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Abstract
Recently, the integration of deep neural networks (DNNs)
trained to predict senone posteriors with conventional language
modeling methods has been proved effective for spoken lan-
guage recognition. This work extends some of the senone-based
DNN frameworks by replacing the DNN with the LSTM RNN.
Two of these approaches use the LSTM RNN to generate fea-
tures. The features are extracted from the recurrent projection
layer in the LSTM RNN either as frame-level acoustic features
or utterance-level features and are then processed in different
ways to produce scores for each target language. In the third
approach, the conventional i-vector model is modified to use
the LSTM RNN to produce frame alignments for sufficient
statistics extraction. Experiments on the NIST LRE 2015
demonstrate the effectiveness of the proposed methods.
Index Terms: Deep neural networks, long short-term memory,
recurrent neural networks, spoken language recognition

1. Introduction
Over recent years, many approaches based on Gaussian Mix-
ture Models (GMM) have been proposed for spoken language
recognition (SLR) [1], among which i-vector modeling [2, 3]
appears to be one of the most effective methods and brings
significant performance improvements. In i-vector model,
acoustic features (e.g., shifted delta cepstrum (SDC) features)
are first converted into high-dimensional statistics. Then they
are mapped into a low-dimensional subspace where a speech
utterance is represented by a fixed-length vector called i-vector.
After the extraction of i-vectors, standard techniques such as
Gaussian back-end, logistic regression [4] are applied to the i-
vectors of the test utterances to produce scores for each target
language.

In the field of speech recognition, the deep neural net-
work (DNN) has become the dominant approach in acoustic
modeling as a replacement of GMM, bringing an about 30%
relative improvement in word error rate (WER) [5, 6]. In
SLR, researchers have also investigated several strategies for
using DNNs, and the most successful approaches are those hy-
brid frameworks where DNNs trained to discriminate between
senones (tied triphone states) are combined with conventional
language recognition models [7, 8, 9]. In [7], the DNN is used
to extract bottleneck features as a replacement of SDC features
in i-vector model. This data-driven phonetically-related feature
representation has been demonstrated more effective for SLR
tasks than the hand-designed feature such as the SDC feature.
The method in [9] is also based on i-vector model and they use
the DNN to compute frame posterior probabilities during the

extraction of sufficient statistics. This work brings impressive
relative gains and proves that more accurate content (senones)
alignments of frames will benefit SLR tasks. This framework
has also been successfully applied in speaker verification [8].

More recently, Long Short-Term Memory (LSTM) recur-
rent neural networks (RNNs) have been shown to outperform
DNNs for acoustic modeling in speech recognition [10]. The
recurrent cells and the multiplicative units called gates used
to control the flow of information make the model a more
powerful tool to model sequence data such as speech signals
and their complex long-range correlations. In this paper, we
extend some of the senone-based DNN frameworks by using the
LSTM RNN as a replacement of the DNN. Three approaches
are evaluated in our work. We first explore using the LSTM
RNN to extract bottleneck features hoping the inclusion of more
temporal information might benefit SLR tasks. Second, we
directly use the average outputs of the LSTM recurrent layer as
the feature representation of the utterance since it spontaneously
stores long-period information. Third, we investigate using the
LSTM RNN to provide frame posteriors during the extraction
of sufficient statistics for the reason that the LSTM RNN may
provide more accurate content frame alignments with sequence
information from longer duration. Experiments are carried
out on the task defined by NIST LRE 2015. It should be
noticed that [11] has also proposed using LSTM RNNs for SLR.
However, their work tries to model the language space in a
different perspective where the LSTM RNN is trained to predict
languages.

The rest of this paper is organized as follows. Section
2 introduces the feature extraction framework with the DNN.
Section 3 presents the DNN approach for sufficient statistics
extraction. Section 4 gives the LSTM RNN architecture.
Experiments and discussions are shown in Section 5. Finally,
conclusions are presented in Section 6.

2. DNNs for feature extraction
The DNN based bottleneck features are being widely used in
various speech related applications [7, 12, 13]. Bottleneck
here means a hidden layer placed in the middle of a DNN
which has fewer number of hidden nodes than the other layers.
The linear outputs of this layer is referred to the bottleneck
feature and it can be regarded as a compact low-dimensional
representation of the original inputs. In SLR, the bottleneck
feature replaces the traditional acoustic feature (SDC feature)
for i-vector modeling. The bottleneck feature contains rich
phonetic information since the DNN is trained to discriminate
senones. This might benefit the language recognition task
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where languages are highly content-related. The bottleneck
feature based framework is referred to NN-bottleneck-feature
model in this work.

