
Improvements on Deep Bottleneck Network based I-Vector Representation for
Spoken Language Identification

Yan Song1,Rui-Lian Cui1 Ian McLoughlin2, Li-Rong Dai1

National Engineering Laboratory of Speech and Language Information Processing
University of Science and Technology of China, China1

School of Computing, University of Kent, Medway, UK2

{songy, lrdai}@ustc.edu.cn, cuirl@mail.ustc.edu.cn, ivm@kent.ac.uk

Abstract
Recently, the i-vector representation based on deep bottleneck
networks (DBN) pre-trained for automatic speech recognition
has received significant interest for both speaker verification
(SV) and language identification (LID). In particular, a recent
unified DBN based i-vector framework, referred to as DBN-
pGMM i-vector, has performed well. In this paper, we replace
the pGMM with a phonetic mixture of factor analyzers (pMFA),
and propose a new DBN-pMFA i-vector. The DBN-pMFA
i-vector includes the following improvements: (i) a pMFA
model is derived from the DBN, which can jointly perform
feature dimension reduction and de-correlation in a single
linear transformation, (ii) a shifted DBF, termed SDBF, is
proposed to exploit the temporal contextual information, (iii)
a senone selection scheme is proposed to improve the i-vector
extraction efficienvy. We evaluate the proposed DBN-pMFA
i-vector on the most confused six languages selected from
NIST LRE 2009. The experimental results demonstrate that
DBN-pMFA can consistently outperform the previous DBN
based framework [1]. The computational complexity can be
significantly reduced by applying a simple senone selection
scheme.

1. Introduction
The i-vector representation has achieved state-of-the-art per-

formance for both language identification (LID) and speaker
verification (SV) tasks [2, 3]. Generally, the i-vector procedure
consists of (1) a front-end feature extraction stage, to extract
low-level acoustic features from the given utterance, and (2) a
back-end modeling stage, which constructs a low-dimensional
compact representation via factor analysis (FA). Convention-
ally, a diagonal Gaussian mixture model (GMM) is used as
the universal background model (UBM) for computing zeroth-
order and first-order Baum-Welch statistics.

Recently, several works have used deep neural network-
s (DNNs) as front-end feature extractors. Given a pre-trained
DNN structure, some systems exploit the output from an inter-
nal layer. In [4, 5, 6, 7, 8], the i-vector representations based
on deep bottleneck features (DBF) have achieved significant
performance gains in both clean and noisy conditions. Other
works use transformations of the output phonetic posterior
probabilities [9, 10]. For example, Diez et al. introduced phone
log-likelihood ratios (PLLR) [9]. Ma et al. used the log of

Supported by the Open Project Program of the State Key
Laboratory of Mathematical Engineering and Advanced Computing
(grant, 2015A15).

Figure 1: A 3-D surface plot of the covariance matrix taken
from a typical pGMM component, in which significant off-
diagonal values indicate the correlation among different feature
coefficients.

phoneme posteriors combined with PLP features [10]. These
works demonstrated competitive performance as stand-alone
systems for LID.

In our previous work [1], a unified DBN based i-vector
framework has been proposed, which can consistently out-
perform the GMM-UBM and DNN based i-vector systems.
As shown in Fig. 2(a), the front-end DBF is taken from the
internal BN layer, similar to [4, 5]. A diagonal phonetic GMM
(pGMM), derived from the LID corpus, is used as UBM to
calculate sufficient statistics needed for FA. For simplicity we
refer to this framework as DBN-pGMM i-vector.

Despite good performance, there are still several issues with
the current DBN-pGMM based i-vector framework. Firstly, it
does not take the correlation of DBF coefficients into consider-
ation. For a typical mixture of pGMMs, there are several strong
non-zero off-diagonal elements in the covariance structure. This
is illustrated in Fig.1 which plots a full-covariance pGMM
from the DBN. This indicates that a diagonal pGMM may not
be optimal for describing the DBF distribution. In [7], it is
shown that full-covariance GMM may consistently improve the
performance for short duration test conditions. Secondly, it
is known that using shifted delta cepstra (SDC) features may
lead to significant performance gain over conventional mel-
frequency cepstral coefficients (MFCC) and perceptual linear
prediction (PLP) feature [11]. It is straightforward to extend the
DBF to form a shifted DBF in a similar way. However, the high-

Odyssey 2016
21-24 Jun 2016, Bilbao, Spain

140 doi: 10.21437/Odyssey.2016-20

Figure 2: A flowchart of DBN based i-vector frameworks.
a) The existing DBN-pGMM i-vector framework [1]. b)
The proposed DBN-pMFA i-vector framework, with several
improvements shown in dashed boxes.

dimensionality of the shifted DBF increases the computational
complexity and memory requirements.

