR performance. For a more
controlled experiment of influencing factors to the SDR perfor-
mance we need to discard it. Our modified WSJ0-MIX2-0dB
set is hence the exact same set as the original except that the
power ratio within a mixture is always at 0 dB. By only modi-
fying this parameter compared to the original WSJ0-MIX2 we
ensure that our test set holds no utterances or speakers that were
used during training.

4.3. Fundamental Frequency Estimation

The fundamental frequency was measured using an auto-
correlation based method that additionally reduces octave errors
by introducing an octave jump cost function [14]. It was evalu-
ated with a step size of 10 ms using the Praat Speech Analyzer
Software [15]. For a final estimation for a full utterance we use
the median f0 over all voiced frames of the utterance.

Table 1: Formant weighting coefficients for VTL estimation as
proposed in [16]

β1 β2 β3 β4

0.022 0.136 0.254 0.637

4.4. Vocal Tract Length Estimation

To estimate the VTL we make use of methods described in [16]
which are based on formant measurements and a physical model
of the vocal tract. For voiced speech frames, we can get an
estimate of the vocal tract length with the help of the lowest
resonance frequency of a lossless uniform vocal tract Φ, which
depends on the n-th formant Fn as

Φ =
Fn

2n− 1
. (5)

To map multiple formants to a single quantity, a weighted
sum is used as

Φ̂ =

N∑
n=1

βnFn
2n− 1

. (6)

In practice, we consider the first four formants (N = 4) and set
βn as proposed in [16] and shown in Table 1.

Once we have computed a resonance frequency estimate Φ̂
we can infer the VTL estimate using

L =
c

4Φ
, (7)

where c = 350 m/s denotes the speed of sound within the vocal
tract.

To get a VTL estimate for a full utterance, we first detect
signal frames with voiced speech, then estimate the formants at
voiced speech frames, infer the VTL from measurements with
help of equations (6) and (7), and finally take the median value
over all voiced frames. To detect the voiced speech frames and
formants we again use Praat [14, 15] where the formant anal-
ysis is based on a short-term Linear Predictive Coding (LPC)
analysis [17]. To measure the formants F1 to F4 we use a ver-
sion of the WSJ0-MIX-0dB data set at 16000 Hz sample rate.
This sample rate is necessary because formant F4 usually lies in
the region of 3000 to 4300 Hz and therefore cannot be tracked
correctly in a signal with 8000 Hz sample rate.

5. Results and Discussion
We now analyze how differences in the VTL and f0 impact the
SDR performance for a two-speaker mixture. If we denote the
median fundamental frequency of speaker n by f0,n and the
respective vocal tract length by VTLn, these differences are
defined by ∆f0 = |f0,1−f0,2| and ∆VTL = |VTL1−VTL2|.

In Figure 3, we plot the SDR improvement versus ∆f0 for
3000 mixtures of the WSJ0-MIX2-0dB test set. It shows that
∆f0 is an important influencing factor to the SDR performance.
When the ∆f0 is above 60 Hz, the SDR performance of the
system is at its best, with a mean value of 12.0 dB SDR im-
provement and a relatively low standard deviation. There are
no far negative outliers for this region of ∆f0 and all mixtures
show an SDR improvement of 5.6 dB or higher. For ∆f0 val-
ues below 60 Hz we see a steady decline of the mean SDR im-
provement and it is lowest for ∆f0 close to 0 Hz. The stan-
dard deviation goes up when the ∆f0 gets smaller and in this
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Figure 3: 2-D Histogram of the number of realizations of a cer-
tain SDR improvement against ∆f0 for the 3000 mixtures of the
WSJ0-MIX2-0dB test set. A strong decline of the SDR perfor-
mance can be seen for the ∆f0 below 60 Hz. Above 60 Hz there
are no far outliers. Correlation factor: 0.58.

region there are hardly any mixtures with a separation perfor-
mance that reaches the average performance for mixtures with
∆f0 above 60 Hz. The correlation factor between ∆f0 and the
SDR improvement is at 0.58. If we only take into account mix-
tures with ∆f0 < 60 Hz, we have an even higher correlation of
0.66. The limit at 60 Hz is reasonable as there the system seems
to reach an upper performance bound.

If we do the same analysis for the VTL difference we can
see that this gender-dependent parameter is much less an influ-
ence to the SDR performance than the ∆f0. In Figure 4, we plot
the SDR improvement versus ∆VTL under the same conditions
as in Figure 3. We see that throughout all regions of ∆VTL the
median of the distribution does not significantly change. We
can furthermore observe that for lower ∆VTL we have a higher
number of negative outliers but the negative influence of similar
vocal tract lengths (small ∆VTL) is significantly smaller than
in the case of f0. The correlation factor of ∆VTL and SDR
improvement is only at 0.23 and thus much lower than for the
∆f0.

Our results provide for a deeper understanding of the known
performance differences for same-gender and different-gender
mixtures. We have shown that while the parameter f0 that is
correlated with gender has an important influence on the per-
formance, the gender-correlated parameter VTL influences the
performance very weakly. Thus, we are now able to make pre-
dictions about the SDR performance for a mixture if we know
the median f0 of the respective speakers. This is an improve-
ment to the gender category which should be illustrated with a
short example: Assume that we have a male speaker with a rela-
tively high-pitched voice and a female speaker with a relatively
low-pitched voice. From the formerly known performance dif-
ferences for same-gender and different-gender we may expect
that the separation system should perform above its average
performance for this mixture. But given the set of speakers
as described, our new findings suggest that the system will
perform below its average performance, because we have two
speakers with a similar median f0. In the opposite case where
we have two speakers with a largely different median f0 (i.e.
∆f0 > 60 Hz) we now expect that the system makes no grave
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Figure 4: 2-D Histogram of the number of realizations of a cer-
tain SDR improvement against vocal tract length differences for
the 3000 mixtures of the WSJ0-MIX2-0dB test set. A strong de-
cline as in Fig. 3 cannot be seen here. Correlation factor: 0.23.

errors as we have not seen any negative outliers in our measure-
ments. Again, for the same-gender/different-gender categoriza-
tion we are not able to make such strong predictions.

Our results show furthermore that the dominant factor is the
time-variant fundamental frequency and not the time-invariant
speaker-specific VTL. As mentioned above, the fundamental
frequency of a speaker may change within a sentence (intona-
tion), in different environments (e.g. due to the Lombard effect)
and can also be varied on purpose. Thus, we conclude that the
system performance depends not only on the speakers within a
mixture but also on the (time-varying) speaking-style of these
speakers. By means of imitating the fundamental frequency
this also implies that separation systems can be willingly un-
dermined.

6. Conclusions
With our analysis we have shown that the speaker-specific me-
dian f0 can be utilized to make predictions about the SDR per-
formance of a speech separation system while the VTL can
not. By knowing the f0 of speakers in a mixture we are able
to make stronger predictions on the SDR performance than the
predictions based on same-gender/different-gender categories.
We have also shown that the dominant influencing factor is the
time-varying fundamental frequency and we conclude that the
performance of speech separation systems does not only depend
on the speakers but also on the current speaking-style of the
speakers. In future work, it should be explored why f0 has this
strong influence on the performance and ideally we find meth-
ods that can exploit this knowledge to improve the weaknesses
of current systems. Also, future work should be aware of the
dependence of the performance on speaking styles and try to
avoid producing far negative performance outliers for any com-
bination of speakers and speaking styles.
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