Another common usage of DNNs as feature extractors is
to represent each utterance as the average of outputs derived
from one of the DNN’s hidden layer [14]. Then decisions
can be made between these features in a similar way as in i-
vector approach. This framework is referred to NN-full-feature
model.

3. DNNs for frame alignment
In the traditional i-vector framework, the following sufficient
statistics (Baum-Welch statistics) need to be calculated for each
utterance during model training and i-vector extraction
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Eq (1) to eq (4) indicate that the extraction of sufficient statistics
actually can be seen as a soft alignment of speech frames with
respect to each Gaussian component. By treating the senone
outputs of the DNN as Gaussian like units in the UBM, Lei [8]
proposes to use the senone posterior to do the frame alignment
for the i-vector

γ
(i)
c,t ←− p(sc|x(i)

t ) (5)

sc is the c-th units of the DNN’s output layer. p(sc|x(i)
t ) is

the senone posterior probability given the acoustic feature x
(i)
t .

Figure 1 presents the processes of the UBM and DNN based
sufficient statistics extraction. It can be seen that the features for
frame alignments and statistics computation are the same in the
UBM framework while these two steps are efficiently decoupled
with the introduction of DNNs. This framework is referred to
NN-frame-alignment model.

4. Long Short-Term Memory RNNs
RNNs have the advantage of modeling longer-range correla-
tions than DNNs. However, the problem of vanishing and
exploding gradients in the SGD training makes it difficult to
model long-time dependencies using conventional RNNs. The
LSTM RNN is an effective solution for this problem. The
LSTM RNN architecture realized in this paper is shown in
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Figure 2: A single memory block of Long Short-Term Memory
recurrent neural network architecture.

Figure 2. The vector formulas are given below

it = σ(Wixxt + Wirrt−1 + Wicct−1 + bi) (6)
ft = σ(Wfxxt + Wfrrt−1 + Wfcct−1 + bf ) (7)

ct = ft � ct−1 + it � g(Wcxxt + Wcrrt−1 + bc) (8)
ot = σ(Woxxt + Worrt−1 + Wocct + bo) (9)

mt = ot � h(ct) (10)
rt = Wrmmt (11)

yt = φ(Wyrrt + by) (12)

where Wix, Wfx, Wcx, Wox denote weight matrices con-
nected to the inputs, Wir , Wfr , Wcr , Wor denote weight
matrices connected to the LSTM activations. Wic, Wfc, Woc

are diagonal peephole connections between cell and the gate
signals. Wrm denotes the projection matrix. Wyr denotes
the weight matrix of the output layer. The b terms denote bias
vectors. The logistic sigmoid function is used for σ and the tanh
function is used for h and g. φ refers to softmax function.

The activation of the recurrent projection layer which corre-
sponds to rt in eq (11) is regarded as the feature representation
when the LSTM RNN is used as a feature extractor.
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5. Experiments
5.1. Experimental setup

5.1.1. dataset

Experiments are carried out on the core testing condition of
NIST LRE 2015, which is based on the use of only limited
and specified training data to develop models for each language.
There are twenty target languages and they are further grouped
into six language clusters during evaluation process [15]. There
are 7020 utterances for target languages modeling. We split
them into two sets: 5260 utterances and 1760 utterances. The
former set (training dataset) are used for training systems and
the latter set (development dataset) are used for self-evaluation,
fusion and calibration. To mitigate the degradation caused by
the length variation, we further cut each utterance into 3-60
seconds’ segments. The training data for senone-driven neural
networks is Swichboard-1 provided by NIST LRE 2015 as well.

5.1.2. features

• Features for language front-end: 13-dimensional MFCC
features with utterance-based mean-covariance normaliza-
tion are first extracted using a 25ms Hamming window and
10ms frame shift. Then 56-dimensional SDC features are
obtained with a 7-1-3-7 parameterization.

• Features for GMM-HMM model: 13-dimensional PLP
features with speaker-based mean-covariance normalization
are extracted first using a 25ms Hamming window and
10ms frame shift. Then their first-, second- and third-order
derivatives are concatenated with the basic feature and further
reduced to 39 dimensions by HLDA.

• Features for DNN and RNN models: 40 log Mel-filterbank
(FBank) coefficients with utterance-based mean-covariance
normalization are extracted using a 25ms Hamming window
and 10ms frame shift. Then delta and delta-delta coefficients
are calculated to produce final 120-dimensional feature vec-
tors.