Finally, the pGMM is obtained by associating its mixtures
to the senones in the DBN output layer. The senones are tied-
states with context-dependent phones determined from an ASR
decision tree. Generally, large numbers of senones may improve
the discriminative capability of the extracted DBF. However,
this may increase the size of the derived pGMM, leading to
high-dimensionality issues. Furthermore, due to the lack of
transcribed data, the DBN is effectively constrained to certain
languages (e.g., English and Mandarin). It is still unclear how
to construct the LID-related senones for i-vector extraction.

We propose replacing the pGMM with a phonetic mix-
ture of factor analyzers (pMFA) in the DBN based i-vector
framework, which we will term DBN-pMFA i-vector. A
flowchart of the proposed DBN-pMFA is shown in Fig.2(b).
The DBN-pMFA i-vector framework is effectively a two-stage
FA process. The pMFA applies first-stage FA on front-end
features, which can jointly perform the dimension reduction,
de-correlation via a single linear transformation. This can also
address the high-dimensionality issue. The i-vector procedure is
a second-stage FA, which projects the high-dimensional super-
vector into a low-dimensional total variability space. In DBN-
pMFA i-vector, a shifted DBF (which we will term SDBF), is
further proposed to exploit the temporal contextual information.
Finally, a senone selection scheme is proposed according to
the collected zeroth-order statistics on the LID corpus, which
makes i-vector training and extraction more efficient.

To evaluate the proposed DBN-pMFA based i-vector sys-
tem, we conducted extensive experiments on the six high-
confusable languages from the NIST LRE 2009 evaluations.
The experimental results on 30s, 10s and 3s test conditions show
the consistent and significant improvements over the previous
DBN-based i-vector [1].

The rest of this paper is organized as follows. Section 2
briefly reviews the DBN-based i-vector framework, followed by
the introduction of the proposed DBN-pMFA based i-vector in
section 3. Section 4 discusses implementation details, including
the senone selection scheme and SDBN. Section 5 presents
experimental results and analysis, followed by the conclusion
and future work in section 6.

2. Review of DBN-pGMM i-vector [1]
Let X = {x1, . . . ,xT } be an utterance with T speech frames,
xt ∈ Rd is DBF extracted on the t-th frame given a pre-
trained DBN for ASR. Let λ = {λ1, . . . , λK} be a diagonal
pGMM, where λk = {πk,μk,Σk} describes the parameters
of the k-th mixture. The pGMM is derived from the DBFs and
senone posterior on target LID corpus. The zeroth-order and
the centralized first-order statistics for k-th mixture, i.e. Nk

and Fk, are calculated as follows

γk,t = P (λk|xt) (1)

Nk =
T∑

t=1

γk,t (2)

Fk =
T∑

t=1

γk,t(xt − μk) (3)

where γk,t is the posterior probability for xt on the k-th pGMM
component. The super-vector of F̂ is the concatenation of all
the centralized first-order statistics F̂ = [FT

1 , . . . ,F
T
K]T . By

applying factor analysis on the super-vector space, F̂ can be
linearly projected into a low-dimensional total variability space
as

F̂ → Tw (4)

where w is the R-dimensional i-vector with normal distribution
N (0, I), R << Kd. The loading matrix T ∈ RKd×R is a
low-rank rectangular matrix, which can be trained similarly to
the eigen-voice method [12].

It is known that the i-vector extraction process is compu-
tational expensive [13]. Considering a K-component diagonal
GMM and d-dimensional features, the R-dimensional i-vector
w is computed as

w = (I+TTΣ−1NT)−1TTΣ−1NF (5)

where N is a Kd × Kd-dimensional diagonal matrix, with
diagonal blocks NkI, k = 1, . . . ,K. Σ is a Kd × Kd-
dimensional diagonal covariance matrix. The computational
complexity of eqn.(5) is about O(R3 +KR2 +KdR). When
K and d are large, the computational cost is huge.

