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Abstract

Synthesising spontaneous speech is a difficult task due to disflu-
encies, high variability and syntactic conventions different from
those of written language. Using found data, as opposed to lab-
recorded conversations, for speech synthesis adds to these chal-
lenges because of overlapping speech and the lack of control
over recording conditions. In this paper we address these chal-
lenges by using a speaker-dependent CNN-LSTM breath de-
tector to separate continuous recordings into utterances, which
we here apply to extract nine hours of clean single-speaker
breath groups from a conversational podcast. The resulting cor-
pus is transcribed automatically (both lexical items and filler
tokens) and used to build several voices on a Tacotron 2 archi-
tecture. Listening tests show: i) pronunciation accuracy im-
proved with phonetic input and transfer learning; ii) it is pos-
sible to create a more fluent conversational voice by training
on data without filled pauses; and iii) the presence of filled
pauses improved perceived speaker authenticity. Another listen-
ing test showed the found podcast voice to be more appropri-
ate for prompts from both public speeches and casual conversa-
tions, compared to synthesis from found read speech and from
a manually transcribed lab-recorded spontaneous conversation.
Index Terms: Speech synthesis, conversational speech, spon-
taneous speech, hesitations, disfluencies, found data

1. Introduction

Conversational speaking systems are becoming ever more wide-
spread. However, interaction quality is not reaching its full po-
tential [1], possibly due to issues with the voice. Adapting read-
speech voices for synthesising conversations is not straightfor-
ward [2] and it stands to reason that interactions might improve
if dialogue systems were able to speak truly conversationally,
rather than with voices based on written prompts read aloud.
While there has been some past work on building speech
synthesisers from spontaneous speech audio [3, 4, 5, 6], this
was restricted to small, hand-annotated corpora and statist-
ical parametric speech synthesisers. Bigger corpora can usu-
ally be sourced from found speech recordings, but the output
quality has been disappointing, e.g., [7]. Instead, the text-to-
speech (TTS) field has hitherto concentrated on audiobook data
as convenient source of transcribed single-speaker audio, e.g.,
[8,9, 10, 11]. Such speech materials often feature acted ex-
pressive speaking styles [11], which are likely to to be benefi-
cial for conversational applications [12], but ultimately, they are
recordings of a speaker reading written text aloud. Using genu-
inely conversational speech audio found in the wild has seldom
(if ever) been attempted for building a complete TTS system,
and for good reason: Up until recently, necessary speech tech-
nologies such as ASR, forced alignment and the underlying TTS
engines were not sufficiently robust to enable good-quality syn-
thesis from such data. In other words, previous research has
considered TTS from found data or spontaneous conversational
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corpora, but not from speech with both these characteristics.

Found conversational data tends to be messy, with uncon-
ventional sentence structures and overlapping speech. We have
previously proposed [13] to address these issues through the use
of a speaker-dependent breath detector, summarised in Sec. 2.2.
We proposed using breath events for segmentation since speak-
ers’ respiratory patterns relate to the speech planning process in
spontaneous conversations [14] and are highly correlated with
major prosodic breaks [15] and turn-taking behaviour [16].

In this paper, we describe and evaluate neural seq2seq
TTS from a large corpus of found, spontaneous conversational
speech, originating from a podcast. We compare the resulting
synthesiser to TTS trained on found (but read) speech record-
ings as well as spontaneous conversational (but lab-recorded
and carefully transcribed) speech. Our experiments investig-
ate the suitability of different speech corpora for synthesising
prompts from different genres — in particular, whether TTS from
automatically-transcribed, spontaneous conversational speech
is appropriate for spontaneous spoken genres — as well as the
impact of fluency on speaker perception and appropriateness.

