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Abstract
The performance of the current state-of-the-art i-vector based
probabilistic linear discriminant analysis (PLDA) speaker ver-
ification depends on large volumes of training data, ideally in
the target domain. However, in real-world applications, it is of-
ten difficult to collect sufficient amount of target domain data
for successful PLDA training. Thus, an adequate amount of
domain mismatch compensated out-domain data must be used
as the basis of PLDA training. In this paper, we introduce a
domain-invariant i-vector extraction (DI-IVEC) approach to ex-
tract domain mismatch compensated out-domain i-vectors using
limited in-domain (target) data for adaptation. In this method,
in-domain prior information is utilised to remove the domain
mismatch during the i-vector extraction stage. The proposed
method provides at least 17.3% improvement in EER over an
out-domain-only trained baseline when speaker labels are ab-
sent and a 27.2% improvement in EER when speaker labels are
known. A further improvement is obtained when DI-IVEC ap-
proach is used in combination with a domain-invariant covari-
ance normalization (DICN) approach. This combined approach
is found to work well with reduced in-domain adaptation data,
where only 1000 unlabelled i-vectors are required to perform
better than a baseline in-domain PLDA approach.

1. Introduction
In recent times, speaker verification has become popular re-
search field, which aims to verify authenticity of a claimed iden-
tity using information extracted from its acoustic speech sig-
nal. Over the last few years, the state-of-the-art text indepen-
dent speaker verification has been greatly influenced by i-vector
based probabilistic linear discriminant analysis (PLDA) [1],
which resulted in an excellent performance on recent speaker
recognition evaluations (SREs). However, this success largely
depends on the volume of the training speech data from the tar-
get domain. It was found that the performance of a PLDA sys-
tem trained only on SWB and evaluated on NIST is worse com-
pared to a PLDA system trained on NIST data, even though both
Switchboard (SWB) and Mixer-NIST consist of telephone data.
This problem was characterized as domain mismatch and intro-
duced at the John Hopkins University (JHU) Summer workshop
in 2013 [2].

Recently, researchers have proposed several techniques to
improve the performance of speaker verification system, when
PLDA models are initially trained on out-domain data. These
can be broadly categorized into supervised and unsupervised
techniques. Garcia-Romero et al. [3] found that there is no
major detrimental effect of training the UBM and total variabil-
ity matrix with out-domain data. Accordingly, they left these
hyper-parameters in the out-domain and proposed four similar
performing supervised adaptation techniques for PLDA param-

eters including fully Bayesian adaptation, approximate MAP
adaptation, weighted likelihood and PLDA parameter interpo-
lation. Villalba et al. [4] proposed another Bayesian PLDA
parameters adaptation technique for limited supervised target
domain data. They used a fully Bayesian approach and a varia-
tional approximation to compute the intractable posterior using
conjugate priors, and gained relatively good performance than
[3]. Wang et al. [5] introduced two transfer learning method
to transfer the target domain features to the out-domain. They
used maximum likelihood linear transformation (MLLT) tech-
nique to estimate the transfer parameters and expectation max-
imization (EM) to get the adapted PLDA parameters. These
techniques performed better than interpolation of PLDA pa-
rameters [3]. Hong et al. [6] proposed another transfer learn-
ing method using Bayesian joint probabilities, where Kullback-
Leibler (KL) divergence is used to maximize the optimization
function to share the target knowledge between the two do-
mains. Aronowitz [7] proposed an inter-dataset variability com-
pensation (IDVC) technique based on nuisance attribute projec-
tion (NAP) to minimize the domain mismatch in the i-vector
subspace. He partitioned the out-domain training dataset into
12 small subsets, and trained an IDV subspace spanned by the
12 centers of those subsets. This i-vector subspace domain-
mismatch compensation has proven to be very efficient than
other PLDA parameter adaptation techniques. Singer et al.
[8] proposed a library whitening technique which can manu-
ally adjust the whitening scheme. This approach adapts the
specific whitener data automatically to compensate the domain
mismatch from out-domain data.