Furthermore, existing DBN based i-vector framework does
not consider the correlation between coefficients of DBF. In the
following sections, we first derive a pMFA model from DBN
as UBM for i-vector extraction. Compared to the diagonal
pGMM model, a pMFA model is equivalent to a constrained
full-covariance GMM model. By selecting appropriate latent
factors, an improved i-vector representation can be obtained
efficiently.

3. DBN-pMFA based i-vector
3.1. Mixture of Factor Analyzers

As shown in [14], MFA is a directed generative model, which
approximates nonlinear manifolds under the local linear as-
sumption. A MFA generally consists of K linear factor
analyzers, which can be defined as

p(k) = πk,
K∑

k=1

πk = 1 (6)

p(z|k) = p(z) = N (z|0, Iqk) (7)
p(x|z, k) = N (x|Wkz+ μk,Ψk) (8)

141

where k is the component indicator, and z ∈ Rqk denotes
the qk-dimensional latent variable, Iqk is a qk × qk matrix.
The parameters of k-th factor analyzers include the mixing
proportion πk, a factor loading matrix Wk ∈ Rd×qk , mean
vector μk, and a diagonal matrix Ψk ∈ Rd×d that represents
independent noise variance for each of the variables. In
our implementation, we assume isotropic noise variance for
simplicity, i.e. Ψk = σ2

kI, where σ2
k denotes the average

noise power. This is actually a mixture of probabilistic principal
component analyzers (PPCA).

By integrating out the latent factor z, MFA is equivalent to
a GMM model λG = {πk,μk,Σk}Kk=1

p(x|k) =
∫

z

p(x|z, k)p(z|k)dz = N (x;μk,Σk) (9)

p(x) =
K∑

k=1

πkN (x;μk,Σk) (10)

where Σk = WkW
T
k +Ψk is the constrained full-covariance

matrix of the k-th Gaussian component.

3.2. From full covariance pGMM to pMFA

The pGMM with full-covariance matrix Σk, k = 1, . . . ,K
can be calculated from the DBN, using the DBFs xt and
corresponding senone posteriors γk,t, t = 1, . . . , T .

Nk =
T∑

t=1

γk,t (11)

πk =
Nk∑K
j=1 Nj

(12)

μk =
1

Nk

T∑

t=1

γk,txt (13)

Σk =
1

Nk

T∑

t

γk,txtx
T
t − μkμ

T
k (14)

According to the equivalence between MFA and full-covariance
GMM, the mixing proportion πk and mean μk can be deter-
mined using eqns. (12), (13).

We will derive the noise variance matrix Ψk and factor
loading matrix Wk as follows. First, the noise subspace of
the k-th factor analyzer can be determined by the value of qk,
which defines the number of principal axes to be selected. And
the average noise power σ2

k can be obtained via

σ2
k =

1

d− qk

d∑

i=qk+1

λk,i (15)

where λk,i, i = qk + 1, . . . , d are the smallest eigenvalues of
the covariance matrix Σk. Then the factor loading matrix can be
obtained via maximum likelihood estimation as shown in [15].

Wk = Uqk (Λqk − σ2
kI)

1
2 (16)

where Uqk is the eigenvector matrix corresponding to the
largest qk eigenvalues, and Λqk is the diagonal matrix of
eigenvalues.

3.3. pMFA based i-vector

Given the pMFA model, the zeroth-oder and first-order Baum-
Welch statistics are needed for i-vector extraction, as shown in
Section 2. The zeroth-order statistics can be directly computed
using eqn. (2) according to the senone posterior γk,t obtained
from the DBN. And for first-order statistics, the posterior mean
of latent factor zt of the k-th component is used instead of xt,
that is

E{zt|xt, k} = AT
k (xt − μk)

�
= zt,k (17)

where
AT

k = Λ−1
qk (Λqk − σ2

kI)
T
2 UT

qk (18)

As shown in [16], eqn. (17) can be considered as a feature trans-
formation process of xt, which can perform feature dimension
reduction, de-correlation, and enhancement simultaneously.
The first-order statistics F

′
k is extracted in terms of zt,k

F
′
k =

T∑

t=1

γk,tzt,k

=
T∑

t=1

γk,tA
T
k

(
xt − μk

)

= AT
k

(
Fk −Nkμk

)
(19)

The super-vector F
′

is the concatenation of the centralized first-
order statistics F

′
= [F

′T
1 , . . . ,F

′T
K]T . The i-vector training

and extraction can then be processed as illustrated in Section 2.
It is worth noting that the dimension of super-vector F

′

is K × qk. When qk << d, the computational complexity
and memory requirement of i-vector extraction will be greatly
reduced.