5.1.3. models

• GMM-HMM: A GMM-HMM system is firstly trained to
generate transcriptions for senones which are used for DNN
and RNN training. The GMM-HMM uses 2227 senones tied
by a phonetic decision tree.

• DNN: The DNN has five-hidden layers and is trained with
cross-entropy criterion using the transcriptions generated
from the GMM-HMM system. 11 frames (1320 dimension
in total) are concatenated as the input of the network. Each
hidden layer has 1200 nodes. The fifth layer is the bottleneck
feature layer and the full feature layer. The number of nodes
of bottleneck layer is 39. The output of the DNN with respect
to senones has 2227 nodes.

• RNN: The LSTM RNN has two LSTM layers and is trained
with cross-entropy criterion using the transcriptions gener-
ated from the GMM-HMM system. Each LSTM layer has
800 cells and 512 recurrent projection units. The activation
of the recurrent projection layer is regarded as the bottleneck
feature layer and the full feature layer. The output of the
LSTM RNN with respect to senones has 2227 nodes.

• Baseline i-vector model: A language and gender-
independent diagonal covariance UBM with 2048 mixtures
is trained. The dimensionality of i-vectors is set to 400.

Then they are further projected to a 19-dimension subspace
by linear discriminant analysis (LDA). Gaussian back-end is
adopted to get the final scores.

• NN-bottleneck-feature model: SDC features are replaced
with bottleneck features. The rest configurations are the same
with the baseline i-vector model.

• NN-full-feature model: The average of the outputs from the
DNN’s fifth hidden layer (1200 dimension) and the RNN’s
recurrent projection layer (512 dimension) is calculated as
the representation of the utterance. Then these features
are further projected to a 19-dimension subspace by LDA.
Gaussian back-end is adopted to get the final scores.

• NN-frame-alignment model: The mixture of the UBM is
changed to 2227 which is confined by the senone number.
The rest configurations are the same with the baseline i-
vector model.

The criterion for evaluation is average cost Cavg defined by
NIST LRE 2015 and can be referred to [15].

5.2. Experimental results

5.2.1. Comparison of DNN and RNN for acoustic modeling

Table 1: The speech recognition results of DNN and RNN based
systems on Hub5’00-SWB. M stands for million.

system WER (%) model size
DNN 18.8 10M
RNN 17.1 7.3M

First, we verify that the LSTM RNN is superior to the DNN
for acoustic modeling. The speech recognition results of DNN
and RNN based systems on the SWB part of the NIST 2000
Hub5 evaluation set are presented in Table 1. From the results it
can be seen that the LSTM RNN model outperforms the DNN
approach with a relative improvement of 9.0% in WER.

5.2.2. Results of NN-bottleneck-feature models

Table 2: Comparison of Cavg for i-vector model, DNN-
bottleneck-feature model, and RNN-bottleneck-feature models.

system Dev Test
SDC-GMMivector 0.0543 0.288

Fbank-DNN BN39-GMMivec 0.0350 0.223
FBank-RNN BN39 L1-GMMivec 0.0431 0.261
FBank-RNN BN39 L2-GMMivec 0.0419 0.228

The results of i-vector model, DNN-bottleneck-feature
model, and RNN-bottleneck-feature model are presented
in Table 2. The unit number of bottleneck layer is fixed
to 39 for comparison. Bottleneck features extracted from
different LSTM recurrent projection layers are evaluated. Both
DNN and RNN based models show significant performance
improvements over i-vector approach. Bottleneck features
extracted from the second projection layer in the LSTM
RNN is superior to bottleneck features extracted from the
first projection layer. However, there still exists a minor
gap between RNN and DNN based models. A reasonable
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Figure 3: Comparison of Cavg for different language clusters
in RNN-bottleneck-feature model.

explanation might be that the feature extracted from the LSTM
recurrent units might not necessarily store information of the
current frame. We know that the gates in the LSTM model
can help balancing the weights of information flow both from
past time (frames) and current time (frame). In some extreme
situation the senone predictions might be obtained only based
on the information from past time which means that there is no
need to pass information from the current frame to the recurrent
layer. As a result, using bottleneck features extracted from
RNNs might be not accurate enough for frame-level modeling
compared with DNNs.

From Table 2 we can see that the results on the development
dataset are much better than on the test dataset which means that
the development dataset is more similar to the training dataset.
To further compare the difference of these two datasets, the
performance of each language cluster is shown in Figure 3.
The relative trends are almost the same on different models
so we use the results obtained from RNN-bottleneck-feature
model as an example. From the results we can see that the
performance of each language cluster behaves quite different
over these two datasets. For example, the French cluster has the
best performance in the development dataset but is the worst in
the test dataset. The Slavic cluster is exactly the opposite. This
data mismatch may result in inaccurate score calibration and
other problems and will be analyzed in our later work.