For unsupervised adaptation, Villalba et al. [9] proposed
PLDA parameter adaptation technique, where unknown labels
are modeled as latent variables and the variational Bayes ap-
proach is used to predict their posterior distributions. This
technique improved the out-domain speaker recognition perfor-
mance with only 200 in-domain speakers for adaptation data.
Garcia-Romero et al. [10] used agglomerative hierarchical clus-
tering (AHC) to label the unsupervised in-domain adaptation
data. They also investigated the same AHC approach with a
DNN/i-vector system and achieved the best performance using
a DNN to collect the sufficient statistics for speaker modeling
[11]. Glembek et al. [12] introduced a within-speaker covari-
ance correction (WCC) approach, where they separated the be-
tween dataset covariance matrix from within-class covariance
matrix for unsupervised adaptation of the LDA subspace. This
approach has found to very effective than other unsupervised
PLDA parameter adaptation techniques. Kanagasundaram et
al. [13] proposed an unsupervised IDVC approach, in con-
trast to Aronowitz’s approach [7], they shifted the out-domain
i-vectors by capturing domain variability from the in-domain
mean i-vector. In [14], Rahman et al. introduced unsupervised
dataset invariant covariance normalization (DICN) , where they

Odyssey 2018 The Speaker and Language Recognition Workshop
26-29 June 2018, Les Sables d’Olonne, France

155 10.21437/Odyssey.2018-22

http://www.isca-speech.org/archive/Odyssey_2018/abstracts/19.html


trained the DICN matrix to capture the domain variability from
the global mean i-vector and compensated this variability in
the out-domain i-vectors for LDA and PLDA training. Rah-
man et al. also proposed domain-invariant mismatch modelling
(DMM) [15] technique to model the domain mismatch part of
the out-domain training i-vectors. In this technique the domain
mismatch is first modelled from all out-domain i-vectors using
maximum a posteriori (MAP) estimation. The new mismatch
compensated clean out-domain i-vectors are then computed by
the difference between the original and domain mismatch part
of the i-vector. Also, combining the DICN approach with the
DMM approach has been proven to be very efficient in domain
mismatch compensation while having only a small amount of
unlabelled in-domain data for adaptation.

In this paper, we present a domain-invariant i-vector extrac-
tion (DI-IVEC) technique using prior in-domain information to
reduce the domain mismatch in the i-vector subspace. This ap-
proach is motivated by the introduction of a source-specific es-
timation of informative priors for i-vector extraction [16]. Af-
ter extracting the compensated i-vectors, we also combine DI-
IVEC with DICN approach to further compensate the mismatch
in the i-vector subspace.

The rest of this paper is organized as follows: Section 2
details the DI-IVEC feature extraction technique. Section 3 de-
scribes details of the DICN approach. Section 4 describes the
length-normalized GPLDA system. The experimental protocol
and corresponding results are described in Section 5 and Sec-
tion 6. Finally, Section 7 concludes the paper.

2. Domain-invariant I-vector Feature
Extraction

In recent times, different unsupervised domain adaptation tech-
niques have been proposed to compensate domain variability
from the training i-vectors prior to PLDA modelling [7, 13].
However, none of these methods use in-domain prior infor-
mation during the i-vector extraction stage to produce domain
mismatch-compensated clean i-vectors. This section intro-
duces a domain-invariant i-vector extraction (DI-IVEC) tech-
nique utilising prior in-domain information to reduce domain
mismatch from the training data in the i-vector space. This ap-
proach is motivated by the introduction of a source-specific es-
timation of informative priors for i-vector extraction [16].

In i-vector representation [17], the speaker and channel-
dependent GMM super-vector m can be represented via a single
total variability subspace as follows,

m = m0 + Tw, (1)

where m0 is a speaker- and session-independent UBM super-
vector, T is a low-rank total-variability matrix and w is total
variability factor which is assumed to be normally distributed
N (0, I). For any given observation vector X, the aim here is to
determine the posterior distribution of w as follows,

p(w | X) = N
(
φ,L−1) , (2)

where φ is the desired i-vector and L is the precision matrix.
The i-vector extraction is based on the zero-order (N) and

centralised first-order (F̃) Baum-Welch statistics defined as,

N(c) =
∑

t

γt(c), (3)

F̃(c) =
∑

t

γt(c)(xt −mc), (4)

where, c is the Gaussian component, xt is the feature frame
at time t, γt(c) is the occupancy of the frame xt to Gaussian
component c and mc is the mean vector of the c-th component
of UBM super vector, m0.