4. Implementation details
In this section, we will describe the details of DBN-pMFA i-
vector framework, including the DBN structure, the SDBF con-
figuration, the senone selection scheme, and the post-processing
after i-vector extraction for LID.
DBN structure. The DBN structure we used has 7 layers
comprising 1 input layer, 5 hidden layers, and 1 output layer,
which is configured as: 21× 48− 2048− 2048− 50− 2048−
2048− 1536. For each speech frame, a 48 dimensional feature
is first extracted, which comprises 39-dimensional dimensional
PLP +ΔPLP+ΔΔPLP and 9 dimensional pitch features, and
their 1st and 2nd derivatives. Then a 21 × 48 = 1008
input feature is obtained by concatenating 21 frames centered
around the current one. The output layer contains 1536 senones
automatically determined by a decision tree using maximum
likelihood [17]. The DBN is trained on about 300 hours
of Switchboard corpus, using the Kaldi speech recognition
toolkit [18]. For each utterance in the target LID corpus, we
extract the T DBFs xt and corresponding senone posterior
probability γk,t, t = 1, . . . , T, k = 1, . . . , 1536 from the pre-
trained DBN.

In related work [1, 19], the DBFs extracted from different
DBN structures were evaluated, indicating that better LID
performance can be obtained with larger number of output
senones.
Temporal extension. The temporal extension of DBF, termed
SDBF is obtained similarly to SDCs, and is configured using
parameters N − d−P − k defined in [11]. In experiments, we
evaluate the 200 dimensional SDBF, configured as 50−1−3−3.

142

Table 1: The target languages along with available training
data channel sources and the number of evaluation segments.

Language Training data source Number of tests
30s 10s 3s

Dari VOA 375 392 400
Farsi CTS 389 383 387

Russian CTS&VOA 510 486 490
Ukrainian VOA 368 405 391

Hindi CTS&VOA 662 618 642
Urdu CTS&VOA 367 385 381

Senone Selection. We select the LID-related senones based
on the zeroth-order statistics Nk, k = 1, . . . 1536 computed
from senone posteriors on the LID corpus. We sort Nk in
descending order, and select the first N,N < 1536 senones
as the most related components for the target LID task. The
resulting pMFA is derived from the full-covariance pGMM as
illustrated in Section 3.
Post processing. After the i-vector representation, two in-
tersession compensation techniques are applied. The first
step is within-class covariance normalization (WCCN), which
normalizes the i-vector with the inverse of the within-class
covariance. The second step is linear discriminative analysis
(LDA), a popular dimension reduction techniques for removing
noise. After these two steps, the language model can be
represented as the center of the corresponding i-vectors. Given
a test utterance, the confidence score is calculated as the cosine
distance from each model.

5. Experiments
We conduct extensive experiments on the selected six most
confused languages from NIST LRE2009, i.e. Dari, Farsi,
Russian, Ukrainian, Hindi and Urdu. The training dataset
is mainly collected from the conversational telephone speech
(CTS) and Voice of America (VOA) radio broadcasts. The
evaluations are performed on closed-set test, which comprise
2671, 2669 and 2691 evaluation segments for 30s, 10s and 3s
test conditions respectively. The performance is measured using
equal error rate (EER). Table 1 summarizes the training and
evaluation data.

Three experiments are conducted to evaluate the effective-
ness and efficiency of the proposed DBN-pMFA i-vector. The
DBN-pMFA i-vector [1] is taken as the baseline system In all
experiments, we fix the i-vector dimension to be 400 for fair
comparison.