2. Corpus
2.1. Found podcast data

The data we use in this study is an untranscribed weekly techno-
logy podcast, called the “ThinkComputers” podcast, available
in the public domain via the Internet Archive (archive.org). The
recordings contain product reviews and discussions of techno-
logy news from two male speakers of American English mixed
into a single audio channel. At the time of writing, over 150
episodes are available online, each about an hour long. In this
paper we selected episodes 129-158 (excluding eps. 137 and
149 because of recording quality issues, and 157 which was
missing). Altogether 27 episodes (29 hours of recordings) were
used. The audio was downloaded in Ogg Vorbis format (71
kbpbs at 48 kHz) and then converted to raw audio. We selected
the speaker with the most air time for corpus building.

2.2. Segmentation

To segment the data into clean, well-defined utterances we
used the speaker-dependent breath detection method proposed
in [13]. It uses a convolutional-recurrent network on mel-
spectrograms and zero-crossing rate, trained on a small amount
of coarsely annotated seed data. This classifier proved effect-
ive in identifying breath events and speech segments for each
individual speaker, as well as segments containing overlapping
speech from both speakers. With this method we obtained 8,457
speech segments from the 27 episodes, starting with a breath
event from the target speaker. For speech segments longer than
9 seconds without a final breath, we set the ending point at
the location of the last silence of a minimum of 100 ms before
reaching 9 s. Next, we reviewed the results of the automatic se-
lection by listening to all extracted utterances, to exclude ones
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containing noise (e.g., typing), laughter and overlapping speech
not spotted by the method, such as short backchannels. 229 seg-
ments were found to contain a missed breath in the middle, but
because they were a concatenation of two short breath groups,
we included them as is. In total, the final database comprised
6,218 breath groups, 549 min (9 h 9 min) of audio. We will
henceforth refer to this as TCC, ThinkComputers Corpus.

2.3. Transcription

It is resource-demanding and challenging to transcribe 9 hours
of jargon-laden speech by hand. Instead we used the Google
Cloud Speech API [17], specifically the enhanced video model
with automatic punctuation for US English. Weekly podcast
topic keywords, found on archive.org for each episode, were ad-
ded as ‘phrase hints’ to help identification of brand and product
names and other technology related jargon.

As noted by [18], the Google Speech API generally omits
hesitations such as filled pauses (uh and um). To gain control
over filled pauses (FPs) in the TTS, and to distinguish fluent
and disfluent segments, it was necessary to identify FPs in the
data. This was done using IBM Watson Speech to Text using the
US English BroadbandModel, since it has the option to include
generic Hesitation tokens in the transcription. By combining
this transcript with the output of the Gentle forced aligner [19],
we were able to differentiate between uh, um and remaining dis-
fluencies, and also put these tokens back in the Google API tran-
scription, which we perceived to be slightly more accurate than
the Watson output. In total, 49.7% of the TCC breath groups
were annotated as containing at least one filled pause, with at
most four FPs found in a single breath group.

3. TTS

All voices described in this paper were built using the Tensor-
Flow implementation [20] of the Tacotron 2 spectrogram pre-
diction framework [21]. Input files were sampled at 22.1 kHz.
We used the hyperparameters described in [21], with the follow-
ing changes: mel filterbank spanning 55 Hz to 5.5 kHz for male
voices and 55 Hz to 7.6 kHz for the female voice. To optimise
for training on 4 GPUs (10 GB memory each), a batch size of
48 was used and the number of frames generated at each decod-
ing step was increased to two. For waveform synthesis we used
the Griffin-Lim algorithm [22] with pre-emphasis [20].

4. Evaluation

We carried out three separate evaluations: first a more formal,
annotation-based evaluation to assess pronunciation issues and
conversational features of voices built on the TCC, then a
MUSHRA-like listening test investigating the appropriateness
of the voice on different spoken genres in comparison with other
synthetic voices, and finally a preference test gauging the effect
of FPs on the listeners’ perception of the speaker. The results of
these experiments are discussed and interpreted in Sec. 5.

4.1. Pronunciation and conversational characteristics
4.1.1. Voices and evaluation design

The first evaluation looked at the impact of transfer learning
from read speech with transcriptions, and of phonetic versus
grapheme-based input encoding. Using a similar methodology,
we also assessed how the prevalence of certain spontaneous
conversational style elements in the synthesis output was af-
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fected by removing disfluent utterances from the corpus.