With a standard normal priorN (0, I), the i-vector φ can be
extracted as follows,

L1 = I + NTTΣ−1T, (5)
W1 = TTΣ−1F̃, (6)
φ = L−1

1 W1, (7)

where N is a diagonal matrix whose diagonal blocks are NcI
for c = 1, ..., C and F̃ is formed through the concatenation of
the centralised first-order statistics F̃c for any given observa-
tion vector X. The covariance matrix Σ represents the residual
variability not captured by T.

In order to extract the domain-mismatch compensated i-
vectors, a total variability matrix T already trained on out-
domain data is used to extract the i-vectors. Now, instead of
assuming the standard normally distributed priors with mean 0
and covariance I, out-domain i-vectors are assumed to have new
distribution with mean µ̂ and covariance Σ̂ [18], i.e φout ∼
N (µ̂, Σ̂).
where,

µ̂ =
1

N

N∑

i=1

φi
in, (8)

Σ̂ =
1

N

N∑

i=1

(φi
in − µ̂)(φi

in − µ̂)T

+
1

N

N∑

i=1

(
I + Ni

inTTΣ−1T
)−1

,

(9)

where N is the number of total in-domain i-vectors. The closed
form solution of this problem is found in [19]. The aim here is
to find the posterior distribution that best matches this prior by
minimising the Kullback-Leibler (KL) divergence of the desired
prior distribution.

In the next step, out-domain first-order statistics F̃out are
re-centred again by removing Tµd projection from the global
mean µc as follows,

F̂out =
∑

t

γt(c)(xt − µc −Tµd), (10)

= F̃out −NoutTµd,

where µd is the mean of the domain mismatch part of the i-
vectors and determined by,

µd =
1

M

M∑

i=1

(
φi

old − µ̂
)
, (11)

where M is the total number of old out-domain i-vectors and
φold is the old out-domain i-vectors extracted using total-
variability matrix T.

Finally, the domain mismatch-compensated out-domain i-
vectors are extracted as follows,

L2 = Σ̂−1 + TTΣ−1NoutT, (12)
W2 = TTΣ−1F̂out, (13)

= TTΣ−1F̃out −TTΣ−1NoutTµd,

φout = L−1
2 W2. (14)
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Algorithm 1: EM Algorithm for DI-IVEC training
Input : φin = {φ1,φ2, ...,φN}

φold = {φ1,φ2, ...,φM}
Output: φout

Initialization: Nin,Nout,F̃out,T,Σ
µ̂ = 1

N

∑N
i=1 φ

i
in

Σ̂ = 1
N

∑N
i=1(φi

in − µ̂)(φi
in − µ̂)T +

1
N

∑N
i=1

(
I + Ni

inTTΣ−1T
)−1

µd = 1
M

∑M
i=1

(
φi

old − µ̂
)

begin
E-Step:
φout = (Σ̂−1 +

TTΣ−1NoutT)−1
[
TTΣ−1F̃out −TTΣ−1NoutTµd

]

φd = φout − µ̂
E{ln p(φd | µd,Σd)} =

∑M
j=1 ln p(φj

d | µd,Σd)
M-Step:
µd = 1

M

∑M
i=1 φ

i
d

Σd = 1
M

∑M
i=1(φi

d − µd)(φi
d − µd)T

until convergence

After one successful estimation of the domain mismatch-
compensated out-domain i-vectors, in the next stages µd and
Σd are estimated as follows,

µd =
1

M

M∑

i=1

φi
d, (15)

Σd =
1

M

M∑

i=1

(φi
d − µd)(φi

d − µd)T . (16)

where µd and Σd represent the mean and co-variance of the
domain mismatch part of the i-vectors.

Algorithm 1 describes the E and M steps of an EM algo-
rithm used to estimate the domain mismatch-compensated out-
domain training i-vectors.