5.1. Evaluation of DBN-pMFA i-vector against DBN-
pGMM i-vector using DBF

The experiments in this section compare the proposed DBN-
pMFA i-vector against the DBN-pGMM i-vector with DBF [1].
In DBN-pGMM, the dimensionality of the front-end DBF is
d = 50, and the derived pGMM is used as UBM for collecting
the required sufficient statistics The number of UBM mixtures
is determined by the senones in the pre-trained DBN, i.e.
K = 1536. In DBN-pMFA, the pGMM is replaced by a
pMFA model. The front-end feature is the mean of latent
factors with qk dimensions from the k-th pMFA component.
We evaluated the performance of the i-vector with qk =
45, 40, 35, 30andk = 1, . . . ,K, yielding compression ratios of
0.9, 0.8, 0.7, 0.6, respectively. For simplicity, we heuristically

Table 2: Evaluation of DBN-pGMM i-vector and DBN-pMFA
i-vector with on 50 dimensional DBF on the 6 high-confusable
languages from LRE09. The performance is evaluted in terms
of EER (%)

30s 10s 3s
DBN-pGMM-DBF(1536) 6.56 8.43 15.20

DBN-pMFA-DBF

qk = 45 5.68 7.91 15.35
qk = 40 5.65 7.87 14.57
qk = 35 5.69 7.84 14.68
qk = 30 5.84 8.09 15.50

set the same qk for all k.
The results are shown in Table 2. For the 30s and 10s

test conditions, DBN-pMFA-DBF consistently outperforms the
DBN-pGMM-DBF. For the 3s test condition, the performance
of DBN-pMFA-DBF is comparable. When qk is selected
appropriately, such as qk = 40, 45, a slight improvement can
be achieved. When qk = 30, the EERs are 5.84%, 8.09%
and 15.5% for 30s, 10s and 3s test conditions respectively. The
performance is nearly saturated when we increase qk.

It is interesting to see that when qk = 45 (0.9 of DBF
dimensionality), the LID performance slightly degrades. This
indicates that when the dimensionality of i-vector R is fixed,
there exists a trade-off between the first-stage and second-stage
FA in the DBN-pMFA i-vector. If qk is small, some language
dependent information is discarded in pMFA, which degrades
the performance. On the contrary, when qk is large, the
information loss occurs on the second-stage FA, which projects
the K × qk-dimensional super-vector to a R-dimensional total
variability space.

Specifically, when qk = 40, the performance of DBN-
pMFA for 30s, 10s and 3s test conditions are 5.65%, 7.87%
and 14.57%, with relative improvements 16%, 7%, and 4%
respectively. And according to eqn. (5), the computational
complexity of i-vector extraction is slightly reduced due to the
smaller qk.

5.2. Evaluation of DBN-based i-vector using SDBF

The experiments in this section evaluate the DBN-based i-
vector system using front-end features with temporal contextual
information, i.e. SDBF. We configured SDBF as 50−1−3−3,
parameterized by (N−d−p−k) as described in [11]. In DBN-
pGMM-SDBF, the dimensionality of front-end feature SDBF is
d = 200, and the number of pGMM mixtures is K = 1536.
Similar as section 5.1, the performance of DBN-pMFA-SDBF
is evaluated with qk = 160, 140, 120, 100, 80, 60, 40.

The results are shown in Table. 3. Firstly, we can see that
DBN-pGMM-SDBF consistently outperforms DBN-pGMM-
DBF in 30s, 10s and 3s test conditions. This can be attributed
to the introduction of temporal contextual information in S-
DBF. However, the computational complexity of DBN-pGMM-
SDBF i-vector is much higher with larger d.

The comparison between DBN-pMFA-SDBF and DBN-
pGMM-SDBF has the similar conclusion as section 5.1. In
most cases, the DBN-pMFA-SDBF outperforms DBN-pGMM-
SDBF, except that for 3s test conditions. It is worth noting
that when qk = 40, the performance is still better than
DBN-pGMM-DBF i-vector. This validates the effectiveness of
incorporating the temporal contextual information.

However, even with the reduced dimension, the i-vector
extraction in DBN-pMFA-SDBF is computational expensive.

143

We further propose senone selection scheme, which aims to
improve the efficiency of DBN-pMFA-SDBF, with slight per-
formance loss.