To evaluate pronunciation performance, three voices were
built using different settings. For two of the voices we made use
of transfer learning by first pre-training a voice on the LJSpeech
corpus [10] for 65k iterations, and then changing over to fine-
tune on the TCC from this checkpoint. LJSpeech is a corpus of
13,100 utterances (approximately 24 h) from audiobooks read
by a female speaker of American English. Two input modalit-
ies were considered: grapheme-level input and phoneme-level
input obtained using the g2p_en front-end [23] with the CMU
dictionary [24]. The following voices were compared:

POD-GT-FP  Grapheme-level input with Transfer
learning from LJSpeech; FPs transcribed

POD-PR-FP  Phoneme-level input and Random
initialisation; FPs transcribed

POD-PT-FP  Phoneme-level input with Transfer

learning from LJSpeech; FPs transcribed

We synthesised 40 sets of 10 phonetically balanced “Har-
vard sentences” [25] using each of the three voices. Two listen-
ers assessed the number of mispronounced phones in the 400
sentences, counting only instances where both listeners agreed
that the pronunciation error resulted from a possible encoder
error and not from reduced pronunciations common in spontan-
eous speech.

To study the impact of training-data fluency on the speech
output, we trained a fourth voice — called POD-PT-FLU for flu-
ent — only on the most fluent segments of the TCC. Specifically,
we used the 2,763 TCC breath groups (3 h 31 min) where no
filled pauses and a maximum of 1 other disfluency was found
by the transcription procedure in Sec. 2.3. For the 400 Har-
vard sentences as synthesised by POD-PT-FLU and POD-PT-
FP, annotators were asked to note the number of deleted func-
tion words and the number of repeated syllables. In addition,
they also counted two other style markers frequently occurring
in conversational speech [26], namely the number of times the
determiners ‘the’ and ‘a’ were pronounced with a non-reduced
vowel (as ‘thiy” and ‘ei’, following the notation of [27]) instead
of the reduced schwa vowel. These four aspects were chosen
because a high inter-rater agreement can be expected.

4.1.2. Results

The results of the pronunciation error evaluation are summar-
ised in Tab. 1. Almost all mispronounced phones were vow-
els. Differences in pronunciation error rate were evaluated us-
ing a Z-test between samples. Following Bonferroni correc-
tion POD-PT-FP was found to have significantly lower pronun-
ciation error rate than POD-GT-FP and POD-PR-FP (p<0.001).
The difference between POD-GT-FP and POD-PR-FP was not
significant.

The results of the annotation-based analysis of the conver-
sational features are provided in Tab. 2. The voice trained on
utterances not containing FPs had significantly fewer deletions
(p=0.024) and repeated syllables (p<0.001). There was no sig-
nificant effect on the number of non-reduced pronunciations of

Table 1: Pronunciation assessment of 400 Harvard sentences.

Voice | Pronunciation errors
POD-GT-FP 49
POD-PR-FP 43
POD-PT-FP 13
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Figure 1: Boxplot for evaluation of appropriateness of speaking style for read speech, public speaking and casual conversation.

determiners the and a. We also measured the speech rate of
these two voices on the 400 samples, finding that the fluent
voice, POD-PT-FLU, had a significantly higher speech rate over
POD-PT-FP (4.14 vs. 3.84 syllables per second; p<0.001) even
though there were no FPs present in these prompts.

Table 2: Disfluencies and conversational characteristics in 400
Harvard sentences.

Deletions Repeated ‘the’ ‘a’
Voice syllables  as ‘thiy’ as ‘ei’
POD-PT-FP 15 32 40/422  18/98
POD-PT-FLU ‘ 5 6 577422 13/98

4.2. MUSHRA-like listening test on genre appropriateness
4.2.1. Voices and evaluation design

The goal of this evaluation was to see how the podcast voice
was perceived, compared with voices trained on read speech
and on lab-recorded, manually annotated spontaneous conversa-
tional speech. Specifically, we assessed the appropriateness of
these voices for synthesising speech in different spoken genres,
namely audiobooks, public speaking and casual conversation.
These three genres were selected to cover a range of registers
(formal-informal) and requiring different degrees of speech
planning, from scripted through planned to completely spon-
taneous. Four voices were included in this evaluation:

POD-PT-FP TCC; FPs transcribed (as before)
POD-PT-FLU  Fluent breath groups from TCC; FPs
neither present nor synthesised (as before)
READ-PR Phoneme-input voice with Random init
trained on LJSpeech [10]; no FPs
GAME-PT-FP  Lab-recorded Phoneme-input voice with

Transfer learning from LJSpeech;
FPs transcribed

The GAME-PT-FP voice used 1,767 single-speaker breath
groups (1 h 33 min) from a male speaker of Irish English play-
ing a cognitively-challenging game requiring dialogue. This
was recorded in a lab over separate channels, manually tran-
scribed and segmented as described in [6]. The voice had no-
ticeably better naturalness over the Merlin [28] voice in [6].
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The stimulus prompts selected for this test were as follows:

Read speech 10 utterances originating from the Arctic
Corpus [29]

Public 10 utterances transcribed from political

speaking speeches and keynote talks; 7 of the
prompts contain FPs

Casual 20 utterances from a corpus of casual

conversation  spontaneous conversations collected for the

purposes of speech synthesis by [4]; 11
of the prompts contain FPs

The prompt list and the experiment stimuli are available
under http://www.speech.kth.se/tts-demos/. The test utterances
were chosen such that the genre would be apparent to the
listener from the words alone, e.g., “Nevertheless we found
ourselves once more in the high seat of abundance” (read), “And
once again uh thank you it’s an honour to receive the medal”
(public speaking), “But um yeah we were just kind of driving
around and” (casual conversation). We used 20 instead of 10
prompts from casual spontaneous conversation to better cover
various reduced forms, discourse markers and syntactic forms
not following the conventions of written language.

We carried out a MUSHRA-like listening test with these
prompts using a modified version of WebMUSHRA [30]. Par-
ticipants were recruited through Prolific Academic' and could
listen to and rate the same prompt as spoken by the four differ-
ent systems in parallel. The order of the prompts and systems
were randomised for each listener. Participants were asked to
rate the stimuli based on how well the speaking style matched
the content of the utterance, on a scale from 0 (Bad) to 100
(Excellent), while ignoring differences of gender and accent.

4.2.2. Results

34 subjects completed the experiment, taking on average 22
minutes to complete it. All participants reported having used
headphones for the test.

The systems were compared in pairs using a Wilcoxon
signed-rank test with Bonferroni correction, for a total of 6
pairwise comparisons per genre. For read speech, READ-PR
was rated significantly above each of the spontaneous voices
(p<0.001 for each).

For public speaking, there was no significant difference
between READ-PR and GAME-PT-FP, but both these voices

Uhttps://prolific.ac/



were rated significantly below the POD voices (p<0.001 for
each). Again, no significant difference was found between the
POD-PT-FLU and POD-PT-FP.

For casual conversation prompts, the READ-PR voice was
rated significantly lower than each of the voices built from spon-
taneous speech corpora (p<0.001 for each). The POD-PT-FP
voice was also rated significantly above the GAME-PT-FP voice
(p<0.001), but there was no significant difference between the
POD voices with and without FPs. Looking at only the prompts
containing actual FPs (11 in the casual conversation and 7 in the
public speaking genres) did not seem to influence the results.

4.3. Preference tests on the impact of filled pauses
4.3.1. Voices and evaluation design

To further investigate the effect of filled pauses on the percep-
tion of synthetic voices, we carried out two pairwise prefer-
ence tests between the POD-PT-FP and POD-PT-FLU voices.
The prompts were transcriptions of the first 20 and 22 breath
groups of two Interspeech keynote speeches, concatenated into
chunks of 5 and 3 breath groups, respectively, between 10 and
27 seconds long. The reason for this concatenation was to
enable listeners to form an overall impression of the speaker
without being distracted by specific prosodic realisations of in-
dividual utterances, without overloading their auditory memory
with long speech samples. The POD-PT-FP prompts included
33 filled pauses, of which 16 ums and 17 uhs.