3. DICN approach
In our previous work [14], we proposed DICN approach to com-
pensate the domain mismatch in the i-vector subspace. In this
approach, the global mean i-vector is used to capture the inter-
domain variability using the outer product of the difference
between all i-vectors (in-domain and out-domain) and global
mean i-vector. After extracting the domain-invariant i-vectors
as described in Section 2, we applied the DICN approach to
compensate the domain variability further in the i-vector sub-
space. The domain mismatch using DICN approach can be cap-
tured as follows,

ΣDICN =
1

Q

Q∑

q=1

(φq − µg)(φq − µg)T (17)

where Q is the total number of i-vectors (in-domain and out-
domain) and µg is the global mean, which can be calculated as
follows,

µg =
1

Q

Q∑

q=1

φq (18)

The scaling matrix A is calculated using the Cholesky de-
composition of AAT = Σ−1

DICN . Later, the DICN compen-

sated out-domain i-vectors are extracted as follows,

φDICN = ATφout (19)

4. Length-normalized GPLDA
In this paper, we used length-normalized GPLDA approach in-
troduced by Garcia-Romero et al. [20] for speaker and session
modeling, which is computationally more efficient than heavy-
tailed (HTPLDA) [1]. The benefit of the length-normalization
approach is that it transforms the non-Gaussian behaviour of
i- vectors into Gaussian, which involves three steps: centering,
whitening and length normalization. In GPLDA modeling, the
length-normalized i-vector can be decomposed into speaker and
channel dependent part as follows,

φr = φ̄+ U1x1 + U2x2r + εr (20)

where for given speaker recordings r = 1, .....R; U1 is the
eigenvoice and U2 is the eigenchannel matrices; φ̄ + U1x1 is
the speaker dependent part with covariance matrix of U1U

T
1

and U2x2r + εr is the channel dependent part with covariance
matrix of U2U

T
2 + Λ−1.

The GPLDA scoring is computed using the batch likelihood
ratio between a target and test i-vector [1]. For given target i-
vector φtarget and test i-vector φtest, the batch likelihood ratio
can be calculated as follows,

Score = ln
P (φtarget,φtest | H1)

P (φtarget | H0)P (φtest | H0)
(21)

where H1: The speakers are same, H0: The speaker are differ-
ent.

5. Experimental setup
The development dataset is derived from both in-domain
(Mixer-NIST) and out-domain (SWB) datasets as described
in DAC [2]. The in-domain dataset comprises 2,675 female
and 1,115 male speakers, for a total of 36,470 sessions col-
lected from NIST-2004, 2005, 2006 and 2008 SRE datasets, and
the out-domain dataset contains 1,653 female and 1,462 male
speakers, for a total of 33,039 sessions telephone data accumu-
lated from Switchboard I, II phase I, II, III corpora as described
in [2]. A subset of in-domain data containing different number
of speakers (50, 100, 300, 500, 700 speakers), sessions/speakers
(2, 4, 6, 8 sessions/speaker) and up to maximum 90 seconds of
active speech length per utterance (15, 30, 60, 90 seconds) was
collected for limited data investigations. For score normalisa-
tion, a subset of an in-domain dataset containing 1,526 female
speakers, for a total of 1,972 sessions, and 1,115 male speakers,
for a a total of 1,436 sessions is adopted as an in-domain score
normalisation dataset. Similarly, the out-domain score normal-
ization dataset is collected from a subset of the original out-
domain dataset, containing 1,125 female speakers with 1,872
sessions and 1,125 male speakers with 1905 sessions.

For speaker modelling, 13-dimensional feature-warped
MFCCs with ∆ and ∆∆ coefficients are extracted from raw
speech signal using 25 ms frames with 10 ms frame shift. An
energy-based VAD removes the silence frames from the fea-
ture stream while using an energy threshold of 5.5 across the
zero coefficient of extracted MFCC features to perform VAD.
Two gender dependent 512-mixture UBMs are trained and used
for Baum-Welch (BW) statistics calculation for total-variability
space training and i-vector extraction. Later, 500-dimensional i-
vector extractor reduces the dimension of the GMM supervector
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Table 1: Performance comparison of PLDA speaker verification
on the common set of the NIST-2010 core-core evaluation con-
dition, where PLDA and score normalisation are trained on both
in-domain and out-domain data.