Table 3: Evaluation of DBN-pGMM i-vector and DBN-pMFA
i-vector based on SDBF configured as 50 − 1 − 3 − 3, on the
six high-confusable languages from LRE09. The performance
is evaluated in terms of EER (%)

30s 10s 3s
DBN-pGMM-DBF(1536) 6.56 8.43 15.20

DBN-pGMM-SDBF(1536) 6.17 7.86 14.64

DBN-pMFA-SDBF

qk = 160 5.57 7.68 14.90
qk = 140 5.54 7.57 14.79
qk = 120 5.68 7.61 14.57
qk = 100 5.35 7.41 14.57
qk = 80 5.47 7.79 15.01
qk = 60 5.32 7.38 14.83
qk = 40 5.35 7.73 14.82

5.3. Evaluation of senone selection

As aforementioned, the DBN is pre-trained for ASR. The
senones are generally determined by the decision tree of certain
language, i.e. English or Mandarin. That is to say, the
senones are not directly LID-related. In the DBN-based i-vector
framework, the number of mixtures is generally determined
by the number of senones. In experiments, we want to study
whether all the senones in certain languages is informational
for LID. The evaluations of senone selection schemes are
conducted based on the previous optimal experimental setting,
i.e. DBN-pMFA-SDBF60, the DBN-pMFA with qk = 60
The number of senones to be selected is varied as K =
600, 800, 100, 1200.

The results are shown in Table. 4. It is shown that according
to a simple criterion in Section 4, the DBN-pMFA-SDBF60
with K = 600 can achieve the comparable performance, with
relative improvements over the baseline DBN-pGMM-DBF of
22% and 8% for 30s and 10s test conditions. Increasing K
does not effectively alter the LID performance, except for the
3s conditions.

We also report the average computational complexity of
i-vector extraction in terms of seconds per 100 samples on a
server with Intel i7-2600K, CPU and 32G memory. For DBN-
pMFA-SDBF with K = 1536 mixtures, the average time for
extracting 100 400-dimensional i-vectors is about 37.5 seconds.
For DBN-pMFA-SDBF60 with K = 600 mixtures, the average
time is about 10.6 seconds. This is even more efficient than the
baseline DBN-pGMM-DBF, in which a 15.4 second average is
obtained.

6. Conclusion and Future work
This paper presented an improved DBN-based i-vector frame-
work which we term the DBN-pMFA i-vector system, in
which the pGMM is replaced by pMFA in the i-vector pro-
cedure. DBN-pMFA is actually a two-stage FA. The pMFA
is performed on the front-end feature space, while i-vectors
are the second-stage FA performed on the super-vector space.
Compared to the pGMM model, the pMFA model is shown
to be equivalent to a constrained full-covariance GMM, which
can better describe the correlation among the DBF coefficients.

Table 4: Evaluation of senone selection scheme using DBN-
pMFA-SDBF60. The performance is evaluated in terms of EER
(%).

30s 10s 3s
DBN-pGMM-DBF(1536) 6.56 8.43 15.20

DBN-pGMM-SDBF(1536) 6.17 7.86 14.64
DBN-pMFA-SDBF60(1536) 5.32 7.38 14.83

Mixtures

K = 600 5.35 7.80 15.20
K = 800 5.57 7.98 15.53

K = 1000 5.61 7.83 14.83
K = 1200 5.31 7.65 15.16

Furthermore, pMFA can perform dimension reduction and de-
correlation in a single linear transformation. This makes
the application of high-dimension SDBF (a shifted version of
DBF) possible, which can effectively outperform the existing
methods. Finally, the LID-related senones are selected for
deriving the pMFA model, which can improve the efficiency
and effectiveness of the DBN-based i-vector for LID.

The experimental results on selected highly confusable
languages in NIST LID 09 show that (i) The DBN-pMFA i-
vector can consistently outperform the previous DBN-pGMM
except for the 3s test condition [1], (ii) The SDBF can achieve
more significant performance gains, which validates that the
temporal contextual information may be beneficial to LID, and
(iii) We can select partial LID-related senones to compute the
i-vector efficiently with acceptable performance loss.

In the future, we will evaluate the proposed DBN-pMFA
i-vector framework on the full benchmark NIST LRE09 evalu-
ations. Furthermore, in current DBN-pMFA i-vector, the two-
stage FA is performed separately. We will try to find a joint
optimization framework.