Table 3: Comparison of Cavg for RNN-bottleneck-feature
model with different feature processing techniques.

system Dev Test
FBank-RNN BN39-GMMivec 0.0419 0.228

FBank-RNN BN39 Whiten-GMMivec 0.0418 0.226
FBank-RNN BN39 CMVN-GMMivec 0.0417 0.224

Next, we evaluate different feature processing techniques
on the RNN based models. The results are presented in Table
3. The results show that feature whitening and CMVN can both
improve the performance on the test dataset while the perfor-
mance on the development dataset remains almost unchanged,
which means that these feature processing techniques can make
the model generalize better.

The dimension of bottleneck feature is another critical
factor that can affect the performance. The results of RNN-
bottleneck-feature models with different feature dimension are

Table 4: Comparison of Cavg for RNN-bottleneck-feature
model with different feature dimension.

system Dev Test
Fbank-RNN BN39-GMMivec 0.0419 0.228
Fbank-RNN BN60-GMMivec 0.0389 0.224
Fbank-RNN BN80-GMMivec 0.0377 0.222

Fbank-RNN BN39 CMVN-GMMivec 0.0417 0.224
Fbank-RNN BN60 CMVN-GMMivec 0.0387 0.221
Fbank-RNN BN80 CMVN-GMMivec 0.0378 0.220

shown in Table 4. From the results we can see that the
performance gets better as the feature dimension increases.
CMVN can bring consistent performance improvements as
well.

5.2.3. Results of NN-full-feature models

Table 5: Comparison of Cavg for i-vector model, DNN-full-
feature model, and RNN-full-feature models.

system Dev Test
SDC-GMMivec 0.0543 0.288

Fbank-DNN-average 0.0826 0.328
Fbank-RNN L1-average 0.0808 0.346
Fbank-RNN L2-average 0.0534 0.283

The results of DNN-full-feature model and RNN-full-
feature model are presented in Table 5. The unit number of
full feature layer is 1200 in DNN and 512 in RNN. Features
extracted from different LSTM layers are evaluated as well.
From the results we can see that there’s a large performance
gap between DNN-full-feature model and i-vector model.
However, the RNN-full-feature model that uses features
extracted from the second projection layer outperforms i-vector
system. This might be attributed to the effectiveness of the
LSTM RNN’s superiority of capturing long-term temporal
dependencies which makes the feature a better representation
for the utterance.

5.2.4. Results of NN-frame-alignment models

Table 6: Comparison of Cavg for i-vector model, DNN-frame-
alignment model, and RNN-frame-alignment model.

system Dev Test
SDC-GMMivec 0.0543 0.288
Fbank-DNNivec 0.0502 0.248
Fbank-RNNivec 0.0739 0.297

The results of DNN-frame-alignment model, and RNN-
frame-alignment model are presented in Table 6. Compared
with i-vector approach, large performance improvements can
be obtained with DNN-frame-alignment model. In addition,
the bottleneck feature model is superior to frame alignment
model according to Table 2 and Table 6 since the bottleneck
feature might be a better choice both for frame alignments and
statistics calculation in SLR. Nevertheless, the RNN-frame-
alignment performs much worse and is even worse than the
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baseline i-vector system. Actually, the LSTM RNN can provide
more accurate frame alignments than the DNN theoretically
according to the results in Table 1 and it can be inferred that the
LSTM RNN based system is most likely to outperform the DNN
based system. This interesting phenomenon leads us to think
that the distribution of senones could be much more complex
in some situation and the single Gaussian’s hypothesis might
not be accurate enough. We’ll investigate the distribution of
each senone ouput and see whether a mixture model is a better
choice for modeling the senone output in our later work.

6. Conclusions
This paper compares several LSTM-RNN based approaches
for spoken language recognition. Experiments on the NIST
LRE 2015 show that features extracted from LSTM-RNN are
effective for SLR. Bottleneck features extracted from LSTM
RNNs are competitive to bottleneck features extracted from
DNNs. The average of the outputs from the LSTM RNN’s
recurrent projection layer is an effective feature representation
for speech utterances. Nevertheless, the performance of LSTM
RNN is much worse than DNN under the frame-alignment
framework though the LSTM RNN can provide finer frame
alignments theoretically. In the future, we’ll further investigate
the distribution of each senone output from the LSTM RNN
and try different models other than single Gaussian for senone
modeling.
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