PLDA Score UBM/i-vector DNN/i-vector

training normalisation EER EER

Out-domain
In-domain 5.36% 4.05%

Out-domain 5.62% 4.96%

None 6.01% 5.03%

In-domain
In-domain 4.03% 3.15%

Out-domain 4.32% 3.85%

None 4.52% 3.98%

into a low dimensional subspace defined by the matrix T. Prior
to GPLDA modelling, LDA subspace reduces the dimension
of the i-vectors, where LDA subspace is trained by selecting
most significant 150 eigenvectors from 500 eigenvectors based
on highest eigenvalues. In order to convert the heavy-tailed be-
haviour of i-vectors into Gaussian, i-vectors are whitened and
length-normalized before GPLDA modeling. For GPLDA mod-
eling, the best 120 eigenvoices (N1) are selected by sorting the
eigenvectors according to decreasing eigenvalues for speaker
subspace training. Finally, the S-normalisation is applied on
raw scores to reduce the score variability before evaluation. The

In this paper, all of the experiments are evaluated on core-
core telephone-telephone conditions of NIST 2010 evaluation
plan and performances are measured using EER.

For DNN/i-vector framework, the Kaldi toolkit [21] is used
for ASR DNN training. A feed-forward network with back
propagation estimation is used for DNN training with five hid-
den layer configurations using about 300 hours of out-domain
(SWB) data. The hidden layers use a p-norm activation function
(where p=2). The input layer takes 40-dimensional MFCC fea-
tures with five-frame temporal context, and cepstral mean sub-
traction (CMS) performed over a window of six seconds. Each
hidden layer has 350 nodes, the output dimension is 3500, and a
softmax output layer computes posteriors for 5,346 senone tar-
gets. The force-alignment is applied between state-level tran-
scripts and corresponding speech signals to generate HMM
state-alignment labels for DNN training.

6. Experimental results
6.1. Baseline performance

Table 1 presents the LDA-projected out-domain and in-domain
baseline PLDA speaker-verification performance, evaluated on
core-core telephone-telephone condition. Although both in-
domain and out-domain datasets consist of telephone data with
almost similar statistics and distribution, experimental results
show the performance difference between out-domain and in-
domain systems due to inherent domain mismatch. Also, score
normalisation plays a vital role in overall system performance.
Without any score normalisation, UBM/i-vector system perfor-
mance gets worse by 36.8% employing out-domain data rather
than in-domain for PLDA training. For a DNN/i-vector system,
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(a) UBM/i-vector based PLDA system.
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(b) DNN/i-vector based PLDA system.

Figure 1: Performance comparison of different domain adap-
tation techniques with DI-IVEC approach (a) UBM/i-vector-
based PLDA system (b) DNN/i-vector-based PLDA system.

this performance gap is 26.4%. Also, the best result is achieved
while training PLDA and score normalisation on in-domain
data. These results clearly suggest that the score normalization
data should always match with the target domain data to deliver
best possible performance. Since the score normalisation statis-
tics trained on in-domain data perform better than out-domain
score normalisation, the rest of the experiments in this paper are
presented using in-domain data for score normalisation.

6.2. Domain adaptation performance

Figure 1 presents the performance of the proposed DI-IVEC
approach compared to other unsupervised domain adaptation
techniques (like IDV [7], IDVC [13]) for improving out-domain
PLDA system performance while using a full in-domain dataset
for domain adaptation training. Experimental results show that
compensating domain mismatch during the i-vector extraction
stage results in an entirely considerable amount of performance
improvement and yields 24.4% and 17.3% out-domain perfor-
mance improvement for UBM/i-vector and DNN/i-vector sys-
tems, respectively. Also, combining a DICN approach with a
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(a) UBM/i-vector based PLDA system.
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Figure 2: Speaker-verification performance using DI-IVEC do-
main adaptation with limited in-domain i-vectors. (a) UBM/i-
vector-based PLDA system (b) DNN/i-vector-based PLDA sys-
tem.

DI-IVEC approach (DI-IVEC+DICN) gives an additional im-
provement over the out-domain baseline, suggesting that DICN
subspace transformation is very useful in compensating un-
wanted domain variability that cannot be compensated during
the i-vector extraction stage. Furthermore, in the presence of
labelled data, out-domain performance can be improved fur-
ther by using labelled data pooled with out-domain data for
PLDA training. This DI-IVEC (pooled) approach produces at
least 27.2% EER improvement over the out-domain baseline,
6.3% EER improvement over in-domain baseline systems and
1% EER improvement over pooped PLDA systems, for both
UBM/i-vector and DNN/i-vector systems. Subsequently, the
combined DI-IVEC+DICN (pooled) approach shows the best
performance compared to the other approaches presented in this
section.