7. References
[1] Yan Song, Xinhai Hong, Bing Jiang, Ruilian Cui, Ian

McLoughlin, and Lirong Dai, “Deep bottleneck network
based i-vector representation for language identification,”
in Proc. of Interspeech, 2015.

[2] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre
Dumouchel, and Pierre Ouellet, “Front-end factor
analysis for speaker verification,” IEEE Trans Audio
Speech Lang Processing, vol. 19, no. 4, pp. 788–798,
2011.

[3] Najim Dehak, Pedro A Torres-Carrasquillo, Douglas A
Reynolds, and Reda Dehak, “Language recognition via
i-vectors and dimensionality reduction.,” in Proc. of
InterSpeech, 2011, pp. 857–860.

[4] Bing Jiang, Yan Song, Si Wei, Ian McloughLin, and
Li-Rong Dai, “Task-aware deep bottleneck features for
spoken language identification,” in Proc. of Interspeech
2014, 2014, pp. 3012–3016.

[5] Yuning Song, Bo Jiang, YeBo Bao, Shaojun Wei, and Li-
Rong Dai, “I-vector representation based on bottleneck
features for language identification,” Electronics Letters,
vol. 49, no. 24, pp. 1569–1570, 2013.

[6] Pavel Matejka, Le Zhang, Tim Ng1, Sri Harish Mallidi,
Ondrej Glembek, Jeff Ma, and Bing Zhang, “Neural
network bottleneck features for language identification,”
in Proc. of Odyssey, 2014.

144

[7] Radek Fer, Pavel Matejka, Frantisek Grezl, Oldrich
Plchot, and Jan Honza Cernocky, “Multilingual
bottleneck features for language recognition,” in Proc. of
Interspeech, 2015.

[8] Wang Geng, Jie Li, Shanshan Zhang, Xinyuan Cai, and
Bo Xu, “Multilingual tandem bottleneck feature for
language identification,” in Proc. of Interspeech, 2015.

[9] Mireia Diez, Amparo Varona, Mikel Penagarikano,
L Rodriguez-Fuentes, and Germán Bordel, “Dimension-
ality reduction of phone log-likelihood ratio features for
spoken language recognition,” in Proc. of InterSpeech,
2013.

[10] Jeff Ma, Bing Zhang, Spyros Matsoukas, Sri Harish Malli-
di, Feipeng Li, and Hynek Hermansky, “Improvements in
language identification on the rats noisy speech corpus,”
in Proc. of Interspeech, 2013.

[11] M. A. Kohler and M. Kennedy, “Language identification
using shifted delta cepstra,” in Proc. of the IEEE
International Midwest Symposium on Circuits and
Systems, 2002, pp. 69–72.

[12] Patrick Kenny, Gilles Boulianne, and Pierre Dumouchel,
“Eigenvoice modeling with sparse training data,” IEEE
Trans Speech Audio Process, vol. 13, no. 3, pp. 345–354,
2005.

[13] O. Glembek, L. Burget, P. Matejka, M. Karafiat, and
P. Kenny, “Simplification and optimization of i-vector
extraction,” in Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, 2011,
pp. 4516–4519.

[14] Z Ghahramani and G. E. Hinton, “The em algorithm for
mixtures of factor analyzers,” in Technical Report CRG-
TR-96-1, University of Toronto, 1996.

[15] M. Tipping and C. Bishop, “Mixtures of probabilistic
principal component analyzers,” pp. 443–482, 1999.

[16] Taufiq Hasan and John H. L. Hansen, “Acoustic
factor analysis for robust speaker verification,” IEEE
Transactions on Audio, Speech & Language Processing,
vol. 21, no. 4, pp. 842–853, 2013.

[17] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based
state tying for high accuracy acoustic modelling,” in Proc.
of HLT94, 1994, p. 307312.

[18] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlcek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The kaldi
speech recognition toolkit,” in Proc. of IEEE ASRU 2011,
2011.

[19] Ma Jin, Yan Song, Ian Mcloughlin, Li-Rong Dai, and
Zhong-Fu Ye, “Lid-senone extraction via deep neural
networks for end-to-end language identification,” in Proc.
of Odyssey 2016 (Accepted).

145