We conducted two separate experiments on the Figure-
Eight crowd-sourcing platform?, one asking “Which speaker
sounds more engaging?”’ and another asking “Which speaker
sounds more authentic?” Listeners were given short descrip-
tions of the concepts (e.g., engaging means a speaker who is
easy to listen to; authentic refers to a speaker who is present-
ing their own genuine content, not acting or reading). It was
possible to answer “They both sound the same”.

4.3.2. Results

Two groups of 25 native English speakers each participated in
the listening test, taking an average of 10 minutes to complete
it. Tests showed no clear listener preference for one voice over
the other in terms of engagement. However, a significant major-
ity of the listeners found the POD-PT-FP voice to sound more
authentic, see Fig. 2.

Which speaker sounds more engaging?
POD-PT-FP POD-PT-FLU
Which speaker sounds more authentic?

POD-PT-FP* (p=0.007) POD-PT-FLU

% 5% 50% 5% 100%

Figure 2: Preference test results. p-values were calculated us-
ing the exact binomial test on the null hypothesis that the fluent
voice is more engaging (thus adding no-preference votes to its

count).

5. Discussion

The results of the pronunciation evaluation show that the com-
bination of phoneme-level input and initialising the synthesiser

Zhttps://www.figure-eight.com/
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on a model of a voice trained on read speech (with transcrip-
tions) via transfer learning reduced the number of pronunciation
errors significantly. It is not straightforward to tell to what de-
gree remaining pronunciation errors are attributable to the use
of automated transcriptions. We also saw that training a voice
on only the fluent parts of the corpus results in a significant
decrease of deleted function words and repeated syllables, but
does not seem to affect the number of non-reduced pronunci-
ation of determiners. This is in line with the findings of [27],
who have shown that human speakers not only choose to say
‘thiy’ to signal imminent problems of the speech planning, but
also as a strategy to maintain as much fluency as possible. To-
gether with the higher speech rate identified for POD-PT-FLU,
we conclude that this version of the voice is representative of
a faster, more fluent speaking style but still retains conversa-
tional characteristics in the synthesised speech. This is con-
firmed by the perceptual evaluation in 4.2, where no significant
differences were seen between the performance of POD-PT-FP
and POD-PT-FLU, despite a high number of filled pauses in the
evaluation data.

As for the effect of fluency on the impression of the speaker,
the pairwise listening test did not indicate that either of the pod-
cast voices sounded more engaging than the other. However, the
presence of FPs seemed to increase the perception of authenti-
city. This suggests that — as long as they are correctly placed
and with appropriate prosody — one can insert filled pauses into
synthetic speech in order to make it come across as more au-
thentic, without sounding less engaging or less appropriate.

In the subjective evaluation of different genres, the system
trained only on read speech was rated as significantly more ap-
propriate for the read speech genre, while the podcast voices
scored the highest in both of the other two categories, public
speaking and casual conversation. This supports our central hy-
pothesis that training on spontaneous and conversational speech
data is beneficial for appropriately synthesising these genres.

6. Conclusions

To summarise, we have shown that, using our new approach,
spontaneous conversational speech synthesis from automatic-
ally transcribed found data is able to outperform both read-
speech synthesis from found data, and TTS from spontaneous
conversational speech recorded in a lab and manually tran-
scribed; in terms of appropriateness for spoken genres in two
out of three categories. As far as we are aware, this has not
been achieved before.

Conversational podcasts appear to be a promising data
source for spontaneous speech synthesis with versatile charac-
teristics that are appropriate for synthesising both monologues
and conversational speech. Our approach unlocks genuine and
authentic speech recordings for speech synthesis applications,
enabling TTS to move beyond data that is read, prompted, acted
or however else elicited in a lab. Our hope is that using record-
ings of genuine speech will be a new focus area of speech syn-
thesis and we are excited to learn what differences these voices
might make for, e.g., dialogue systems and performative applic-
ations of synthetic speech [31].
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