6.3. Limited data experiments

The previous section demonstrated the performance of the pro-
posed DI-IVEC approach while using a full in-domain dataset
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(a) UBM/i-vector based PLDA system.
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Figure 3: Speaker verification performance using DI-
IVEC+DICN domain adaptation with limited in-domain i-
vectors. (a) UBM/i-vector based PLDA system (b) DNN/i-
vector based PLDA system.

for adaptation. However, it is also essential to learn the ef-
fectiveness of this technique under restricted-data conditions as
well. These data-scarce conditions are created by reducing the
amount of training data (500, 1000, 1500, 3000, 5000 i-vectors)
as well as reducing the session length (15, 30, 60, 90 seconds) of
each i-vector for domain adaptation training. These limited-data
domain adaptation performances are compared with IDVC[13]
approach, trained with 90-second sessions.

6.3.1. DI-IVEC approach

Figure 2 shows the performance of the DI-IVEC approach us-
ing limited unlabelled in-domain data for adaptation. Regard-
less of the length of the sessions, this approach shows higher
performance accuracy over IDVC [13] and obtains most of the
performance improvement with only 1000 in-domain i-vectors.
Although increasing the adaptation data further does not show
substantial performance variation, using a longer session length
shows a direct influence on the overall system performance.
For both UBM/i-vector and DNN/i-vector systems, 150-second
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utterances produce the best speaker-verification performance.
However, with only 15 seconds long 1000 in domain i-vectors,
DI-IVEC approach yields 16% and 7.6% out-domain perfor-
mance improvement for UBM/i-vector and DNN/i-vector sys-
tem, respectively.

6.3.2. DI-IVEC+DICN approach

In Section 6.2, it was shown that the best domain adaptation
performance could be achieved by combining a DICN approach
with a DI-IVEC approach. This section extends these investi-
gations to analyse the performance of this combined approach
under limited-data conditions. As expected, Figure 3 illustrates
the superior performance of this combined DI-IVEC+DICN ap-
proach over the IDVC and DI-IVEC approach alone (as pre-
sented in Figure 2). Like other limited-data experiments, this
approach also shows notable out-domain performance improve-
ment with only 1000 in-domain i-vectors. However, while using
15-second sessions for domain adaptation, this approach finds at
least 7.8% improvement over the out-domain baseline for both
UBM/i-vector and DNN/i-vector systems.

7. Conclusion
This paper introduced the DI-IVEC approach to extract the
domain-mismatch compensated out-domain i-vectors to im-
prove the GPLDA speaker verification system. Experimen-
tal results suggested that DI-IVEC approach can improve the
speaker verification performance significantly by using only
small amount of adaptation data. Also, an additional domain
mismatch can be compensated in the i-vector subspace when
DI-IVEC is used in combination with DICN, thus improving
the overall speaker verification performance. A significant im-
provement in EER of 27.2% is achieved over the out-domain
baseline when speaker labels are available. In our experiments
with limited data, we required only 15 sec long 1000 unla-
beled i-vectors for the DI-IVEC approach to performing sim-
ilarly well as the in-domain baseline.
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mouchel, and Pierre Ouellet, “Front-end factor analysis
for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp. 788–
798, 2011.

160



[18] Niko Brummer, “EM for probabilistic LDA,” Agnitio Re-
search, Cape Town, Tech. Rep, 2010.

[19] Liping Chen, Kong Aik Lee, Bin Ma, Wu Guo, Haizhou
Li, and Li Rong Dai, “Minimum divergence estimation of
speaker prior in multi-session PLDA scoring,” in IEEE In-
ternational Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2014, pp. 4007–4011.

[20] Daniel Garcia-Romero and Carol Y Espy-Wilson, “Anal-
ysis of i-vector length normalization in speaker recogni-
tion systems.,” in Proceedings of Interspeech, 2011, pp.
249–252.

[21] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al.,
“The Kaldi speech recognition toolkit,” in IEEE 2011
workshop on automatic speech recognition and under-
standing. IEEE Signal Processing Society, 2011.

161


